[1]

Catalanotti S, Cuomo V, Piro G, Ruggi D, Silvestrini V, Troise G. The radiative cooling of selective surfaces. Sol Energy 1975;17:83–9. CrossrefGoogle Scholar

[2]

Granqvist CGC, Hjortsbery A, Hjortsberg A. Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films. J Appl Phys 1981;52:4205. CrossrefGoogle Scholar

[3]

Craig R. The upper atmosphere: meteorology and physics. New York, Academic Press, 1965. Google Scholar

[4]

Bahadori MN. Passive cooling systems in Iranian architecture. Sci Am 1978;238:144–54. CrossrefGoogle Scholar

[5]

Trombe F. Perspectives sur l’utilisation des rayonnements solaires et terrestres dans certaines régions du monde. Rev Gen Therm 1967;6:1285. Google Scholar

[6]

Bartoli B, Catalanotti S, Coluzzi B, Cuomo V, Silvestrini V, Troise G. Nocturnal and diurnal performances of selective radiators. Appl Energy 1977;3:267–86. CrossrefGoogle Scholar

[7]

Nilsson T, Niklasson GA, Granqvist C. A solar-reflecting material for radiative cooling applications: ZnS pigmented polyethylene. Sol Energy Mater Sol Cells 1992;28:175–93. CrossrefGoogle Scholar

[8]

Orel B, Gunde M, Krainer A. Radiative cooling efficiency of white pigmented paints. Sol Energy 1993;50:477–82. CrossrefGoogle Scholar

[9]

Nilsson TMJ, Niklasson GA. Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils. Sol Energy Mater Sol Cells 1995;37:93–118. CrossrefGoogle Scholar

[10]

Granqvist CG, Hjortsberg A, Eriksson TS. Radiative cooling to low temperatures with selectivity IR-emitting surfaces. Thin Solid Films 1982;90:187–90. CrossrefGoogle Scholar

[11]

Granqvist C, Hjortsberg A. Surfaces for radiative cooling: silicon monoxide films on aluminum. Appl Phys Lett 1980;36:139–41. CrossrefGoogle Scholar

[12]

Rephaeli E, Fan S. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. Opt Express 2009;17:15145–59. CrossrefPubMedGoogle Scholar

[13]

Yeng YX, Ghebrebrhan M, Bermel P, et al. Enabling high-temperature nanophotonics for energy applications. Proc Natl Acad Sci USA 2012;109:2280–5. CrossrefGoogle Scholar

[14]

Chan WR, Bermel P, Pilawa-Podgurski RCN, et al. Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics. Proc Natl Acad Sci USA 2013;110:5309–14. CrossrefGoogle Scholar

[15]

Joannopoulos JD, Johnson SG, Winn JN, Meade RD. Photonic crystals: molding the flow of light, 2nd ed. Princeton, NJ, Princeton University Press, 2008. Google Scholar

[16]

Rephaeli E, Raman A, Fan S. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett 2013;13:1457–61. CrossrefPubMedGoogle Scholar

[17]

Raman AP, Anoma MA, Zhu L, Rephaeli E, Fan S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014;515:540–4. PubMedCrossrefGoogle Scholar

[18]

Zhu L, Raman A, Wang KX, Anoma MA, Fan S. Radiative cooling of solar cells. Optica 2014;1:32–8. CrossrefGoogle Scholar

[19]

Zhu L, Raman AP, Fan S. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc Natl Acad Sci USA 2015;112:12282–7. CrossrefGoogle Scholar

[20]

Wu S-H, Povinelli ML. Solar heating of GaAs nanowire solar cells. Opt Express 2015;23:A1363–72. CrossrefPubMedGoogle Scholar

[21]

Safi TTST, Munday JJN. Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments. Opt Express 2015;23:A1120–8. CrossrefPubMedGoogle Scholar

[22]

Sun X, Silverman TJ, Zhou Z, Khan MR, Bermel P, Alam MA. Optics-based approach to thermal management of photovoltaics: selective-spectral and radiative cooling. IEEE J Photovoltaics 2017;7:566–74. CrossrefGoogle Scholar

[23]

Francoeur M, Vaillon R, Menguc MP. Performance analysis of manoscale-gap thermophotovoltaic energy conversion devices. In the International Symposium on Thermal and Materials Nanoscience and Nanotechnology, Antalya, Turkey, 2011. Google Scholar

[24]

Bermel P, Chan W, Yeng YX, Joannopoulos JD, Soljacic M, Celanovic I. Design and global optimization of high-efficiency thermophotovoltaic systems. In the 9th Thermophotovoltaic World Conf, Valencia, Spain, 2010. Google Scholar

[25]

Thorne PW, Lanzante JR, Peterson TC, Seidel DJ, Shine KP. Tropospheric temperature trends: history of an ongoing controversy. Wiley Interdiscip Rev Clim Chang 2011;2:66–88. CrossrefGoogle Scholar

[26]

Vinnikov KY, Grody NC. Global warming trend of mean tropospheric temperature observed by satellites. Science 2003;302:269–72. PubMedCrossrefGoogle Scholar

[27]

Grant WB. Water vapor absorption coefficients in the 8-13 microm spectral region: a critical review: erratum. Appl Opt 1990;29:3206. PubMedCrossrefGoogle Scholar

[28]

Idso SB, Jackson RD. Thermal radiation from the atmosphere. J Geophys Res 1969;74:5397. CrossrefGoogle Scholar

[29]

Planck M. Ueber das gesetz der energieverteilung im normalspectrum. Ann Phys 1901;309:553–63. CrossrefGoogle Scholar

[30]

Greffet J-J, Bouchon P, Brucoli G, Sakat E, Marquier F. Generalized Kirchhoff law. arXiv preprint arXiv:1601.00312 (2016). Google Scholar

[31]

Fixsen DJ. The temperature of the cosmic microwave background. Astrophys J 2009;707:916–20. CrossrefGoogle Scholar

[32]

US Standard Atmosphere. Report/patent number: NASA TM-X 74335. National Oceanic and Atmospheric Administration. Natl Aeronaut Sp Adm United States Air Force, 1976.

[33]

ATRAN, 1992. [Online]. Available at: https://atran.sofia.usra.edu/cgi-bin/atran/atran.cgi. Accessed May 1, 2017.

[34]

Bell EE, Young J, Oetjen RA. Spectral-radiance of sky and terrain at wavelengths between 1 and 20 microns. II. Sky measurements. J Opt Soc Am 1960;50:1313–20. CrossrefGoogle Scholar

[35]

McGee RA. An analytical infrared radiation model of the earth. Appl Opt 1962;1:649. CrossrefGoogle Scholar

[36]

Roberts RE, Selby JE, Biberman LM. Infrared continuum absorption by atmospheric water vapor in the 8-12-microm window. Appl Opt 1976;15:2085–90. PubMedCrossrefGoogle Scholar

[37]

Idso SB. A set of equations for full spectrum and 8- to 14-um and 10.5- to 12.5-um thermal radiation from cloudless skies. Water Resour Res 1981;17:295–304. CrossrefGoogle Scholar

[38]

Strabala KI, Ackerman SA, Menzel WP. Cloud properties inferred from 8-12-μm data. J Appl Meteorol 1994;33: 212–29. CrossrefGoogle Scholar

[39]

Berdahl P, Fromberg R. The thermal radiance of clear skies. Sol Energy 1982;29:299–314. CrossrefGoogle Scholar

[40]

Harrison AW. Effect of atmospheric humidity on radiation cooling. Sol Energy 1981;26:243–47. CrossrefGoogle Scholar

[41]

Hossain MM, Gu M. Radiative cooling: principles, progress, and potentials. Adv Sci 2016;3:1500360. CrossrefGoogle Scholar

[42]

Berdahl P, Martin M, Sakkal F. Thermal performance of radiative cooling panels. Int J Heat Mass Transf 1983;26:871–80. CrossrefGoogle Scholar

[43]

Garratt JR, Brost RA. Radiative cooling effects within and above the nocturnal boundary layer. J Atmos Sci 1981;38:2730–46. CrossrefGoogle Scholar

[44]

Eicker U, Dalibard A. Photovoltaic-thermal collectors for night radiative cooling of buildings. Sol Energy 2011;85:1322–35. CrossrefGoogle Scholar

[45]

Artmann N, Manz H, Heiselberg P. Parameter study on performance of building cooling by night-time ventilation. Renew Energy 2008;33:2589–98. CrossrefGoogle Scholar

[46]

Holtslag AAM, De Bruin HAR. Applied modeling of the nighttime surface energy balance over land. J Appl Meteorol 1988;27:689–704. CrossrefGoogle Scholar

[47]

Chen Z, Zhu L, Raman A, Fan S. Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle. Nat Commun 2016;7:1–5. Google Scholar

[48]

Nishioka K, Ota Y, Tamura K, Araki K. Heat reduction of concentrator photovoltaic module using high radiation coating. Surf Coat Technol 2013;215:472–5. CrossrefGoogle Scholar

[49]

Byrnes SJ, Blanchard R, Capasso F. Harvesting renewable energy from Earth’s mid-infrared emissions. Proc Natl Acad Sci USA 2014;111:3927–32. CrossrefGoogle Scholar

[50]

Eriksson TS, Granqvist CG. Radiative cooling computed for model atmospheres. Appl Opt 1982;21:4381. CrossrefPubMedGoogle Scholar

[51]

Harrison AW, Walton MR. Radiative cooling of TiO_{2} white paint. Sol Energy 1978:20:185–8. CrossrefGoogle Scholar

[52]

Grenier P. Réfrigération radiative. Effet de serre inverse. Rev Phys Appl 1979;14:87–90. CrossrefGoogle Scholar

[53]

Landro B, McCormick PG. Effect of surface characteristics and atmospheric conditions on radiative heat loss to a clear sky. Int J Heat Mass Transf 1980;23:613–20. CrossrefGoogle Scholar

[54]

Addeo A, Nicolais L, Romero G, Bartoli B, Coluzzi B, Silvestrini V. Light selective structures for large scale natural air conditioning. Sol Energy 1980;24:93–8. CrossrefGoogle Scholar

[55]

Eriksson TS, Granqvist CG. Infrared optical properties of electron-beam evaporated silicon oxynitride films. Appl Opt 1983;22:3204–6. CrossrefPubMedGoogle Scholar

[56]

Eriksson TS, Lushiku EM, Granqvist CG. Materials for radiative cooling to low temperature. Sol Energy Mater 1984;11:149–61. CrossrefGoogle Scholar

[57]

Eriksson TS, Granqvist CG. Infrared optical properties of silicon oxynitride films: experimental data and theoretical interpretation. J Appl Phys 1986;60:2081–91. CrossrefGoogle Scholar

[58]

Hjortsberg A, Granqvist CG. Radiative cooling with selectively emitting ethylene gas. Appl Phys Lett 1981:39:507–9. CrossrefGoogle Scholar

[59]

Lushiku EM, Hjortsberg A, Granqvist CG. Radiative cooling with selectively infrared-emitting ammonia gas. J Appl Phys 1982;53:5526–30. CrossrefGoogle Scholar

[60]

Suryawanshi CN, Lin C-T. Radiative cooling: lattice quantization and surface emissivity in thin coatings. ACS Appl Mater Interfaces 2009;1:1334–8. PubMedCrossrefGoogle Scholar

[61]

Gentle AR, Smith GB. Radiative heat pumping from the Earth using surface phonon resonant nanoparticles. Nano Lett 2010;10:373–9. CrossrefPubMedGoogle Scholar

[62]

Ghebrebrhan M, Bermel P, Yeng YX, Celanovic I, Soljačić M, Joannopoulos JD. Tailoring thermal emission via Q matching of photonic crystal resonances. Phys Rev A 2011;83:33810. CrossrefGoogle Scholar

[63]

Zhu L, Raman A, Fan S. Color-preserving daytime radiative cooling. Appl Phys Lett 2013;103:223902. CrossrefGoogle Scholar

[64]

Zhou Z, Sun X, Bermel P. Radiative cooling for thermophotovoltaic systems. Proc SPIE 2016;9973:997308. CrossrefGoogle Scholar

[65]

Granqvist CG, Hjortsberg A. Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films. J Appl Phys 1981;52:4205–20. CrossrefGoogle Scholar

[66]

Gentle AR, Smith GB. A subambient open roof surface under the mid-summer Sun. Adv Sci 2015;2:1500119. CrossrefGoogle Scholar

[67]

Taft EA. Characterization of silicon nitride films. J Electrochem Soc Solid State Sci 1971;118:1341. Google Scholar

[68]

Pliskin WA. Comparison of properties of dielectric films deposited by various methods. J Vac Sci Technol 1977;14:1064. CrossrefGoogle Scholar

[69]

Gentle AR, Smith GB. Is enhanced radiative cooling of solar cell modules worth pursuing? Sol Energy Mater Sol Cells 2016;150:39–42. CrossrefGoogle Scholar

[70]

Granqvist CG, Hjortsberg A. Letter to the editor. Sol Energy 1980;24:216. CrossrefGoogle Scholar

[71]

Smith GB. Commentary: environmental nanophotonics and energy. J Nanophotonics 2011;5:50301. CrossrefGoogle Scholar

[72]

Bermel P, Luo C, Zeng L, Kimerling LC, Joannopoulos JD. Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. Opt Express 2007;15:16986–7000. PubMedCrossrefGoogle Scholar

[73]

Bermel P, Ghebrebrhan M, Chan W, et al. Design and global optimization of high-efficiency thermophotovoltaic systems. Opt Express 2010;18:A314–34. PubMedCrossrefGoogle Scholar

[74]

Zhou Z, Chen Q, Bermel P. Prospects for high-performance thermophotovoltaic conversion efficiencies exceeding the Shockley-Queisser limit. Energy Convers Manag 2015;97: 63–9. CrossrefGoogle Scholar

[75]

Eriksson TSS, Hjortsberg A, Granqvist CGG. Solar absorptance and thermal emittance of Al_{2}O_{3} films on Al: a theoretical assessment. Sol Energy Mater 1982;6:191–9. CrossrefGoogle Scholar

[76]

Strandberg R. Heat to electricity conversion by cold carrier emissive energy harvesters. J Appl Phys 2015;118:215102. CrossrefGoogle Scholar

[77]

Otth DH, Ross, RGJ. Assessing photovoltaic module degradation and lifetime from long term environmental tests. In Environmental technology: a key to product acceptability. Annual Technical Meeting, Los Angeles, CA, 1983, Vol. 29, 121–6. Google Scholar

[78]

Bermel P, Asadpour R, Zhou C, Alam MA. A modeling framework for potential induced degradation in PV modules. Proc SPIE 2015;9563:95630C-95630C. Google Scholar

[79]

Asadpour R, Chavali RVK, Alam MA. Physics-based computational modeling of moisture ingress in solar modules: location-specific corrosion and delamination. In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, 2016, 0840–3. Google Scholar

[80]

NREL Efficiency Chart, 2016. [Online]. Available at: http://www.nrel.gov/pv/assets/images/efficiency_chart.jpg. Accessed May 1, 2017.

[81]

Gregory MK, Shuying Y, Ajay S. Global acceleration factors for damp heat tests of PV modules. In IEEE 43rd Photovoltaic Specialist Conference (PVSC), Portland, OR, 2016. Google Scholar

[82]

Royne A, DEY CJ, Mills DR. Cooling of photovoltaic cells under concentrated illumination: a critical review. Sol Energy Mater Sol Cells 2005;86:451–83. CrossrefGoogle Scholar

[83]

Edenburn MW. Active and passive cooling for concentrating photovoltaic arrays. In IEEE 14th Photovoltaic Specialist Conference (PVSC), San Diego, CA, 1980, 771–776. Google Scholar

[84]

Koehler HC. Cooling photovoltaic (PV) cells during concentrated solar radiation in specified arrangement in coolant with as low electric conductivity as possible. Patent DE19904717, 2000.

[85]

Florschuetz LW, Truman CR, Metzger DE. Streamwise flow and heat transfer distributions for jet array impingement with crossflow. J Heat Transfer 1981;103:337. CrossrefGoogle Scholar

[86]

Corkish R, Green MA, Puzzer T. Solar energy collection by antennas. Sol Energy 2002;73:395–401. CrossrefGoogle Scholar

[87]

Vandenbosch GAE, Ma Z. Upper bounds for the solar energy harvesting efficiency of nano-antennas. Nano Energy 2012;1:494–502. CrossrefGoogle Scholar

[88]

Ward DR, Hüser F, Pauly F, Cuevas JC, Natelson D. Optical rectification and field enhancement in a plasmonic nanogap. Nat Nanotechnol 2010;5:732–6. CrossrefGoogle Scholar

[89]

Knight MW, Sobhani H, Nordlander P, Halas NJ. Photodetection with active optical antennas. Science 2011;332:702–4. CrossrefPubMedGoogle Scholar

[90]

Hobbs PCD, Laibowitz RB, Libsch FR. Ni-NiO-Ni tunnel junctions for terahertz and infrared detection. Appl Opt 2005;44:6813. PubMedCrossrefGoogle Scholar

[91]

Kotter DK, Novack SD, Slafer WD, Pinhero PJ. Theory and manufacturing processes of solar nanoantenna electromagnetic collectors. J Sol Energy Eng 2010;132:11014. CrossrefGoogle Scholar

[92]

Fumeaux C, Herrmann W, Kneubühl FK, Rothuizen H. Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation. Infrared Phys Technol 1998;39:123–83. CrossrefGoogle Scholar

[93]

Hagmann MJ. Isolated carbon nanotubes as high-impedance transmission lines for microwave through terahertz frequencies. IEEE Trans Nanotechnol 2005;4:289–96. CrossrefGoogle Scholar

[94]

Choo H, Kim M-K, Staffaroni M, et al. Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper. Nat Photonics 2012;6:838–44. CrossrefGoogle Scholar

[95]

Conibeer G, Shrestha S, Huang S, et al. Hot carrier solar cell absorber prerequisites and candidate material systems. Sol Energy Mater Sol Cells 2015;135:124–9. CrossrefGoogle Scholar

[96]

Würfel P, Brown AS, Humphrey TE, Green MA. Particle conservation in the hot-carrier solar cell. Prog Photovoltaics Res Appl 2005;13:277–85. CrossrefGoogle Scholar

[97]

Santhanam P, Fan S. Thermal-to-electrical energy conversion by diodes under negative illumination. Phys Rev B 2016;93:161410. CrossrefGoogle Scholar

[98]

Tan Y, Liu B, Shen S, Yu Z. Enhancing radiative energy transfer through thermal extraction. Nanophotonics 2016;5:22–30. Google Scholar

[99]

Kempfert KD, Jiang EY, Oas S, Coffin J. Detectors for Fourier transform spectroscopy. Thermo Nicolet Application Note. [Online]. Available at: mmrc.caltech.edu/FTIR/Nicolet/DetectorsforFTIR1204.pdf. Accessed May 1, 2017.

[100]

Asgari A, Razi S. High performances III-Nitride Quantum Dot infrared photodetector operating at room temperature. Opt Express 2010;18:14604. CrossrefPubMedGoogle Scholar

[101]

Datskos PC, Lavrik N V. Detectors – figures of merit. In Encyclopedia of Optical Engineering. CRC Press, 2003. Google Scholar

[102]

Jiang H, Shin S, Liu X, Zhang X, Alam MA. Characterization of self-heating leads to universal scaling of HCI degradation of multi-fin SOI FinFETs. In 2016 IEEE International Reliability Physics Symposium (IRPS), Pasadena, CA, 2016, 2A-3-1–7. Google Scholar

[103]

Maize K, Das SR, Sadeque S, et al. Super-Joule heating in graphene and silver nanowire network. Appl Phys Lett 2015;106:143104. CrossrefGoogle Scholar

[104]

Palit S, Varghese D, Guo H, Krishnan S, Alam MA. The role of dielectric heating and effects of ambient humidity in the electrical breakdown of polymer dielectrics. IEEE Trans Device Mater Reliab 2015;15:308–18. CrossrefGoogle Scholar

[105]

Wahab MA, Shin S, Alam MA. Spatio-temporal mapping of device temperature due to self-heating in Sub-22 nm transistors. In 2016 IEEE International Reliability Physics Symposium (IRPS), Pasadena, CA, 2016, XT-05-1–6. Google Scholar

[106]

Shin SH, Wahab MA, Ahn W, et al. Fundamental trade-off between short-channel control and hot carrier degradation in an extremely-thin silicon-on-insulator (ETSOI) technology. In 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, 2015, 20.3.1–4. Google Scholar

[107]

Alam MA, Mahapatra S. A comprehensive model of PMOS NBTI degradation. Microelectron Reliab 2005;45:71–81. CrossrefGoogle Scholar

[108]

Cheng Y-K, Tsai C-H, Teng C-C, Kang S-M. Electrothermal Analysis of VLSI Systems, Springer Science & Business Media, 2007, Chapter 6. Google Scholar

[109]

Viswanath R, Wakharkar V, Watwe A, Lebonheur V. Thermal performance challenges from silicon to systems. Intel Technol J 2000:1–16. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.8322.

[110]

Berhe MK. Ergonomic temperature limits for handheld electronic devices. In ASME 2007 InterPACK Conference, Vancouver, BC, Canada, 2007, Vol. 2, 1041–7. Google Scholar

[111]

Wagner GR, Maltz W. Comparing tablet natural convection cooling efficiency. [Online]. Available at: https://www.mentor.com/products/mechanical/engineering-edge/volume3/issue1/comparing-natural-convection-cooling-efficiency. Accessed May 1, 2017.

[112]

Yu E, Joshi YK. Heat transfer in discretely heated side-vented compact enclosures by combined conduction, natural convection, and radiation. J Heat Transfer 1999;121:1002. CrossrefGoogle Scholar

[113]

De Vogeleer K, Memmi G, Jouvelot P, Coelho F. Theoretical analysis of radiative cooling for mobile and embedded systems. arXiv preprint arXiv:1410.0628 (2014). Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.