[1]

Aharonovich I, Englund D, Toth M. Solid-state single-photon emitters. Nat Photonics 2016;10:631–41. Web of ScienceCrossrefGoogle Scholar

[2]

Lounis B, Orrit M. Single-photon sources. Reports Prog Phys 2005;68:1129–79. CrossrefGoogle Scholar

[3]

Muller A, Breguet J, Gisin N. Experimental demonstration of quantum cryptography using polarized photons in optical fiber over more than 1 km. Eur Lett 1993;23:383–8. CrossrefGoogle Scholar

[4]

Kurtsiefer C, Zarda P, Halder M, et al. Quantum cryptography:a step towards global key distribution. Nature 2002;419:450. CrossrefGoogle Scholar

[5]

Peng CZ, Yang T, Bao XH, et al. Experimental free-space distribution of entangled photon pairs over 13 km:towards satellite-based global quantum communication. Phys Rev Lett 2005;94:150501. CrossrefPubMedGoogle Scholar

[6]

Loss D, DiVincenzo DP. Quantum computation with quantum dots. Phys Rev A 1998;57:120–6. Web of ScienceCrossrefGoogle Scholar

[7]

Santori C, Pelton M, Solomon G, Dale Y, Yamamoto Y. Triggered single photons from a quantum dot. Phys Rev Lett 2001;86:1502–5. CrossrefPubMedGoogle Scholar

[8]

Buckley S, Rivoire K, Vučković J. Engineered quantum dot single-photon sources. Reports Prog Phys 2012;75:126503. CrossrefWeb of ScienceGoogle Scholar

[9]

Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device. Science 2000;290:2282–5. CrossrefPubMedGoogle Scholar

[10]

Gschrey M, Thoma A, Schnauber P, et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography. Nat Commun 2015;6:7662. Web of ScienceCrossrefPubMedGoogle Scholar

[11]

He Y-M, He Y, Wei Y-J, et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat Nanotechnol 2013;8:213–7. PubMedWeb of ScienceCrossrefGoogle Scholar

[12]

Somaschi N, Giesz V, De Santis L, et al. Near-optimal single-photon sources in the solid state. Nat Photonics 2016;10:340–5. Web of ScienceCrossrefGoogle Scholar

[13]

Wei Y, He Y-M, Chen M, et al. Deterministic and robust generation of single photons on a chip with 99.5% indistinguishability using rapid adiabatic passage. Nano Lett 2014;14:6515. CrossrefGoogle Scholar

[14]

Ding X, He Y, Duan ZC, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys Rev Lett 2016;116:020401. CrossrefWeb of ScienceGoogle Scholar

[15]

Bardoux R, Guillet T, Gil B, et al. Polarized emission from GaN/AlN quantum dots:single-dot spectroscopy and symmetry-based theory. Phys Rev B 2008;77:235315. Web of ScienceCrossrefGoogle Scholar

[16]

Jemsson T, Machhadani H, Holtz PO, Karlsson KF. Polarized single photon emission and photon bunching from an InGaN quantum dot on a GaN micropyramid. Nanotechnology 2015;26:065702. CrossrefWeb of SciencePubMedGoogle Scholar

[17]

Patra SK, Marquardt O, Schulz S. Polar, semi- and non-polar nitride-based quantum dots:influence of substrate orientation and material parameter sets on electronic and optical properties. Opt Quantum Electron 2016;48:151. CrossrefWeb of ScienceGoogle Scholar

[18]

Holmes MJ, Kako S, Choi K, Arita M, Arakawa Y. Single photons from a hot solid-state emitter at 350 K. ACS Photonics 2016;3:543–6. Web of ScienceCrossrefGoogle Scholar

[19]

Deshpande S, Frost T, Hazari A, Bhattacharya P. Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot. Appl Phys Lett 2014;105:141109. CrossrefWeb of ScienceGoogle Scholar

[20]

Bennett CH, Brassard G. Quantum cryptography: public key distribution and coin tossing. Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing 1984:175–9. Google Scholar

[21]

Reid BPL. Towards cavity quantum electrodynamics and coherent control with single InGaN/GaN quantum dots. PhD Thesis (University Oxford) 2013:52–5. Google Scholar

[22]

Lundskog A, Hsu C-W, Fredrik Karlsson K, et al. Direct generation of linearly polarized photon emission with designated orientations from site-controlled InGaN quantum dots. Light Sci Appl 2014;3:e139. CrossrefWeb of ScienceGoogle Scholar

[23]

Teng C-H, Zhang L, Hill T, Demory B, Deng H, Ku P-C. Elliptical quantum dots as on-demand single photons sources with deterministic polarization states. Appl Phys Lett 2015;107:191105. Web of ScienceCrossrefGoogle Scholar

[24]

Deshpande S, Heo J, Das A, Bhattacharya P. Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire. Nat Commun 2013;4:1675. CrossrefWeb of ScienceGoogle Scholar

[25]

Puchtler TJ, Wang T, Ren CX, et al. Ultrafast, polarized, single-photon emission from m-plane InGaN quantum dots on GaN nanowires. Nano Lett 2016;16:7779–85. PubMedCrossrefWeb of ScienceGoogle Scholar

[26]

Kundys D, Sutherland D, Davies MJ, et al. A study of the optical and polarisation properties of InGaN/GaN multiple quantum wells grown on a-plane and m-plane GaN substrates. Sci Technol Adv Mater 2016;17:736–43. Web of ScienceCrossrefPubMedGoogle Scholar

[27]

Reid BPL, Kocher C, Zhu T, et al. Non-polar InGaN quantum dot emission with crystal-axis oriented linear polarization. Appl Phys Lett 2015;106:171108. Web of ScienceCrossrefGoogle Scholar

[28]

Badcock TJ, Dawson P, Kappers MJ, et al. Optical polarization anisotropy of a-plane GaN/AlGaN multiple quantum well structures grown on r-plane sapphire substrates. J Appl Phys 2009;105:123112. Web of ScienceCrossrefGoogle Scholar

[29]

Chiu CH, Kuo SY, Lo MH, et al. Optical properties of a-plane InGaN/GaN multiple quantum wells on r-plane sapphire substrates with different indium compositions. J Appl Phys 2009;105:063105. Web of ScienceCrossrefGoogle Scholar

[30]

Schliwa A, Winkelnkemper M, Bimberg D. Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As∕GaAs quantum dots. Phys Rev B 2007;76:205324. CrossrefWeb of ScienceGoogle Scholar

[31]

Oehler F, Sutherland D, Zhu T, et al. Evaluation of growth methods for the heteroepitaxy of non-polar (11–20) GAN on sapphire by MOVPE. J Cryst Growth 2014;408:32–41. CrossrefWeb of ScienceGoogle Scholar

[32]

Emery RM, Zhu T, Oehler F, et al. Non-polar (11–20) InGaN quantum dots with short exciton lifetimes grown by metal-organic vapour phase epitaxy. Phys Status Solidi C 2014;11:698–701. CrossrefGoogle Scholar

[33]

Zhu T, Oehler F, Reid BPL, et al. Non-polar (11–20) InGaN quantum dots with short exciton lifetimes grown by metalorganic vapor phase epitaxy. Appl Phys Lett 2013;102:251905. CrossrefGoogle Scholar

[34]

Liu ZF, Ding T, Zhang G, Song K, Clays K, Tung CH. Ternary inverse opal system for convenient and reversible photonic bandgap tuning. Langmuir 2008;24:10519–23. Web of ScienceCrossrefPubMedGoogle Scholar

[35]

Jarjour AF, Green AM, Parker TJ, et al. Two-photon absorption from single InGaN/GaN quantum dots. Physica E 2006;32:119–22. CrossrefGoogle Scholar

[36]

Patra SK, Schulz S. Non-polar In_{x}Ga_{1-x}N/GaN quantum dots:impact of dot size and shape anisotropies on excitonic and biexcitonic properties. J Phys D Appl Phys 2017;50:025108. CrossrefWeb of ScienceGoogle Scholar

[37]

Marquardt O, Boeck S, Freysoldt C, et al. A generalized plane-wave formulation of **k**·**p** formalism and continuum-elasticity approach to elastic and electronic properties of semiconductor nanostructures. Comput Mater Sci 2014;95:280–7. CrossrefWeb of ScienceGoogle Scholar

[38]

Schulz S, Marquardt O. Electronic structure of polar and semipolar (11-22)-oriented nitride dot-in-a-well systems. Phys Rev Appl 2015;3:064020. CrossrefWeb of ScienceGoogle Scholar

[39]

Schuh K, Barthel S, Marquardt O, et al. Strong dipole coupling in nonpolar nitride quantum dots due to Coulomb effects. Appl Phys Lett 2012;100:092103. CrossrefWeb of ScienceGoogle Scholar

[40]

Barthel S, Schuh K, Marquardt O, et al. Interplay between Coulomb interaction and quantum-confined Stark-effect in polar and nonpolar wurtzite InN/GaN quantum dots. Eur Phys J B 2013;86:449. Web of ScienceCrossrefGoogle Scholar

[41]

Reid BPL, Zhu T, Chan CCS, et al. High temperature stability in non-polar (11–20) InGaN quantum dots:exciton and biexciton dynamics. Phys Status Solidi C 2014;11:702–5. CrossrefGoogle Scholar

[42]

Reid BPL, Kocher C, Zhu T, et al. Observations of Rabi oscillations in a non-polar InGaN quantum dot. Appl Phys Lett 2014;104:263108. CrossrefWeb of ScienceGoogle Scholar

[43]

Reid BPL, Zhu T, Puchtler TJ, et al. Origins of spectral diffusion in the micro-photoluminescence of single InGaN quantum dots origins of spectral diffusion in the micro-photoluminescence of single InGaN quantum dots. Jpn J Appl Phys 2013;52:08JE01. CrossrefWeb of ScienceGoogle Scholar

[44]

Griffiths JT, Zhu T, Oehler F, et al. Growth of non-polar (11–20) InGaN quantum dots by metal organic vapour phase epitaxy using a two temperature method. APL Mater 2014;2:126101. Web of ScienceCrossrefGoogle Scholar

[45]

Schulz S, Badcock TJ, Moram MA, et al. Electronic and optical properties of nonpolar a-plane GaN quantum wells. Phys Rev B 2010;82:125318. Web of ScienceCrossrefGoogle Scholar

[46]

Baer N, Schulz S, Gartner P, Schumacher S, Czycholl G, Jahnke F. Influence of symmetry and Coulomb correlation effects on the optical properties of nitride quantum dots. Phys Rev B 2007;76:075310. Web of ScienceCrossrefGoogle Scholar

[47]

Schulz S, Tanner DP, O’Reilly EP, et al. 2015 Structural, electronic, and optical properties of m-plane InGaN/GaN quantum wells:insights from experiment and atomistic theory. Phys Rev B 2015;92:235419. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.