[1]

Bonaccorso F, Sun Z, Hasan T, Ferrari AC. Graphene photonics and optoelectronics. Nat Photonics 4;2010:611–22. Google Scholar

[2]

Liu CH, Chang YC, Norris TB, Zhong Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat Nanotechnology 2014;9:273–8. CrossrefGoogle Scholar

[3]

Mak KF, Ju L, Wang F, Heinz TF. Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun 2012;152:1341–9. CrossrefGoogle Scholar

[4]

Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature 2011;474:64–7. PubMedCrossrefGoogle Scholar

[5]

Lemme MC. Gate-activated photoresponse in a graphene p-n junction. Nano Lett 2011;11:4134–7. CrossrefGoogle Scholar

[6]

Wilson JA, Yoffe AD. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 1969;18:193–335. CrossrefGoogle Scholar

[7]

Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nature Nanotechnol 2012;7:363–8. CrossrefGoogle Scholar

[8]

Huang Y, Zhan X, Xu K, et al. Highly sensitive photodetectors based on hybrid 2D-0D SnS2-copper indium sulfide quantum dots. Appl Phys Lett 2016;108:013101. CrossrefGoogle Scholar

[9]

Robin A, Lhuillier E, Xu XZ, et al. Engineering the charge transfer in all 2D graphene-nanoplatelets heterostructure photodetectors. Sci Rep 2016;6:24909. CrossrefPubMedGoogle Scholar

[10]

Sun ZH, Liu ZK, Li JH, Tai GA, Lau SP, Yan F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv Mater 2012;24:5878–83. CrossrefPubMedGoogle Scholar

[11]

Gao S, Dong S. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 2011;40:2644 –72. PubMedCrossrefGoogle Scholar

[12]

Bhimanapati GR, Linϙ Z, Meunier V, et al. Recent advances in two dimensional materials beyond graphene. ACS Nano 2015;9:11509–39. CrossrefPubMedGoogle Scholar

[13]

Zhang Y, Zhang L, Zhou C. Review of chemical vapor deposition of graphene and related applications. Acc Chem Res 2013;46:2329–39. CrossrefPubMedGoogle Scholar

[14]

Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5;2010:574–8. Google Scholar

[15]

Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN. Liquid exfoliation of layered materials. Science 2013;340:1226419. CrossrefGoogle Scholar

[16]

Schornbaum J, Winter B, Schießl SP, et al. Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near-infrared photoresponse. Adv Funct Mater 2014;24:5798–806. CrossrefGoogle Scholar

[17]

Jia Z, Xiang J, Wen F, Yang R, Hao C, Liu Z. Enhanced photoresponse of SnSe-nanocrystals-decorated WS2 monolayer phototransistor. ACS Appl Mater Interfaces 2016;8:4781–8. CrossrefPubMedGoogle Scholar

[18]

Chen K, Wan X, Wen J, et al. Electronic properties of MoS2–WS2 heterostructures synthesized with two-step lateral epitaxial strategy. ACS Nano 2015;9:9868–76. PubMedCrossrefGoogle Scholar

[19]

Iler R. Multilayers of colloidal particles. J Colloidal Interface Sci 1966;21:569–94. CrossrefGoogle Scholar

[20]

Watanabe E, Spidle R, Caudle S, Manani G, Wanekaya AK, Mugweru A. Electrochemical method for analysis of cholesterol based on in situ synthesized graphene decorated with zinc oxide nanoparticles. ECS Solid State Lett 2001;3:M5–9. 10.1149. Google Scholar

[21]

Kufer D, Nikitskiy I, Lasanta T, Navickaite G, Koppens FHL, Konstantatos G. Hybrid 2D–0D MoS 2–PbS quantum dot photodetectors. Adv Mater 2015;27:176–80. CrossrefGoogle Scholar

[22]

Kim BS, Neo DCJ, Hou Bo, et al. High performance PbS quantum dot/graphene hybrid solar cell with efficient charge extraction. ACS Appl Mater Interfaces 2016;8:13902–8. PubMedCrossrefGoogle Scholar

[23]

Wang R, Zhang YT, Wang HY, Song XX, Jin LF, Yao JQ. Wide spectral response field effect phototransistor based on graphene-quantum dot hybrid. IEEE Photonics 2015;7:450076. Google Scholar

[24]

Hetsch F, Zhao N, Kershaw SV, Rogach AL. Quantum dot field effect transistors. Mater Today 2016;16:9. Google Scholar

[25]

Zhang Y, Cao M, Song X, et al. Multiheterojunction phototransistors based on graphene–PbSe quantum dot hybrids. J Phys Chem C 2015;119:21739–43. CrossrefGoogle Scholar

[26]

Liu Y, Gibbs M, Puthussery J, et al. Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. Nano Lett 2010;10:1960–9. CrossrefPubMedGoogle Scholar

[27]

Gao Y, Aerts M, Sandeep CS, et al. Photoconductivity of PbSe quantum- dot solids: dependence on ligand anchor group and length. ACS Nano 2012;6:9606–14. CrossrefPubMedGoogle Scholar

[28]

Guo WH, Xu SG, Wu ZF, Wang N, Loy MMT, Du SW. Oxygen-assisted charge transfer between ZnO quantum dots and graphene. Small 2013;9:3031–6. PubMedCrossrefGoogle Scholar

[29]

Xu F, Gerlein LF, Ma X, Haughn CR, Doty MF, Cloutier SG. Impact of different surface ligands on the optical properties of PbS quantum dot solids. Materials 2015;8:1858–70. CrossrefGoogle Scholar

[30]

Abel KA, Shan J, Boyer JC, Harris F, van Veggel FCJM. Highly photoluminescent PbS nanocrystals: the beneficial effect of trioctylphosphine. Chem Mater 2008;20:3794–6. CrossrefGoogle Scholar

[31]

Cuharuc AS, Kulyuk LL, Lascova RI, Mitioglu AA, Dikusar AI. Electrochemical characterization of PbS quantum dots capped with oleic acid and PbS thin films – a comparative study. Surface Eng Appl Electrochem 2012;48:3. Google Scholar

[32]

Dubois F, Mahler B, Dubertret B, Doris E, Mioskowski CA. Versatile strategy for quantum dot ligand exchange. J Am Chem Soc 2007;129:482–3. PubMedCrossrefGoogle Scholar

[33]

Jeong KS, Tang J, Liu J, et al. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. ACS Nano 2012;6:89–99. CrossrefPubMedGoogle Scholar

[34]

Luther JM, Law M, Song Q, Perkins CL, Beard MC, Nozik AJ. Structural optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. ACS Nano 2008;2:271–80. PubMedCrossrefGoogle Scholar

[35]

Talapin DV, Murray CB. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 2005;310:86–9. CrossrefPubMedGoogle Scholar

[36]

Turyanska L, Makarovsky O, Svatek SA, et al. Ligand-induced control of photoconductive gain and doping in a hybrid graphene–quantum dot transistor. Adv Electron Mater 2015;1:1500062. CrossrefGoogle Scholar

[37]

Zhang H, Hu Bo, Sun L, et al. Surfactant ligand removal and rational fabrication of inorganically-connected quantum dots. Nano Lett 2011;11:5356–61. PubMedCrossrefGoogle Scholar

[38]

Konstantatos G, Sargent EH. Colloidal quantum dot optoelectronics and photovoltaics. New York: Cambridge University Press, 2013. Google Scholar

[39]

Gao J, Nguyen SC, Bronstein ND, Alivisatos AP. Solution-processed, high-speed, and high-quantum-efficiency quantum dot infrared photodetectors. ACS Photonics 2016;3:1217–22. CrossrefGoogle Scholar

[40]

Efros Alexander L, Efros Alexei L. Interband absorption of light in a semiconductor sphere. Sov Phys Semicond 1982;16:772–5. Google Scholar

[41]

Moreels I, Lambert K, Smeets D, et al. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 2009;3:3023–30. PubMedCrossrefGoogle Scholar

[42]

Moreels I, Lambert K, De Muynck D, et al. Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots. Chem Mater 2007;19:6101–6. CrossrefGoogle Scholar

[43]

Allan G, Delerue C. Confinement effects in PbSe quantum wells and nanocrystals. Phys Rev B 2004;70:245321. CrossrefGoogle Scholar

[44]

Lin KF, Cheng HM, Hsu HC, Lin LJ, Hsieh WF. Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method. Chem Phys Lett 2005;409:208–11. CrossrefGoogle Scholar

[45]

Kamat PV. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 2008;112:18737–53. CrossrefGoogle Scholar

[46]

McDonald SA, Konstantatos G, Zhang S, et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater 2005;4:138–42. PubMedCrossrefGoogle Scholar

[47]

Nozik AJ. Quantum dot solar cells. Physica E 2002;14:115–20. CrossrefGoogle Scholar

[48]

Lang IG, Pavlov ST. Resonant light absorption by semiconductor quantum dots. Adv Condens Matter Phys 2009;2009:645190. Google Scholar

[49]

Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 1987;58:2059. CrossrefPubMedGoogle Scholar

[50]

Tiedje T, Yablonovitch E, Cody GD, Brooks BG. Limiting efficiency of silicon solar cells. IEEE Trans Electron Devices 1984;31:711–6. CrossrefGoogle Scholar

[51]

Schaller RD, Klimov VI. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys Rev Lett 2004;92:186601. CrossrefPubMedGoogle Scholar

[52]

Ellingson RJ, Beard MC, Johnson JC, et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett 2005;5:865–71. CrossrefPubMedGoogle Scholar

[53]

Sukhovatkin V, Hinds S, Brzozowski L, Sargent EH. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 2009;324:1542–4. CrossrefPubMedGoogle Scholar

[54]

Konstantatos G, Howard I, Fischer A, et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006; 442:180–3. PubMedCrossrefGoogle Scholar

[55]

Adinolfi V, Sargent EH. Colloidal quantum dot photodetectors. Proc. SPIE 9555, Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications, 955506, 2015. Google Scholar

[56]

Beneking H. Gain and bandwidth of fast near-infrared photodetectors: a comparison of diodes, phototransistors, and photoconductive devices. IEEE Trans Electron Devices 1982;29:1420–31. CrossrefGoogle Scholar

[57]

Ogura M. Hole injection type InGaAs–InP near infrared photo-FET, IEEE J. Quantum Electron 2010;46:562–9. CrossrefGoogle Scholar

[58]

Mitin VV, Pipa VI, Sergeev AV, Dutta M, Stroscio M. High-gain quantum-dot infrared photodetector. Infrared Phys Technol 2001;42:467–72. CrossrefGoogle Scholar

[59]

Mitin V, Antipov A, Sergeev A, Vagidov N, Eason D, Strasser G. Quantum dot infrared photodetectors: photoresponse enhancement due to potential barriers. Nanoscale Res Lett 2011;6:21. PubMedGoogle Scholar

[60]

Martyniuk P, Rogalski A. Quantum-dot infrared photodetectors: status and outlook. Prog Quantum Electron 2008;32:89–120. CrossrefGoogle Scholar

[61]

Zhang DY, Gan L, Cao Y, Wang Q, Qi LM, Guo XF. Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor. Adv Mater 2012;24:2715–20. CrossrefGoogle Scholar

[62]

Huang YQ, Zhu RJ, Kang N, Du J, Xu HQ. Photoelectrical response of hybrid graphene PbS quantum dot devices. Appl Phys Lett 2013;103:143119. CrossrefGoogle Scholar

[63]

Wang R, Zhang YT, Wang HY, et al. High-performance controllable ambipolar infrared phototransistors based on graphene – quantum dot hybrid. Arxiv Condmat 2014;arXiv:1410.2413v1. Google Scholar

[64]

Son DI, Yang HY, Kim TW, Park WI. Photoresponse mechanisms of ultraviolet photodetectors based on colloidal ZnO quantum dot graphene nanocomposites. Appl Phys Lett 2013;102:021105. CrossrefGoogle Scholar

[65]

Song X, Zhang Y, Zhang H, et al. Improved photoelectronic performance of graphene, polymer and PbSe quantum dot infrared photodetectors. Mater Lett 2016;178:52–5. CrossrefGoogle Scholar

[66]

Kufer D, Konstantatos G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett 2015;15:7307–13. CrossrefPubMedGoogle Scholar

[67]

Liu X, Liu N, Liu M, et al. Graphene nanomesh photodetector with effective charge tunnelling from quantum dots. Nanoscale 2015;7:4242–9. PubMedCrossrefGoogle Scholar

[68]

Nikitskiy I, Goossens S, Kufer D, et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor. Nat Commun 2016;7:11954. PubMedCrossrefGoogle Scholar

[69]

Adinolfi V, Kramer IJ, Labelle AJ, Sutherland BR, Hoogland S, Sargent EH. Photojunction field-effect transistor based on a colloidal quantum dot absorber channel layer. ACS Nano 2015;9:356–62. PubMedCrossrefGoogle Scholar

[70]

Zhitomirsky D, Voznyy O, Levina L, et al. Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime. Nat Commun 2014;5:3803. PubMedGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.