[1]

Elliott R. Intensity of optical absorption by excitons. Phys Rev 1957;108:1384. CrossrefGoogle Scholar

[2]

Feldmann J, Peter G, Göbel E, et al. Linewidth dependence of radiative exciton lifetimes in quantum wells. Phys Rev Lett 1987;59:2337. CrossrefPubMedGoogle Scholar

[3]

Kasprzak J, Richard M, Kundermann S, et al. Bose–Einstein condensation of exciton polaritons. Nature 2006;443: 409–14. CrossrefPubMedGoogle Scholar

[4]

Eisenstein J, MacDonald A. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 2004;432: 691–4. CrossrefPubMedGoogle Scholar

[5]

Miller DA. Optical physics of quantum wells. In: Oppo GL, Barnett SM, Riis E, Wilkinson M, eds. Quantum Dynamics of Simple Systems, London, Institute of Physics, 1996;239–26. Google Scholar

[6]

Geim AK, Novoselov KS. The rise of graphene. Nat Mater 2007;6:183–91. CrossrefPubMedGoogle Scholar

[7]

Kang K, Xie S, Huang L, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015;520:656–60. CrossrefPubMedGoogle Scholar

[8]

Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 2010;105:136805. CrossrefGoogle Scholar

[9]

Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2. Nano Lett 2010;10:1271–5. CrossrefPubMedGoogle Scholar

[10]

Ross J S, Klement P, Jones AM, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat Nano 2014;9:268–72. CrossrefGoogle Scholar

[11]

Ye Z, Cao T, O’Brien K, et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 2014;513:214–8. PubMedCrossrefGoogle Scholar

[12]

Amani M, Lien D-H, Kiriya D, et al. Near-unity photoluminescence quantum yield in MoS2. Science 2015;350:1065–8. PubMedCrossrefGoogle Scholar

[13]

Mak KF, He K, Shan J, Heinz TF. Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nano 2012;7:494–8. CrossrefGoogle Scholar

[14]

Schuller JA, Karaveli S, Schiros T, et al. Orientation of luminescent excitons in layered nanomaterials. Nat Nano 2013;8:271–6. CrossrefGoogle Scholar

[15]

Shi H, Yan R, Bertolazzi S, et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 2013;7:1072–80. CrossrefGoogle Scholar

[16]

Mak KF, He K, Lee C, et al. Tightly bound trions in monolayer MoS2. Nat Mater 2013;12:207–11. PubMedGoogle Scholar

[17]

Esser A, Runge E, Zimmermann R, Langbein W. Photoluminescence and radiative lifetime of trions in GaAs quantum wells. Phys Rev B 2000;62:8232–9. CrossrefGoogle Scholar

[18]

Kheng K, Cox R, d’Aubigné MY, Bassani F, Saminadayar K, Tatarenko S. Observation of negatively charged excitons X− in semiconductor quantum wells. Phys Rev Lett 1993;71:1752. PubMedCrossrefGoogle Scholar

[19]

Radisavljevic B, Radenovic A, Brivio J, Giacometti i V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol 2011;6:147–50. CrossrefPubMedGoogle Scholar

[20]

Cheiwchanchamnangij T, Lambrecht WRL. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys Rev B 2012;85:205302. CrossrefGoogle Scholar

[21]

Chernikov A, Berkelbach TC, Hill HM, et al. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Phys Rev Lett 2014;113:076802. CrossrefGoogle Scholar

[22]

Ugeda MM, Bradley AJ, Shi S-F, et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat Mater 2014;13:1091–5. CrossrefGoogle Scholar

[23]

Scholes GD, Rumbles G. Excitons in nanoscale systems. Nat Mater 2006;5:683–96. PubMedCrossrefGoogle Scholar

[24]

Cha S, Sung J H, Sim S, et al. 1s-intraexcitonic dynamics in monolayer MoS2 probed by ultrafast mid-infrared spectroscopy. Nat Commun 2016;7:10768. PubMedCrossrefGoogle Scholar

[25]

Schaibley JR, Yu H, Clark G, et al. Valleytronics in 2D materials. Nat Rev Mater 2016;1:16055. CrossrefGoogle Scholar

[26]

Ju L, Shi Z, Nair N, et al. Topological valley transport at bilayer graphene domain walls. Nature 2015;520:650–5. CrossrefPubMedGoogle Scholar

[27]

Gunlycke D, White CT. Graphene valley filter using a line defect. Phys Rev Lett 2011;106:136806. CrossrefPubMedGoogle Scholar

[28]

Rycerz A, Tworzydlo J, Beenakker CWJ. Valley filter and valley valve in graphene. Nat Phy 2007;3:172–5. CrossrefGoogle Scholar

[29]

Wu Z, Zhai F, Peeters FM, Xu HQ, Chang K. Valley-dependent Brewster angles and Goos-Hanchen effect in strained graphene. Phys Rev Lett 2011;106:176802. CrossrefPubMedGoogle Scholar

[30]

Xiao D, Yao W, Niu Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys Rev Lett 2007;99:236809. PubMedCrossrefGoogle Scholar

[31]

Xu X, Yao W, Xiao D, Heinz TF. Spin and pseudospins in layered transition metal dichalcogenides. Nat Phy 2014;10:343–50. CrossrefGoogle Scholar

[32]

Cao T, Wang G, Han W, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat Commun 2012;3:887. CrossrefPubMedGoogle Scholar

[33]

Xiao J, Ye Z, Wang Y, Zhu H, Wang Y, Zhang X. Nonlinear optical selection rule based on valley-exciton locking in monolayer WS2. Light Sci Appl 2015;4:e366. CrossrefGoogle Scholar

[34]

Zeng H, Dai J, Yao W, Xiao D, Cui X. Valley polarization in MoS2 monolayers by optical pumping. Nat Nano 2012;7: 490–3. CrossrefGoogle Scholar

[35]

Yin X, Ye Z, Chenet DA, et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science 2014;344:488–90. CrossrefGoogle Scholar

[36]

Wang G, Marie X, Gerber I, et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys Rev Lett 2015;114:097403. CrossrefGoogle Scholar

[37]

Li L, Yu Y, Ye GJ, et al. Black phosphorus field-effect transistors. Nat Nano 2014;9:372–7. CrossrefGoogle Scholar

[38]

Liu H, Neal AT, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014;8:4033–41. PubMedCrossrefGoogle Scholar

[39]

Wang X, Jones AM, Seyler KL, et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat Nano 2015;10:517–21. CrossrefGoogle Scholar

[40]

Tran V, Soklaski R, Liang Y, Yang L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B 2014;89:235319. CrossrefGoogle Scholar

[41]

Seyler KL, Schaibley JR, Gong P, et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat Nanotechnol 2015;10:407–11. CrossrefGoogle Scholar

[42]

Ross J S, Wu S, Yu H, et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun 2013;4:1474. CrossrefGoogle Scholar

[43]

Chernikov A, van der Zande AM, Hill HM, et al. Electrical tuning of exciton binding energies in monolayer WS 2. Phys Rev Lett 2015;115:126802. CrossrefPubMedGoogle Scholar

[44]

Santos EJ, Kaxiras E. Electrically driven tuning of the dielectric constant in MoS2 layers. ACS Nano 2013;7:10741–6. PubMedCrossrefGoogle Scholar

[45]

Kim SJ, Choi K, Lee B, Kim Y, Hong BH. Materials for flexible, stretchable electronics: graphene and 2D materials. Annu Rev Mater Res 2015;45:63–84. CrossrefGoogle Scholar

[46]

Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nat Commun 2014;55678. Google Scholar

[47]

He K, Poole C, Mak KF, Shan J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett 2013;13:2931–6. PubMedCrossrefGoogle Scholar

[48]

Conley HJ, Wang B, Ziegler JI, Haglund Jr RF, Pantelides ST, Bolotin KI. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett 2013;13:3626–30. PubMedCrossrefGoogle Scholar

[49]

Zhu C, Wang G, Liu B, et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS 2. Phys Rev B 2013;88:121301. CrossrefGoogle Scholar

[50]

Aivazian G, Gong Z, Jones AM, et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat Phy 2015;346:1205–8. Google Scholar

[51]

Srivastava A, Sidler M, Allain AV, Lembke DS, Kis A, Imamoğlu A. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat Phy 2015;11:141–7. CrossrefGoogle Scholar

[52]

Li Y, Ludwig J, Low T, et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys Rev Lett 2014;113:266804. CrossrefPubMedGoogle Scholar

[53]

MacNeill D, Heikes C, Mak KF, et al. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys Rev Lett 2015;114:037401. PubMedCrossrefGoogle Scholar

[54]

Sie EJ, McIver JW, Lee Y-H, Fu L, Kong J, Gedik N. Valley-selective optical Stark effect in monolayer WS2. Nat Mater 2015;14:290–4. PubMedGoogle Scholar

[55]

Chernikov A, Ruppert C, Hill HM, Rigosi AF, Heinz TF. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat Photonics 2015;9:466–70. CrossrefGoogle Scholar

[56]

Kim J, Hong X, Jin C, et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 2014;346:1205–8. CrossrefPubMedGoogle Scholar

[57]

Sundaram R, Engel M, Lombardo A, et al. Electroluminescence in single layer MoS2. Nano Lett 2013;13:1416–21. PubMedCrossrefGoogle Scholar

[58]

Ye Y, Ye Z, Gharghi M, et al. Exciton-dominant electroluminescence from a diode of monolayer MoS2. Appl Phys Lett 2014;104:193508. CrossrefGoogle Scholar

[59]

Baugher BWH, Churchill HOH, Yang Y, Jarillo-Herrero P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat Nano 2014;9:262–7. CrossrefGoogle Scholar

[60]

Pospischil A, Furchi MM, Mueller T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat Nano 2014;9:257–61. CrossrefGoogle Scholar

[61]

Lee C-H, Lee G-H, van der Zande AM, et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat Nano 2014;9:676–81. CrossrefGoogle Scholar

[62]

Withers F, Del Pozo-Zamudio O, Mishchenko A, et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat Mater 2015;14:301–6. CrossrefGoogle Scholar

[63]

Zhang Y, Oka T, Suzuki R, Ye J, Iwasa Y. Electrically switchable chiral light-emitting transistor. Science 2014;344:725–8. CrossrefPubMedGoogle Scholar

[64]

Ye Y, Xiao J, Wang H, et al. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nat Nanotechnol 2016;11:598–602. CrossrefGoogle Scholar

[65]

Bonaccorso F, Sun Z, Hasan T, Ferrari A. Graphene photonics and optoelectronics. Nat Photonics 2010;4:611–22. CrossrefGoogle Scholar

[66]

Bao Q, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater 2009;19:3077–83. CrossrefGoogle Scholar

[67]

Sun Z, Hasan T, Torrisi F, et al. Graphene mode-locked ultrafast laser. ACS Nano 2010;4:803–10. PubMedCrossrefGoogle Scholar

[68]

Hendry E, Hale PJ, Moger J, Savchenko A, Mikhailov S. Coherent nonlinear optical response of graphene. Phys Rev Lett 2010;105:097401. PubMedCrossrefGoogle Scholar

[69]

Bao Q, Zhang H, Wang B, et al. Broadband graphene polarizer. Nat Photonics 2011;5:411–5. CrossrefGoogle Scholar

[70]

Zhang H, Lu S, Zheng J, et al. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Optics Express 2014;22:7249–60. CrossrefGoogle Scholar

[71]

Englund D, Fattal D, Waks E, et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys Rev Lett 2005;95:013904. CrossrefGoogle Scholar

[72]

Fujita M, Takahashi S, Tanaka Y, Asano T, Noda S. Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science 2005;308:1296–8. CrossrefPubMedGoogle Scholar

[73]

Gan X, Gao Y, Mak KF, et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. Appl Phys Lett 2013;103:181119. CrossrefGoogle Scholar

[74]

Wu S, Buckley S, Jones AM, et al. Control of two-dimensional excitonic light emission via photonic crystal. 2D Mater 2014;1:011001. CrossrefGoogle Scholar

[75]

Lee HS, Kim MS, Jin Y, Han GH, Lee YH, Kim J. Selective amplification of the primary exciton in a MoS2 monolayer. Phys Rev Lett 2015;115:226801. CrossrefGoogle Scholar

[76]

Reed JC, Zhu AY, Zhu H, Yi F, Cubukcu E. Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter. Nano Lett 2015;15:1967–71. CrossrefPubMedGoogle Scholar

[77]

Yi F, Ren M, Reed JC, et al. Optomechanical enhancement of doubly resonant 2D optical nonlinearity. Nano Lett 2016;16:1631–6. CrossrefPubMedGoogle Scholar

[78]

Butun S, Tongay S, Aydin K. Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays. Nano Lett 2015;15:2700–4. PubMedCrossrefGoogle Scholar

[79]

Liu W, Lee B, Naylor CH, et al. Strong exciton–plasmon coupling in MoS2 coupled with plasmonic lattice. Nano Lett 2016;16:1262–9. PubMedCrossrefGoogle Scholar

[80]

Liu X, Galfsky T, Sun Z, et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat Photonics 2015;9: 30–4. Google Scholar

[81]

Dufferwiel S, Schwarz S, Withers F, et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat Commun 2015;6:8579. CrossrefGoogle Scholar

[82]

Flatten LC, He Z, Coles DM, et al. Room-temperature exciton-polaritons with two-dimensional WS2. Sci Rep 2016;6:33134. CrossrefPubMedGoogle Scholar

[83]

Wang S, Li S, Chervy T, et al. Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature. Nano Lett 2016;16:4368–74. CrossrefPubMedGoogle Scholar

[84]

Wu S, Buckley S, Schaibley JR, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 2015;520:69–72. CrossrefPubMedGoogle Scholar

[85]

Ye Y, Wong ZJ, Lu X, et al. Monolayer excitonic laser. Nat Photonics 2015;9:733–7. CrossrefGoogle Scholar

[86]

Salehzadeh O, Djavid M, Tran NH, Shih I, Mi Z. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett 2015;15:5302–6. PubMedCrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.