[1]

Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS_{2}: a new direct-gap semiconductor. Phys Rev Lett 2010;105:136805. CrossrefGoogle Scholar

[2]

Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS_{2}. Nano Lett 2010;10:1271–5. CrossrefPubMedGoogle Scholar

[3]

Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 2012;7:699–712. CrossrefPubMedGoogle Scholar

[4]

Butler SZ, Hollen SM, Cao L, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013;7:2898–926. CrossrefPubMedGoogle Scholar

[5]

Eda G, Maier SA. Two-dimensional crystals: managing light for optoelectronics. ACS Nano 2013;7:5660–5. CrossrefPubMedGoogle Scholar

[6]

Liu G, Xiao D, Yao Y, Xu X, Yao W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem Soc Rev 2015;44:2643–63. CrossrefPubMedGoogle Scholar

[7]

Novoselov KS, Fal′ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. A roadmap for graphene. Nature 2012;490:192–200. CrossrefPubMedGoogle Scholar

[8]

Lezama IG, Arora A, Ubaldini A, et al. Indirect-to-direct band gap crossover in few-layer MoTe_{2}. Nano Lett 2015;15:2336–42. CrossrefPubMedGoogle Scholar

[9]

Koperski M, Nogajewski K, Arora A, et al. Single photon emitters in exfoliated WSe_{2} structures. Nat Nanotechnol 2015;10:503–6. CrossrefPubMedGoogle Scholar

[10]

Arora A, Koperski M, Nogajewski K, Marcus J, Faugeras C, Potemski M. Excitonic resonances in thin films of WSe_{2}: from monolayer to bulk material. Nanoscale 2015;7:10421–9. CrossrefPubMedGoogle Scholar

[11]

Arora A, Nogajewski K, Molas M, Koperski M, Potemski M. Exciton band structure in layered MoSe_{2}: from a monolayer to the bulk limit. Nanoscale 2015;7:20769–75. CrossrefPubMedGoogle Scholar

[12]

Smoleński T, Goryca M, Koperski M, et al. Tuning valley polarization in a WSe_{2} monolayer with a tiny magnetic field. Phys Rev X 2016;6:21024. Google Scholar

[13]

Arora A, Schmidt R, Schneider R, et al. Valley Zeeman splitting and valley polarization of neutral and charged excitons in monolayer MoTe_{2} at high magnetic fields. Nano Lett 2016;16:3624–9. CrossrefPubMedGoogle Scholar

[14]

Jakubczyk T, Delmonte V, Koperski M, et al. Radiatively limited dephasing and exciton dynamics in MoSe_{2} monolayers revealed with four-wave mixing microscopy. Nano Lett 2016;16:5333–9. PubMedCrossrefGoogle Scholar

[15]

Wilson JA, Yoffe AD. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 1969;18:193–335. CrossrefGoogle Scholar

[16]

Zhu ZY, Cheng YC, Schwingenschlögl U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys Rev B Condens Matter Mater Phys 2011;84:1–5. Google Scholar

[17]

Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS_{2}. Phys Rev B 2011;83:245213. CrossrefGoogle Scholar

[18]

Kumar A, Ahluwalia PK. Electronic structure of transition metal dichalcogenides monolayers 1H-MX_{2} (M=Mo, W; X=S, Se, Te) from ab-initio theory: new direct band gap semiconductors. Eur Phys J B 2012;85:186. CrossrefGoogle Scholar

[19]

Cheiwchanchamnangij T, Lambrecht WRL. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS_{2}. Phys Rev B 2012;85:205302. CrossrefGoogle Scholar

[20]

Mak KF, He K, Shan J, Heinz TF. Control of valley polarization in monolayer MoS_{2} by optical helicity. Nat Nanotechnol 2012;7:494–8. CrossrefPubMedGoogle Scholar

[21]

Zeng H, Liu G-B, Dai J, et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci Rep 2013;3:1608. CrossrefPubMedGoogle Scholar

[22]

Sundaram RS, Engel M, Lombardo A, et al. Electroluminescence in single layer MoS_{2}. Nano Lett 2013;13:1416–21. PubMedCrossrefGoogle Scholar

[23]

Zhao W, Ghorannevis Z, Chu L, et al. Evolution of electronic structure in atomically thin sheets of WS_{2} and WSe_{2}. ACS Nano 2013;7:791–7. CrossrefPubMedGoogle Scholar

[24]

Ross JS, Wu S, Yu H, et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun 2013;4:1474. CrossrefGoogle Scholar

[25]

Zhang Y, Chang T-R, Zhou B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe_{2}. Nat Nanotechnol 2013;9:111–5. PubMedCrossrefGoogle Scholar

[26]

Kumar N, He J, He D, Wang Y, Zhao H. Valley and spin dynamics in MoSe2 two-dimensional crystals. Nanoscale 2014;6:12690–5. PubMedCrossrefGoogle Scholar

[27]

Kozawa D, Kumar R, Carvalho A, et al. Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nat Commun 2014;5:4543. PubMedGoogle Scholar

[28]

Chernikov A, Berkelbach TC, Hill HM, et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS_{2}. Phys Rev Lett 2014;113:76802. CrossrefGoogle Scholar

[29]

Ye Z, Cao T, O’Brien K, et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 2014;513:214–8. PubMedCrossrefGoogle Scholar

[30]

Riley JM, Mazzola F, Dendzik M, et al. Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor. Nat Phys 2014;10:835–9. CrossrefGoogle Scholar

[31]

Baugher BWH, Churchill HOH, Yang Y, Jarillo-Herrero P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat Nanotechnol 2014;9:262–7. CrossrefGoogle Scholar

[32]

Kormányos A, Burkard G, Gmitra M, et al. k·p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater 2015;2:22001. CrossrefGoogle Scholar

[33]

Zhu B, Chen X, Cui X. Exciton binding energy of monolayer WS_{2}. Sci Rep 2015;5:9218. CrossrefGoogle Scholar

[34]

Liu G-B, Shan W-Y, Yao Y, Yao W, Xiao D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys Rev B 2013;88:85433. CrossrefGoogle Scholar

[35]

Klots AR, Newaz AKM, Wang B, et al. Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy. Sci Rep 2014;4:6608. PubMedGoogle Scholar

[36]

Kośmider K, González JW, Fernández-Rossier J. Large spin splitting in the conduction band of transition metal dichalcogenide monolayers. Phys Rev B 2013;88:245436. CrossrefGoogle Scholar

[37]

Wang G, Robert C, Suslu A, et al. Spin-orbit engineering in transition metal dichalcogenide alloy monolayers. Nat Commun 2015;6:10110. CrossrefPubMedGoogle Scholar

[38]

Zhang X-X, You Y, Zhao SYF, Heinz TF. Experimental evidence for dark excitons in monolayer WSe_{2}. Phys Rev Lett 2015;115:257403. CrossrefGoogle Scholar

[39]

Withers F, Del Pozo-Zamudio O, Schwarz S, et al. WSe_{2} light-emitting tunneling transistors with enhanced brightness at room temperature. Nano Lett 2015;15:8223–8. PubMedCrossrefGoogle Scholar

[40]

Molas MR, Faugeras C, Slobodeniuk AO, et al. Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides. 2D Mater 2017;4:021003. CrossrefGoogle Scholar

[41]

Zhang X-X, Cao T, Lu Z, et al. Magnetic brightening and control of dark excitons in monolayer WSe_{2}. Arxiv E-Prints 2016: Preprint at Arxiv:1612.03558. PubMedGoogle Scholar

[42]

Ramasubramaniam A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys Rev B 2012;86:115409. CrossrefGoogle Scholar

[43]

Qiu DY, da Jornada FH, Louie SG. Optical spectrum of MoS_{2}: many-body effects and diversity of exciton states. Phys Rev Lett 2013;111:216805. PubMedCrossrefGoogle Scholar

[44]

He K, Kumar N, Zhao L, et al. Tightly bound excitons in monolayer WSe_{2}. Phys Rev Lett 2014;113:26803. CrossrefGoogle Scholar

[45]

Ugeda MM, Bradley AJ, Shi S-F, et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat Mater 2014;13:1091–5. CrossrefGoogle Scholar

[46]

Hill HM, Rigosi AF, Roquelet C, et al. Observation of excitonic Rydberg states in monolayer MoS_{2} and WS_{2} by photoluminescence excitation spectroscopy. Nano Lett 2015;15:2992–7. CrossrefPubMedGoogle Scholar

[47]

Chernikov A, van der Zande AM, Hill HM, et al. Electrical tuning of exciton binding energies in monolayer WS_{2}. Phys Rev Lett 2015;115:126802. CrossrefGoogle Scholar

[48]

Molina-Sánchez A, Sangalli D, Hummer K, Marini A, Wirtz L. Effect of spin-orbit interaction on the optical spectra of single-layer, double-layer, and bulk MoS_{2}. Phys Rev B 2013;88:45412. CrossrefGoogle Scholar

[49]

Amani M, Lien D-H, Kiriya D, et al. Near-unity photoluminescence quantum yield in MoS_{2}. Science 2015;350:1065–8. PubMedCrossrefGoogle Scholar

[50]

Ruppert C, Aslan OB, Heinz TF. Optical properties and band gap of single- and few-layer MoTe_{2} crystals. Nano Lett 2014;14:6231–6. CrossrefPubMedGoogle Scholar

[51]

Tonndorf P, Schmidt R, Böttger P, et al. Photoluminescence emission and Raman response of monolayer MoS_{2}, MoSe_{2}, and WSe_{2}. Opt Express 2013;21:4908. CrossrefGoogle Scholar

[52]

Hecht E. Optics. 4th ed. Reading. San Francisco, Pearson Addison Wesley, 2001. Google Scholar

[53]

Arora A, Mandal A, Chakrabarti S, Ghosh S. Magneto-optical Kerr effect spectroscopy based study of Landé g-factor for holes in GaAs/AlGaAs single quantum wells under low magnetic fields. J Appl Phys 2013;113:213505. CrossrefGoogle Scholar

[54]

Mak KF, He K, Lee C, et al. Tightly bound trions in monolayer MoS_{2}. Nat Mater 2013;12:207–11. PubMedGoogle Scholar

[55]

Hopfield JJ. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys Rev 1958;112:1555–67. CrossrefGoogle Scholar

[56]

Fano U. Effects of Configuration interaction on intensities and phase shifts. Phys Rev 1961;124:1866–78. CrossrefGoogle Scholar

[57]

Weisbuch C, Nishioka M, Ishikawa A, Arakawa Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys Rev Lett 1992;69:3314–7. CrossrefGoogle Scholar

[58]

Dufferwiel S, Schwarz S, Withers F, et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat Commun 2015;6:8579. CrossrefGoogle Scholar

[59]

Oberli DY, Böhm G, Weimann G, Brum JA. Fano resonances in the excitation spectra of semiconductor quantum wells. Phys Rev B 1994;49:5757–60. CrossrefGoogle Scholar

[60]

Bellani V, Pérez E, Zimmermann S, Viña L, Hey R, Ploog K. Evolution of Fano resonances in two- and three-dimensional semiconductors with a magnetic field. Solid State Commun 1996;97:459–64. CrossrefGoogle Scholar

[61]

Bellani V, Pérez E, Zimmermann S, Viña L, Hey R, Ploog K. Modulation of Fano resonances by an external magnetic field in semiconductor quantum wells. Solid State Electron 1996;40:85–8. CrossrefGoogle Scholar

[62]

Bellani V, Viña L, Hey R, Ploog K. Modification of Fano resonances by resonant polaron coupling in bulk GaAs. Semicond Sci Technol 1996;11:1411–5. CrossrefGoogle Scholar

[63]

Chae D-H, Utikal T, Weisenburger S, et al. Excitonic fano resonance in free-standing graphene. Nano Lett 2011;11:1379–82. PubMedCrossrefGoogle Scholar

[64]

Mak KF, Shan J, Heinz TF. Seeing many-body effects in single- and few-layer graphene: observation of two-dimensional saddle-point excitons. Phys Rev Lett 2011;106:46401. CrossrefGoogle Scholar

[65]

Esser A, Zimmermann R, Runge E. Theory of trion spectra in semiconductor nanostructures. Phys Status Solid 2001;227:317–30. CrossrefGoogle Scholar

[66]

Suris RA, Kochereshko VP, Astakhov GV, et al. Excitons and trions modified by interaction with a two-dimensional electron gas. Phys Status Solid 2001;227:343–52. CrossrefGoogle Scholar

[67]

Xiao D, Liu G-B, Feng W, Xu X, Yao W. Coupled spin and valley physics in monolayers of MoS_{2} and other group-VI dichalcogenides. Phys Rev Lett 2012;108:196802. CrossrefPubMedGoogle Scholar

[68]

Cao T, Wang G, Han W, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat Commun 2012;3:887. CrossrefPubMedGoogle Scholar

[69]

Wang G, Bouet L, Lagarde D, et al. Valley dynamics probed through charged and neutral exciton emission in monolayer WSe_{2}. Phys Rev B 2014;90:75413. CrossrefGoogle Scholar

[70]

Tonndorf P, Schmidt R, Schneider R, et al. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2015;2:347. CrossrefGoogle Scholar

[71]

He Y-M, Clark G, Schaibley JR, et al. Single quantum emitters in monolayer semiconductors. Nat Nanotechnol 2015;10:497–502. CrossrefPubMedGoogle Scholar

[72]

Srivastava A, Sidler M, Allain AV, Lembke DS, Kis A, Imamoğlu A. Optically active quantum dots in monolayer WSe_{2}. Nat Nanotechnol 2015;10:491–6. CrossrefPubMedGoogle Scholar

[73]

Chakraborty C, Kinnischtzke L, Goodfellow KM, Beams R, Vamivakas AN. Voltage-controlled quantum light from an atomically thin semiconductor. Nat Nanotechnol 2015;10:507–11. CrossrefPubMedGoogle Scholar

[74]

Plechinger G, Nagler P, Kraus J, et al. Identification of excitons, trions and biexcitons in single-layer WS_{2}. Phys Status Solid Rapid Res Lett 2015;9:457–61. CrossrefGoogle Scholar

[75]

Shang J, Shen X, Cong C, et al. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 2015;9:647–55. CrossrefGoogle Scholar

[76]

Ganchev B, Drummond N, Aleiner I, Fal’ko V. Three-particle complexes in two-dimensional semiconductors. Phys Rev Lett 2015;114:107401. CrossrefPubMedGoogle Scholar

[77]

Mitioglu AA, Plochocka P, Granados del Aguila Á, et al. Optical investigation of monolayer and bulk tungsten diselenide (WSe_{2}) in high magnetic fields. Nano Lett 2015;15:4387–92. CrossrefPubMedGoogle Scholar

[78]

Plechinger G, Nagler P, Arora A, et al. Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide. Nat Commun 2016;7:12715. CrossrefPubMedGoogle Scholar

[79]

Saigal N, Ghosh S. Evidence for two distinct defect related luminescence features in monolayer MoS2. Appl Phys Lett 2016;109:122105. CrossrefGoogle Scholar

[80]

Yu H, Liu G-B, Gong P, Xu X, Yao W. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nat Commun 2014;5:1–7. Google Scholar

[81]

Jones AM, Yu H, Schaibley JR, et al. Excitonic luminescence upconversion in a two-dimensional semiconductor. Nat Phys 2015;12:323–7. CrossrefGoogle Scholar

[82]

Klingshirn CF. Semiconductor Optics. Berlin, Heidelberg, Springer Berlin Heidelberg, 2012. Google Scholar

[83]

Dery H, Song Y. Polarization analysis of excitons in monolayer and bilayer transition-metal dichalcogenides. Phys Rev B 2015;92:125431. CrossrefGoogle Scholar

[84]

Slobodeniuk AO, Basko DM. Spin-flip processes and radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers. 2D Mater 2016;3:35009. CrossrefGoogle Scholar

[85]

Qiu DY, Cao T, Louie SG. Nonanalyticity, valley quantum phases, and lightlike exciton dispersion in monolayer transition metal dichalcogenides: theory and first-principles calculations. Phys Rev Lett 2015;115:176801. CrossrefPubMedGoogle Scholar

[86]

Beal AR, Liang WY. Excitons i n 2H-WSe_{2} and 3R-WS_{2}. J Phys C Solid State Phys 1976;9:2459–66. CrossrefGoogle Scholar

[87]

Saigal N, Sugunakar V, Ghosh S. Exciton binding energy in bulk MoS_{2}: a reassessment. Appl Phys Lett 2016;108:132105. CrossrefGoogle Scholar

[88]

Zhang C, Johnson A, Hsu C-L, Li L-J, Shih C-K. Direct imaging of band profile in single layer MoS_{2} on graphite: Quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett 2014;14:2443–7. PubMedCrossrefGoogle Scholar

[89]

Zhang C, Chen Y, Johnson A, et al. Probing critical point energies of transition metal dichalcogenides: surprising indirect gap of single layer WSe_{2}. Nano Lett 2015;15: 6494–500. CrossrefPubMedGoogle Scholar

[90]

Bradley AJ, Ugeda M, da Jornada FH, et al. Probing the role of interlayer coupling and Coulomb interactions on electronic structure in few-layer MoSe_{2} nanostructures. Nano Lett 2015;15:2594–9. CrossrefPubMedGoogle Scholar

[91]

Qiu DY, da Jornada FH, Louie SG. Screening and many-body effects in two-dimensional crystals: monolayer MoS_{2}. Phys Rev B 2016;93:235435. CrossrefGoogle Scholar

[92]

Teran FJ, Chen Y, Potemski M, Wojtowicz T, Karczewski G. Optical properties of Cd_{1-x}Mn_{x}Te quantum wells across the Mott transition: an interband spectroscopy study. Phys Rev B 2006;73:115336. CrossrefGoogle Scholar

[93]

Potemski M, Maan JC, Ploog K, Weimann G. Properties of a dense quasi-two-dimensional electron-hole gas at high magnetic fields. Solid State Commun 1990;75:185–8. CrossrefGoogle Scholar

[94]

Li Y, Ludwig J, Low T, et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe_{2}. Phys Rev Lett 2014;113:266804. CrossrefPubMedGoogle Scholar

[95]

Aivazian G, Gong Z, Jones AM, et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat Phys 2015;11:148–52. CrossrefGoogle Scholar

[96]

MacNeill D, Heikes C, Mak KF, et al. Breaking of valley degeneracy by magnetic field in monolayer MoSe_{2}. Phys Rev Lett 2015;114:37401. CrossrefGoogle Scholar

[97]

Wang G, Bouet L, Glazov MM, et al. Magneto-optics in transition metal diselenide monolayers. 2D Mater 2015;2:34002. CrossrefGoogle Scholar

[98]

Srivastava A, Sidler M, Allain AV, Lembke DS, Kis A, Imamoğlu A. Valley Zeeman effect in elementary optical excitations of monolayer WSe_{2}. Nat Phys 2015;11:141–7. CrossrefGoogle Scholar

[99]

Stier AV, McCreary KM, Jonker BT, Kono J, Crooker SA. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS_{2} and MoS_{2} to 65 Tesla. Nat Commun 2016;7:10643. CrossrefPubMedGoogle Scholar

[100]

Jones AM, Yu H, Ghimire NJ, et al. Optical generation of excitonic valley coherence in monolayer WSe_{2}. Nat Nanotechnol 2013;8:634–8. CrossrefPubMedGoogle Scholar

[101]

Fallahazad B, Movva HCP, Kim K, et al. Shubnikov–de Haas oscillations of high-mobility holes in monolayer and bilayer WSe_{2}: Landau level degeneracy, effective mass, and negative compressibility. Phys Rev Lett 2016;116:86601. CrossrefGoogle Scholar

[102]

Mitioglu AA, Galkowski K, Surrente A, et al. Magnetoexcitons in large area CVD-grown monolayer MoS_{2} and MoSe_{2} on sapphire. Phys Rev B 2016;93:165412. CrossrefGoogle Scholar

[103]

Meier F, Zakharchenya BP (eds.). Optical orientation: modern problems in condensed matter sciences. vol. 8. Amsterdam, Elsevier Science, 1984. Google Scholar

[104]

Dyakonov MI (ed.). Spin Physics in Semiconductors. vol. 157. Berlin: Heidelberg, Springer Berlin Heidelberg, 2008. Google Scholar

[105]

Zeng H, Dai J, Yao W, Xiao D, Cui X. Valley polarization in MoS_{2} monolayers by optical pumping. Nat Nanotechnol 2012;7:490–3. CrossrefPubMedGoogle Scholar

[106]

Wang Q, Ge S, Li X, et al. Valley carrier dynamics in monolayer molybdenum disulfide from helicity-resolved ultrafast pump–probe spectroscopy. ACS Nano 2013;7:11087–93. CrossrefPubMedGoogle Scholar

[107]

Mai C, Barrette A, Yu Y, et al. Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS_{2}. Nano Lett 2014;14:202–6. CrossrefGoogle Scholar

[108]

Zhu CR, Zhang K, Glazov M, et al. Exciton valley dynamics probed by Kerr rotation in WSe_{2} monolayers. Phys Rev B 2014;90:161302. CrossrefGoogle Scholar

[109]

Lagarde D, Bouet L, Marie X, et al. Carrier and polarization dynamics in monolayer MoS_{2}. Phys Rev Lett 2014;112:47401. CrossrefGoogle Scholar

[110]

Sallen G, Bouet L, Marie X, et al. Robust optical emission polarization in MoS_{2} monolayers through selective valley excitation. Phys Rev B 2012;86:81301. CrossrefGoogle Scholar

[111]

Hao K, Moody G, Wu F, et al. Direct measurement of exciton valley coherence in monolayer WSe_{2}. Nat Phys 2016;12: 677–82. CrossrefGoogle Scholar

[112]

Wang G, Palleau E, Amand T, Tongay S, Marie X, Urbaszek B. Polarization and time-resolved photoluminescence spectroscopy of excitons in MoSe_{2} monolayers. Appl Phys Lett 2015;106:112101. CrossrefGoogle Scholar

[113]

Robert C, Picard R, Lagarde D, et al. Excitonic properties of semiconducting monolayer and bilayer MoTe_{2}. Phys Rev B 2016;94:155425. CrossrefGoogle Scholar

[114]

Glazov MM, Amand T, Marie X, Lagarde D, Bouet L, Urbaszek B. Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides. Phys Rev B 2014;89:201302. CrossrefGoogle Scholar

[115]

Yu T, Wu MW. Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS_{2}. Phys Rev B 2014;89:205303. CrossrefGoogle Scholar

[116]

Yan T, Qiao X, Tan P, Zhang X. Valley depolarization in monolayer WSe_{2}. Sci Rep 2015;5:15625. CrossrefPubMedGoogle Scholar

[117]

Glazov MM, Ivchenko EL, Wang G, et al. Spin and valley dynamics of excitons in transition metal dichalcogenide monolayers. Phys Status Solidi 2015;252:2349–62. CrossrefGoogle Scholar

[118]

Smoleński T, Kazimierczuk T, Goryca M, et al. Magnetic field induced polarization enhancement in monolayers of tungsten dichalcogenides: Effects of temperature. ArXiv E-Prints 2017: Preprint at arXiv:1703.01129. Google Scholar

[119]

Kumar S, Kaczmarczyk A, Gerardot BD. Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe_{2}. Nano Lett 2015;15:7567–73. CrossrefPubMedGoogle Scholar

[120]

Clark G, Schaibley JR, Ross J, et al. Single defect light-emitting diode in a van der Waals heterostructure. Nano Lett 2016;16:3944–8. CrossrefGoogle Scholar

[121]

Schwarz S, Kozikov A, Withers F, et al. Electrically pumped single-defect light emitters in WSe_{2}. 2D Mater 2016;3:25038. CrossrefGoogle Scholar

[122]

He Y-M, Iff O, Lundt N, et al. Cascaded emission of single photons from the biexciton in monolayered WSe_{2}. Nat Commun 2016;7:13409. PubMedCrossrefGoogle Scholar

[123]

Palacios-Berraquero C, Barbone M, Kara DM, et al. Atomically thin quantum light-emitting diodes. Nat Commun 2016;7:12978. PubMedCrossrefGoogle Scholar

[124]

Palacios-Berraquero C, Kara DM, Montblanch AR-P, et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. ArXiv E-Prints 2016:Preprint at arXiv:1609.04244. PubMedGoogle Scholar

[125]

Kern J, Niehues I, Tonndorf P, et al. Nanoscale positioning of single-photon emitters in atomically thin WSe_{2}. Adv Mater 2016;28:7101–5. PubMedCrossrefGoogle Scholar

[126]

Branny A, Wang G, Kumar S, et al. Discrete quantum dot like emitters in monolayer MoSe_{2}: spatial mapping, magneto-optics, and charge tuning. Appl Phys Lett 2016;108:142101. CrossrefGoogle Scholar

[127]

Tran TT, Bray K, Ford MJ, Toth M, Aharonovich I. Quantum emission from hexagonal boron nitride monolayers. Nat Nanotechnol 2015;11:37–41. CrossrefPubMedGoogle Scholar

[128]

Tran TT, Zachreson C, Berhane AM, et al. Quantum emission from defects in single-crystalline hexagonal boron nitride. Phys Rev Appl 2016;5:34005. CrossrefGoogle Scholar

[129]

Bourrellier R, Meuret S, Tararan A, et al. Bright UV single photon emission at point defects in h -BN. Nano Lett 2016;16:4317–21. CrossrefGoogle Scholar

[130]

Tran TT, Elbadawi C, Totonjian D, et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano 2016;10:7331–8. CrossrefPubMedGoogle Scholar

[131]

Schell AW, Tran TT, Takashima H, Takeuchi S, Aharonovich I. Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers. APL Photonics 2016;1:91302. CrossrefGoogle Scholar

[132]

Jungwirth NR, Calderon B, Ji Y, Spencer MG, Flatté ME, Fuchs GD. Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride. Nano Lett 2016;16:6052–7. PubMedCrossrefGoogle Scholar

[133]

Martínez LJ, Pelini T, Waselowski V, et al. Efficient single photon emission from a high-purity hexagonal boron nitride crystal. Phys Rev B 2016;94:121405. CrossrefGoogle Scholar

[134]

Chejanovsky N, Rezai M, Paolucci F, et al. Topological attributes and photo-dynamics of visible spectrum quantum emitters in hexagonal boron nitride. Nano Lett 2016:16:7037–45. CrossrefGoogle Scholar

[135]

Exarhos AL, Hopper DA, Grote RR, Alkauskas A, Bassett LC. Optical signatures of quantum emitters in suspended hexagonal boron nitride. ACS Nano. ArXiv E-Prints 2016: Preprint at arXiv:1609.02641. DOI: 10.1021/acsnano.7b00665. PubMedGoogle Scholar

[136]

Danovich M, Zólyomi V, Fal’ko VI, Aleiner IL. Auger recombination of dark excitons in WS_{2} and WSe_{2} monolayers. 2D Mater 2016;3:35011. CrossrefGoogle Scholar

[137]

Ochoa H, Finocchiaro F, Guinea F, Fal’ko VI. Spin-valley relaxation and quantum transport regimes in two-dimensional transition-metal dichalcogenides. Phys Rev B 2014;90:235429. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.