[1]

Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Two-dimensional material nanophotonics. Nat Photonics 2014;8:899–907. CrossrefGoogle Scholar

[2]

Xi X, Wang Z, Zhao W, et al. Ising pairing in superconducting NbSe2 atomic layers. Nat Phys 2016;12:139–43. CrossrefGoogle Scholar

[3]

Navarro-Moratalla E, Island JO, Mañas-Valero S, et al. Enhanced superconductivity in atomically thin TaS2. 2016;7:11043. PubMedGoogle Scholar

[4]

Liu F, You L, Seyler KL, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. 2016;7:12357. PubMedGoogle Scholar

[5]

Je-Geun P. Opportunities and challenges of 2D magnetic van der Waals materials: magnetic graphene? J Phys: Condens Matter 2016;28:301001. Google Scholar

[6]

Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017;546:265–9. CrossrefGoogle Scholar

[7]

Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017;546:270–3. CrossrefGoogle Scholar

[8]

Malard LM, Alencar TV, Barboza APM, Mak KF, de Paula AM. Observation of intense second harmonic generation from MoS_{2} atomic crystals. Phys Rev B 2013;87:201401. CrossrefGoogle Scholar

[9]

Hochberg M, Baehr-Jones T. Towards fabless silicon photonics. Nat Photonics 2010;4:492–4. CrossrefGoogle Scholar

[10]

Geim AK, Novoselov KS. The rise of graphene. Nat Mater 2007;6:183–91. PubMedCrossrefGoogle Scholar

[11]

Schwierz F. Graphene transistors. Nat Nanotechnol 2010;5:487–96. PubMedCrossrefGoogle Scholar

[12]

Wang H, Hsu A, Wu J, Kong J, Palacios T. Graphene-based ambipolar RF mixers. IEEE Electron Device Lett 2010;31:906–8. CrossrefGoogle Scholar

[13]

Schedin F, Geim AK, Morozov SV, et al. Detection of individual gas molecules adsorbed on graphene. Nat Mater 2007;6:652–5. CrossrefPubMedGoogle Scholar

[14]

Wang F, Zhang Y, Tian C, et al. Gate-variable optical transitions in graphene. Science 2008;320:206–9. PubMedCrossrefGoogle Scholar

[15]

Fei Z, Rodin AS, Andreev GO, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 2012;487:82–5. CrossrefPubMedGoogle Scholar

[16]

Nair RR, Blake P, Grigorenko AN, et al. Fine structure constant defines visual transparency of graphene. Science 2008;320:1308. CrossrefPubMedGoogle Scholar

[17]

Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature 2011;474:64–7. CrossrefPubMedGoogle Scholar

[18]

Phare CT, Daniel Lee YH, Cardenas J, Lipson M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat Photonics 2015;9:511–4. CrossrefGoogle Scholar

[19]

Gan X, Shiue R-J, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat Photonics 2013;7:883–7. CrossrefGoogle Scholar

[20]

Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications. Nat Photonics 2010;4:297–301. CrossrefGoogle Scholar

[21]

Xia F, Mueller T, Lin Y-M, Valdes-Garcia A, Avouris P. Ultrafast graphene photodetector. Nat Nanotechnol 2009;4:839–43. CrossrefPubMedGoogle Scholar

[22]

Gan X, Shiue R-J, Gao Y, et al. High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Lett 2013;13:691–6. PubMedCrossrefGoogle Scholar

[23]

Majumdar A, Kim J, Vuckovic J, Wang F. Electrical control of silicon photonic crystal cavity by graphene. Nano Lett 2013;13:515–8. PubMedCrossrefGoogle Scholar

[24]

Wei W, Nong J, Zhu Y, et al. Cavity-enhanced continuous graphene plasmonic resonator for infrared sensing. Opt Commun 2017;395:147–53. CrossrefGoogle Scholar

[25]

Kim J, Son H, Cho DJ, et al. Electrical control of optical plasmon resonance with graphene. Nano Lett 2012;12: 5598–602. CrossrefPubMedGoogle Scholar

[26]

Majumdar A, Jonghwan K, Vuckovic J, Feng W. Graphene for tunable nanophotonic resonators. IEEE J Sel Top Quantum Electron 2014;20:68–71. CrossrefGoogle Scholar

[27]

Vahala KJ. Optical microcavities. Nature 2003;424:839–46. PubMedCrossrefGoogle Scholar

[28]

Gan X, Gao Y, Fai Mak K, et al. Controlling the spontaneous emission rate of monolayer MoS_{2} in a photonic crystal nanocavity. Appl Phys Lett 2013;103:181119. CrossrefGoogle Scholar

[29]

Wu S, Buckley S, Jones AM, et al. Control of two-dimensional excitonic light emission via photonic crystal. 2D Mater 2014;1011001. Google Scholar

[30]

Wei G, Stanev T, Stern N, Czaplewski D, Jung W. Interfacing monolayer MoS_{2} with silicon-nitride integrated photonics. In Advanced Photonics, Boston, Massachusetts, 2015, p. IM4A.3. Google Scholar

[31]

Wu S, Buckley S, Schaibley JR, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 2015;520:69–72. PubMedCrossrefGoogle Scholar

[32]

Ye Y, Wong ZJ, Lu X, et al. Monolayer excitonic laser. Nat Photonics 2015;9:733–7. CrossrefGoogle Scholar

[33]

Salehzadeh O, Djavid M, Tran NH, Shih I, Mi Z. Optically pumped two-dimensional MoS_{2} lasers operating at room-temperature. Nano Lett 2015;15:5302–6. CrossrefPubMedGoogle Scholar

[34]

Liu CH, Clark G, Fryett T, et al. Nanocavity integrated van der Waals heterostructure light-emitting tunneling diode. Nano Lett 2017;17:200–5. CrossrefGoogle Scholar

[35]

Dufferwiel S, Schwarz S, Withers F, et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat Commun 2015;6:8579. CrossrefGoogle Scholar

[36]

Liu X, Galfsky T, Sun Z, et al. Strong light-matter coupling in two-dimensional atomic crystals. Nat Photonics 2015;9:30–4. CrossrefGoogle Scholar

[37]

Liu K, Sun S, Majumdar A, Sorger VJ. Fundamental scaling laws in nanophotonics. Sci Rep 2016;6:37419. CrossrefPubMedGoogle Scholar

[38]

Trivedi R, Khankhoje UK, Majumdar A. Cavity-enhanced second-order nonlinear photonic logic circuits. Phys Rev Appl 2016;5:054001. CrossrefGoogle Scholar

[39]

Hong S-Y, Dadap JI, Petrone N, Yeh P-C, Hone J, Osgood RM. Optical third-harmonic generation in graphene. Phys Rev X 2013;3:021014. Google Scholar

[40]

Cheng JL, Vermeulen N, Sipe JE. Third order optical nonlinearity of graphene. New J Phys 2014;16:053014. CrossrefGoogle Scholar

[41]

Youngblood N, Peng R, Nemilentsau A, Low T, Li M. Layer-tunable third-harmonic generation in multilayer black phosphorus. ACS Photonics 2017;4:8–14. CrossrefGoogle Scholar

[42]

Woodward RI, Murray RT, Phelan CF, et al. Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS_{2} using multiphoton microscopy. 2D Mater 2017;4:011006. Google Scholar

[43]

Karvonen L, Säynätjoki A, Mehravar S, et al. Investigation of second- and third-harmonic generation in few-layer gallium selenide by multiphoton microscopy. Sci Rep 2015;5:10334. PubMedCrossrefGoogle Scholar

[44]

Cui Q, Muniz RA, Sipe JE, Zhao H. Strong and anisotropic third-harmonic generation in monolayer and multilayer ReS_{2}. Phys Rev B 2017;95:165406. CrossrefGoogle Scholar

[45]

Seyler KL, Schaibley JR, Gong P, et al. Electrical control of second-harmonic generation in a WSe_{2} monolayer transistor. Nat Nano 2015;10:407–11. CrossrefGoogle Scholar

[46]

Janisch C, Wang Y, Ma D, et al. Extraordinary second harmonic generation in tungsten disulfide monolayers. Sci Rep 2014;4. PubMedGoogle Scholar

[47]

Kumar N, Najmaei S, Cui Q, et al. Second harmonic microscopy of monolayer MoS_{2}. Phys Rev B 2013;87:161403. CrossrefGoogle Scholar

[48]

Ribeiro-Soares J, Janisch C, Liu Z, et al. Second harmonic generation in WSe 2. 2D Mater 2015;2:045015. CrossrefGoogle Scholar

[49]

Li Y, Rao Y, Mak KF, et al. Probing symmetry properties of few-layer MoS_{2} and h-BN by optical second-harmonic generation. Nano Lett 2013;13:3329–33. CrossrefPubMedGoogle Scholar

[50]

Zhou X, Cheng J, Zhou Y, et al. Strong second-harmonic generation in atomic layered GaSe. J Am Chem Soc 2015;137:7994–7. CrossrefPubMedGoogle Scholar

[51]

Zeng H, Liu G-B, Dai K, et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci Rep 2013;3. PubMedGoogle Scholar

[52]

Yin X, Ye Z, Chenet DA, et al. Edge nonlinear optics on a MoS_{2} atomic monolayer. Science 2014;344:488–90. PubMedCrossrefGoogle Scholar

[53]

Hsu W-T, Zhao Z-A, Li L-J, et al. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano 2014;8:2951–8. CrossrefPubMedGoogle Scholar

[54]

Heo H, Sung JH, Cha S, et al. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nat Commun 2015;6:7372. CrossrefPubMedGoogle Scholar

[55]

Klein J, Wierzbowski J, Steinhoff A, et al. Electric-field switchable second-harmonic generation in bilayer MoS_{2} by inversion symmetry breaking. Nano Lett 2017;17:392–8. PubMedCrossrefGoogle Scholar

[56]

Conley HJ, Wang B, Ziegler JI, Haglund RF, Pantelides ST, Bolotin KI. Bandgap engineering of strained monolayer and bilayer MoS_{2}. Nano Lett 2013;13:3626–30. CrossrefPubMedGoogle Scholar

[57]

Castellanos-Gomez A, Roldán R, Cappelluti E, et al. Local strain engineering in atomically thin MoS_{2}. Nano Lett 2013;13:5361–6. PubMedCrossrefGoogle Scholar

[58]

Zhu CR, Wang G, Liu BL, et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS_{2}. Phy Rev B 2013;88:121301. CrossrefGoogle Scholar

[59]

Trolle ML, Seifert G, Pedersen TG. Theory of excitonic second-harmonic generation in monolayer MoS_{2}. Phys Rev B 2014;89:235410. CrossrefGoogle Scholar

[60]

Grüning M, Attaccalite C. Second harmonic generation in *h*-BN and MoS_{2} monolayers: role of electron-hole interaction. Phys Rev B 2014;89:081102. CrossrefGoogle Scholar

[61]

Wang CY, Guo G-Y. Nonlinear optical properties of transition-metal dichalcogenide MX2 (M=Mo, W; X=S, Se) monolayers and trilayers from first-principles calculations. J Phys Chem C 2015;119:13268–76. CrossrefGoogle Scholar

[62]

Merano M. Nonlinear optical response of a two-dimensional atomic crystal. Opt Lett 2016;41:187–90. PubMedCrossrefGoogle Scholar

[63]

Fryett T, Dodson CM, Majumdar A. cavity enhanced nonlinear optics for few photon optical bistability. Opt Express 2015;23:16246–55. CrossrefPubMedGoogle Scholar

[64]

Smirnova DA, Solntsev AS. Cascaded third-harmonic generation in hybrid graphene-semiconductor waveguides. Phys Rev B 2015;92:155410. CrossrefGoogle Scholar

[65]

Hendry E, Hale PJ, Moger J, Savchenko AK, Mikhailov SA. Coherent nonlinear optical response of graphene. Phys Rev Lett 2010;105:097401. CrossrefPubMedGoogle Scholar

[66]

Wang G, Zhang S, Zhang X, et al. Tunable nonlinear refractive index of two-dimensional MoS_{2}, WS2, and MoSe2 nanosheet dispersions [Invited], Photon Res 2015;3:A51–5. CrossrefGoogle Scholar

[67]

Khurgin J-B. Graphene – A rather ordinary nonlinear optical material. Appl Phys Lett 2014;104:161116. CrossrefGoogle Scholar

[68]

Majumdar A, Dodson CM, Fryett TK, Zhan A, Buckley S, Gerace D. Hybrid 2D material nanophotonics: a scalable platform for low-power nonlinear and quantum optics. ACS Photon 2015;2:1160–6. CrossrefGoogle Scholar

[69]

Boyd RW. Nonlinear Optics. Third ed., Academic Press. Google Scholar

[70]

Lin Z, Liang X, Lončar M, Johnson SG, Rodriguez AW. Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization. Optica 2016;3:233–8. CrossrefGoogle Scholar

[71]

Fryett TK, Zhan A, Majumdar A. Phase matched nonlinear optics via patterning layered materials. Opt Lett 2017;42:3586–9. PubMedCrossrefGoogle Scholar

[72]

Li X, Zhu J, Wei B. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem Soc Rev 2016;45:3145–87. CrossrefPubMedGoogle Scholar

[73]

Akselrod GM, Ming T, Argyropoulos C, et al. Leveraging nanocavity harmonics for control of optical processes in 2D semiconductors. Nano Lett 2015;15:3578–84. PubMedCrossrefGoogle Scholar

[74]

Chen C, Youngblood N, Peng R, et al. Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics. Nano Lett 2017;17:985–91. PubMedCrossrefGoogle Scholar

[75]

Lee B, Liu W, Naylor CH, et al. Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS_{2} integrated with plasmonic nanoantenna lattice. Nano Lett 2017;17: 4541–7. CrossrefPubMedGoogle Scholar

[76]

Fryett TK, Seyler KL, Zheng J, Liu C-H, Xu X, Majumdar A. Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe_{2}. 2D Mater 2016;4. Google Scholar

[77]

Day JK, Chung M-H, Lee Y-H, Menon VM. Microcavity enhanced second harmonic generation in 2D MoS_{2}. Opt Mater Express 2016;6:2360–5. CrossrefGoogle Scholar

[78]

Hammer S, Mangold HM, Nguyen AE, et al. Scalable and transfer-free fabrication of MoS_{2}/SiO2 hybrid nanophotonic cavity arrays with quality factors exceeding 4000. Sci Rep 2017;7:7251. PubMedCrossrefGoogle Scholar

[79]

Gan X, Zhao C, Hu S, et al. Microwatts continuous-wave pumped second harmonic generation in few- and mono-layer GaSe. 2017;arXiv:1706.07923. Google Scholar

[80]

Dolan PR, Hughes GM, Grazioso F, Patton BR, Smith JM. Femtoliter tunable optical cavity arrays. Opt Lett 2010;35:3556–8. CrossrefPubMedGoogle Scholar

[81]

Yi F, Ren M, Reed JC, et al. Optomechanical enhancement of doubly resonant 2D optical nonlinearity. Nano Lett 2016;16:1631–6. PubMedCrossrefGoogle Scholar

[82]

Chen H, Corboliou V, Solntsev AS, et al. Enhanced second-harmonic generation from two-dimensional MoSe2 by waveguide integration. In Conference on Lasers and Electro-Optics, San Jose, California, 2017, p. FM2F.4. Google Scholar

[83]

Guo X, Zou C-L, Jung H, Tang HX. On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes. Phys Rev Lett 2016;117:123902. CrossrefPubMedGoogle Scholar

[84]

Wang H, Qian X. Giant optical second harmonic generation in two-dimensional multiferroics. Nano Lett 2017;17: 5027–34. CrossrefPubMedGoogle Scholar

[85]

Gu T, Petrone N, McMillan JF, et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat Photonics 2012;6:554–9. CrossrefGoogle Scholar

[86]

Pernice WHP, Li M, Gallagher DFG, Tang HX. Silicon nitride membrane photonics. J Opt A: Pure Appl Opt 2009;11:114017. CrossrefGoogle Scholar

[87]

Ikeda K, Saperstein RE, Alic N, Fainman Y. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt Express 2008;16:12987–94. CrossrefPubMedGoogle Scholar

[88]

Ma J, Xie GQ, Lv P, et al. Graphene mode-locked femtosecond laser at 2 micron wavelength. Opt Lett 2012;37:2085–7. CrossrefGoogle Scholar

[89]

Sun Z, Hasan T, Torrisi F, et al. Graphene mode-locked ultrafast laser. ACS Nano 2010;4:803–10. PubMedCrossrefGoogle Scholar

[90]

Bao Q, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater 2009;19:3077–83. CrossrefGoogle Scholar

[91]

Chen Y, Jiang G, Chen S, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt Express 2015;23:12823–33. PubMedCrossrefGoogle Scholar

[92]

Aiub EJ, Steinberg D, Thoroh de Souza EA, Saito LAM. 200-fs mode-locked Erbium-doped fiber laser by using mechanically exfoliated MoS_{2} saturable absorber onto D-shaped optical fiber. Opt Express 2017;25:10546–52. CrossrefGoogle Scholar

[93]

Mao D, Wang Y, Ma C, et al. WS2 mode-locked ultrafast fiber laser. Sci Rep 2015;5:7965. CrossrefPubMedGoogle Scholar

[94]

Liu H, Sun Z, Wang X, Wang Y, Cheng G. Several nanosecond Nd:YVO4 lasers Q-switched by two dimensional materials: tungsten disulfide, molybdenum disulfide, and black phosphorous. Opt Express 2017;25:6244–52. CrossrefGoogle Scholar

[95]

Carusotto I, Ciuti C. Quantum fluids of light. Rev Mod Phys 2013;85:299–366. CrossrefGoogle Scholar

[96]

Byrnes T, Kim NY, Yamamoto Y. Exciton-polariton condensates. Nat Phys 2014;10:803–13. CrossrefGoogle Scholar

[97]

Deng H, Haug H, Yamamoto Y. Exciton-polariton Bose-Einstein condensation. Rev Mod Phys 2010;82:1489–537. CrossrefGoogle Scholar

[98]

Jiang J-H, John S. Photonic architectures for equilibrium high-temperature Bose-Einstein condensation in dichalcogenide monolayers. Sci Rep 2014;4:7432. PubMedGoogle Scholar

[99]

Karzig T, Bardyn C-E, Lindner NH, Refael G. Topological polaritons. Phys Rev X 2015;5:031001. Google Scholar

[100]

Cotleţ O, Zeytinoǧlu S, Sigrist M, Demler E, Imamoǧlu A. Superconductivity and other collective phenomena in a hybrid Bose-Fermi mixture formed by a polariton condensate and an electron system in two dimensions. Phys Rev B 2016;93:054510. CrossrefGoogle Scholar

[101]

Wei G, Czaplewski DA, Lenferink EJ, Stanev TK, Jung IW, Stern NP. Size-tunable Lateral Confinement in Monolayer Semiconductors. Scientific Reports 2017; 7: Article number: 3324. doi:10.1038/s41598-017-03594-z PubMedGoogle Scholar

[102]

Verger A, Ciuti C, Carusotto I. Polariton quantum blockade in a photonic dot. Phys Rev B 2006;73:193306. CrossrefGoogle Scholar

[103]

Wang H-X, Zhan A, Xu Y-D, et al. Quantum many-body simulation using monolayer exciton-polaritons in coupled-cavities. J Phys: Condensed Matter 2017:29. DOI: 10.1088/1361-648X/aa8933. Google Scholar

[104]

Majumdar A, Rundquist A, Bajcsy M, Dasika VD, Bank SR, Vučković J. Design and analysis of photonic crystal coupled cavity arrays for quantum simulation. Phys Review B 2012;86:195312. CrossrefGoogle Scholar

[105]

Altug H, Englund D, Vuckovic J. Ultrafast photonic crystal nanocavity laser. Nat Phys 2006;2:484–8. CrossrefGoogle Scholar

[106]

Eisert J, Friesdorf M, Gogolin C. Quantum many-body systems out of equilibrium. Nat Phys 2015;11:124–30. CrossrefGoogle Scholar

[107]

Changsuk N, Dimitris GA. Quantum simulations and many-body physics with light. Rep Prog Phys 2017;80:016401. PubMedCrossrefGoogle Scholar

[108]

Michael JH. Quantum simulation with interacting photons. J Opt 2016;18:104005. CrossrefGoogle Scholar

[109]

Ferretti S, Gerace D. Single-photon nonlinear optics with Kerr-type nanostructured materials. Phys Rev B 2012;85:033303. CrossrefGoogle Scholar

[110]

Majumdar A, Gerace D. Single-photon blockade in doubly resonant nanocavities with second-order nonlinearity. Phys Rev B 2013;87:235319. CrossrefGoogle Scholar

[111]

He Y-M, Clark G, Schaibley JR, et al. Single quantum emitters in monolayer semiconductors. Nat Nanotechnol 2015;10: 497–502. CrossrefPubMedGoogle Scholar

[112]

Koperski M, Nogajewski K, Arora A, et al. Single photon emitters in exfoliated WSe_{2} structures. Nat Nano 2015;10:503–6. CrossrefGoogle Scholar

[113]

Srivastava A, Sidler M, Allain AV, Lembke DS, Kis A, Imamoğlu A. Optically active quantum dots in monolayer WSe_{2}. Nat Nano 2015;10:491–6. CrossrefGoogle Scholar

[114]

Tran TT, Bray K, Ford MJ, Toth M, Aharonovich I. Quantum emission from hexagonal boron nitride monolayers. Nat Nano 2016;11:37–41. Google Scholar

[115]

Zhong L, Bruno RC, Ethan K, et al. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater 2016;3:022002. CrossrefGoogle Scholar

[116]

Englund D, Majumdar A, Bajcsy M, Faraon A, Petroff P, Vučković J. Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system. Phys Rev Lett 2012;108:093604. CrossrefGoogle Scholar

[117]

Bose R, Sridharan D, Kim H, Solomon GS, Waks E. Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Phys Rev Lett 2012;108:227402. CrossrefPubMedGoogle Scholar

[118]

Volz T, Reinhard A, Winger M, et al. Ultrafast all-optical switching by single photons. Nat Photonics 2012;6:605–9. CrossrefGoogle Scholar

[119]

Faraon A, Fushman I, Englund D, Stoltz N, Petroff P, Vuckovic J. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat Phys 2008;4:859–63. CrossrefGoogle Scholar

[120]

Majumdar A, Bajcsy M, Vučković J. Probing the ladder of dressed states and nonclassical light generation in quantum-dot–cavity QED. Phys Rev A 2012;85:041801. CrossrefGoogle Scholar

[121]

Reinhard A, Volz T, Winger M, et al. Strongly correlated photons on a chip. Nat Photonics 2012;6:93–6. CrossrefGoogle Scholar

[122]

Tran TT, Wang D, Xu ZQ, et al. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett 2017;17:2634–9. CrossrefGoogle Scholar

[123]

Schell AW, Tran TT, Takashima H, Takeuchi S, Aharonovich I. Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers. APL Photonics 2016;1:091302. CrossrefGoogle Scholar

[124]

Cai T, Dutta S, Aghaeimeibodi S, et al. Coupling emission from single localized defects in 2D semiconductor to surface plasmon polaritons. Nano Lett 2017;17:6564–8. DOI: 10.1021/acs.nanolett.7b02222. CrossrefPubMedGoogle Scholar

[125]

Palacios-Berraquero C, Kara DM, Montblanch ARP, et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat Commun 2017;8:15093. PubMedCrossrefGoogle Scholar

[126]

Li Y, Duerloo K-AN, Wauson K, Reed EJ. Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating. Nat Commun 2016;7:10671. CrossrefPubMedGoogle Scholar

[127]

Duerloo K-AN, Li Y, Reed EJ. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat Commun 2014;5:4214. PubMedGoogle Scholar

[128]

Duerloo K-AN, Reed EJ. Structural phase transitions by design in monolayer alloys. ACS Nano 2016;10:289–97. CrossrefPubMedGoogle Scholar

[129]

Ríos A, Stegmaier M, Hosseini P, et al. Integrated all-photonic non-volatile multi-level memory. Nat Photonics 2015;9:725–32. CrossrefGoogle Scholar

[130]

Liang H, Soref R, Mu J, Majumdar A, Li X, Huang W-P. Simulations of silicon-on-insulator channel-waveguide electrooptical 2x2 switches and 1x1 modulators using a GeSeTe self-holding layer. J Lightwave Technol 2015;33:1805–13. CrossrefGoogle Scholar

[131]

Hosseini P, Wright CD, Bhaskaran H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 2014;511:206–11. CrossrefPubMedGoogle Scholar

[132]

Geim A, Grigorieva I. Van der Waals heterostructures. Nature 2013;499:419–25. CrossrefPubMedGoogle Scholar

[133]

Rivera P, Schaibley JR, Jones AM, et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe_{2} heterostructures. Nat Commun 2015;6. PubMedGoogle Scholar

[134]

Xiao D, Liu G-B, Feng W, Xu X, Yao W. Coupled spin and valley physics in monolayers of MoS_{2} and other group-VI dichalcogenides. Phys Rev Lett 2012;108:196802. PubMedCrossrefGoogle Scholar

[135]

Xu X, Yao W, Xiao D, Heinz TF. Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys 2014;10:343–50. CrossrefGoogle Scholar

[136]

Cao T, Wang G, Han W, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat Commun 2012;3:2012. Google Scholar

[137]

Zeng H, Dai J, Yao W, Xiao D, Cui AX. Valley polarization in MoS_{2} monolayers by optical pumping. Nat Nanotechnol 2012;7:490–3. PubMedCrossrefGoogle Scholar

[138]

Jones AM, Yu H, Ghimire NJ, et al. Optical generation of excitonic valley coherence in monolayer WSe_{2}. Nat Nanotechnol 2013;8:634–8. CrossrefPubMedGoogle Scholar

[139]

Mak KF, He K, Shan J, Heinz TF. Control of valley polarization in monolayer MoS_{2} by optical helicity. Nat Nanotechnol 2012;7:494–8. PubMedCrossrefGoogle Scholar

[140]

Li Y. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. In: Probing the response of two-dimensional crystals by optical spectroscopy. Springer Theses (Recognizing Outstanding Ph.D. Research). Springer: Cham, 2016. DOI: https://doi.org/10.1007/978-3-319-25376-3_7.

[141]

Srivastava A, Sidler M, Allain AV, Lembke DS, Kis A, Imamoglu A. Valley Zeeman effect in elementary optical excitations of a monolayer WSe_{2}. Nature Physics 2015;11:141–7. doi:10.1038/nphys3203. CrossrefGoogle Scholar

[142]

Bajoni D, Senellart P, Wertz E, et al. Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities. Phys Rev Lett 208;100:047401. Google Scholar

[143]

Chen Y-J, Cain JD, Stanev TK, Dravid VP, Stern NP. Valley-polarized exciton–polaritons in a monolayer semiconductor. Nat Photonics 2017;11:431–5. CrossrefGoogle Scholar

[144]

Sun Z, Gu J, Ghazaryan A, et al. Optical control of room-temperature valley polaritons. Nat Photonics 2017;11:491–6. CrossrefGoogle Scholar

[145]

Dufferwiel S, Lyons TP, Solnyshkov DD, et al. Valley-addressable polaritons in atomically thin semiconductors. Nat Photonics 2017;11:497–501. CrossrefGoogle Scholar

[146]

Paraïso TK, Wouters M, Léger Y, Morier-Genoud F, Deveaud-Plédran B. Multistability of a coherent spin ensemble in a semiconductor microcavity. Nat Mater 2010;9:655–60. CrossrefGoogle Scholar

[147]

Gippius NA, Shelykh IA, Solnyshkov DD, et al. Polarization multistability of cavity polaritons. Phys Rev Lett 2007;98:236401. CrossrefPubMedGoogle Scholar

[148]

Dai S, Ma Q, Liu MK, et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat Nanotechnol 2015;10:682–6. CrossrefPubMedGoogle Scholar

[149]

Kumar A, Low T, Fung KH, Avouris P, Fang NX. Tunable light–matter interaction and the role of hyperbolicity in graphene–hBN system. Nano Lett 2015;15:3172–80. CrossrefPubMedGoogle Scholar

[150]

Poddubny A, Iorsh I, Belov P, Kivshar Y. Hyperbolic metamaterials. Nat Photonics 2013;7:948–57. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.