[1]
Liu X, Du D, Mourou G. Laser ablation and micromachining with ultrashort laser pulses. IEEE J Quant Electron 1997;33:1706–16. CrossrefGoogle Scholar
[2]
Di Piazza A, Müller C, Hatsagortsyan K, Keitel C. Extremely high-intensity laser interactions with fundamental quantum systems. Rev Mod Phys 2012;84:1177. CrossrefGoogle Scholar
[3]
Squier J, Müller M. High resolution nonlinear microscopy: a review of sources and methods for achieving optimal imaging. Rev Sci Instrum 2001;72:2855–67. CrossrefGoogle Scholar
[4]
Durst ME, Zhu G, Xu C. Simultaneous spatial and temporal focusing in nonlinear microscopy. Opt Commun 2008;281:1796–805. CrossrefPubMedGoogle Scholar
[5]
Pelusi M, Luan F, Vo TD, et al. Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth. Nat Photon 2009;3:139–43. CrossrefGoogle Scholar
[6]
Krausz F, Stockman MI. Attosecond metrology: from electron capture to future signal processing. Nat Photon 2014;8:205–13. CrossrefGoogle Scholar
[7]
Xu K. On the design and optimization of three-terminal light-emitting device in silicon CMOS technology. J Sel Topics Quantum Electron 2014;20:232–9. CrossrefGoogle Scholar
[8]
Salehi JA, Weiner AM, Heritage JP. Coherent ultrashort light pulse code-division multiple access communication systems. J Lightwave Technol 1990;8:478–91. CrossrefGoogle Scholar
[9]
Amiri IS, Ahmad H. Optical soliton communication using ultra-short pulses. Singapore, Springer, 2015. Google Scholar
[10]
Weiner AM. Ultrafast optical pulse shaping: a tutorial review. Opt Commun 2011;284:3669–92. CrossrefGoogle Scholar
[11]
Boscolo S, Finot C. Nonlinear pulse shaping in fibres for pulse generation and optical processing. Int J Opt 2012;2012:1–14. Google Scholar
[12]
Glebov L, Smirnov V, Rotari E, et al. Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses. Opt Eng 2014;53:051514. CrossrefGoogle Scholar
[13]
Liu J-Q, Wang L-L, He M-D, et al. A wide bandgap plasmonic Bragg reflector. Opt Express 2008;16:4888–94. PubMedCrossrefGoogle Scholar
[14]
Stepanov DY, Corena L. Bragg grating fabrication with wide range coarse and fine wavelength control. Opt Express 2014;22:27309–20. PubMedCrossrefGoogle Scholar
[15]
Musorin A, Sharipova M, Dolgova T, Inoue M, Fedyanin A. Ultrafast Faraday rotation of slow light. Phys Rev Applied 2016;6:024012. CrossrefGoogle Scholar
[16]
Verluise F, Laude V, Cheng Z, Spielmann C, Tournois P. Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping. Optics Lett 2000;25:575–7. CrossrefGoogle Scholar
[17]
Kaplan D, Tournois P. Theory and performance of the acousto optic programmable dispersive filter used for femtosecond laser pulse shaping. Journal de Physique IV (Proceedings) 12(5). EDP sciences, 2002, pp. 69–75. Google Scholar
[18]
Chauhan VCK. Pulse compression and dispersion control in ultrafast optics, PhD Diss., Georgia Institute of Technology, USA, 2011. Google Scholar
[19]
Steinmeyer G. A review of ultrafast optics and optoelectronics. J Optics A Pure Appl Optics 2002;5:R1. Google Scholar
[20]
Wang T-B, Wen X-W, Yin C-P, Wang H-Z. The transmission characteristics of surface plasmon polaritons in ring resonator. Opt Express 2009;17:24096–101. CrossrefPubMedGoogle Scholar
[21]
Janipour M, Karami MA, Sofiani R, Kashani FH. A novel adjustable plasmonic filter realization by split mode ring resonators. J Electromagn Anal Appl 2013;5:10. Google Scholar
[22]
Pawłowska M, Patas A, Achazi G, Lindinger A. Parametrically shaped femtosecond pulses in the nonlinear regime obtained by reverse propagation in an optical fiber. Opt Lett 2012;37:2709–11. CrossrefGoogle Scholar
[23]
Krebs N, Pugliesi I, Riedle E. Pulse compression of ultrashort UV pulses by self-phase modulation in bulk material. Appl Sci 2013;3:153–67. CrossrefGoogle Scholar
[24]
Tok RU, Şendur K. Femtosecond pulse shaping using plasmonic snowflake nanoantennas. Phys Rev A 2011;84:033847. CrossrefGoogle Scholar
[25]
Xu K, Liu H, Zhang Z. Gate-controlled diode structure based electro-optical interfaces in standard silicon-CMOS integrated circuitry. Appl Opt 2015;54:6420–4. CrossrefPubMedGoogle Scholar
[26]
Milla M, Barho F, González-Posada F, et al. Surface-enhanced infrared absorption with Si-doped InAsSb/GaSb nano-antennas. Opt Express 2017;25:26651–61. PubMedCrossrefGoogle Scholar
[27]
Vabishchevich PP, Shcherbakov M, Bessonov V, Dolgova T, Fedyanin A. Femtosecond pulse shaping with plasmonic crystals. JETP Lett 2015;101:787–92. CrossrefGoogle Scholar
[28]
Shcherbakov MR, Vabishchevich PP, Shorokhov AS, et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett 2015;15:6985–90. CrossrefPubMedGoogle Scholar
[29]
Sinev I, Iorsh I, Bogdanov A, et al. Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films. Laser Photon Rev 2016;10:799–806. CrossrefGoogle Scholar
[30]
Wang Y, Qin Y, Zhang Z. Extraordinary optical transmission property of X-shaped plasmonic nanohole arrays. Plasmonics 2014;9:203–7. CrossrefGoogle Scholar
[31]
Rahimi E, Şendur K. Femtosecond pulse shaping by ultrathin plasmonic metasurfaces. J Opt Soc Am B 2016;33:A1–7. Google Scholar
[32]
Zylbersztejn A, Mott NF. Metal-insulator transition in vanadium dioxide. Phys Rev B 1975;11:4383. CrossrefGoogle Scholar
[33]
Becker MF, Buckman AB, Walser RM, Lépine T, Georges P, Brun A. Femtosecond laser excitation of the semiconductor-metal phase transition in VO2. Appl Phys Lett 1994;65:1507–9. CrossrefGoogle Scholar
[34]
Kim H-T, Chae B-G, Youn D-H, et al. Mechanism and observation of mott transition in VO2-based two-and three-terminal devices. New J Phys 2004;6:52. CrossrefGoogle Scholar
[35]
Becker MF, Buckman AB, Walser RM, Lépine T, Georges P, Brun A. Femtosecond laser excitation dynamics of the semiconductor-metal phase transition in VO2. J App Phys 1996;79:2404–8. CrossrefGoogle Scholar
[36]
Bianconi A, Stizza S, Bernardini R. Critical behavior of the plasmon resonance at the metal-insulator transition in VO2. Phys Rev B 1981;24:4406. CrossrefGoogle Scholar
[37]
Lamsal C, Ravindra N. Optical properties of vanadium oxides-an analysis. J Mater Sci 2013;48:6341–51. CrossrefGoogle Scholar
[38]
Thompson ZJ, Stickel A, Jeong YG, et al. Terahertz-triggered phase transition and hysteresis narrowing in a nanoantenna patterned vanadium dioxide film. Nano Lett 2015;15:5893–8. CrossrefGoogle Scholar
[39]
Muskens OL, Bergamini L, Wang Y, et al. Antenna-assisted picosecond control of nanoscale phase-transition in vanadium dioxide. Light Sci Appl 2016;5:e16173. CrossrefGoogle Scholar
[40]
Paik T, Hong S-H, Gaulding EA, et al. Solution-processed phase-change VO2 metamaterials from colloidal vanadium oxide (VOx) nanocrystals. ACS Nano 2014;8:797–806. PubMedCrossrefGoogle Scholar
[41]
Dicken MJ, Aydin K, Pryce IM, et al. Frequency tunable near-infrared metamaterials based on VO2 phase transition. Opt Express 2009;17:18330–9. CrossrefPubMedGoogle Scholar
[42]
Wang H, Yang Y, Wang L. Wavelength-tunable infrared metamaterial by tailoring magnetic resonance condition with VO2 phase transition. J Appl Phys 2014;116:123503. CrossrefGoogle Scholar
[43]
Lei DY, Appavoo K, Ligmajer F, Sonnefraud Y, Haglund RF Jr, Maier SA. Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure. ACS Photon 2015;2:1306–13. CrossrefGoogle Scholar
[44]
Ferrara D, MacQuarrie E, Nag J, Kaye A, Haglund R Jr. Plasmon-enhanced low-intensity laser switching of gold: vanadium dioxide nanocomposites. Appl Phys Lett 2011;98:241112. CrossrefGoogle Scholar
[45]
Wang L, Radue E, Kittiwatanakul S, et al. Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications. Opt Lett 2012;37:4335–7. CrossrefPubMedGoogle Scholar
[46]
Ooi KJ, Bai P, Chu HS, Ang LK. Ultracompact vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator. Nanophotonics 2013;2:13–9. Google Scholar
[47]
Beebe M, Wang L, Madaras S, et al. Surface plasmon resonance modulation in nanopatterned Au gratings by the insulator-metal transition in vanadium dioxide films. Opt Express 2015;23:13222–9. PubMedCrossrefGoogle Scholar
[48]
Suh J, Donev E, Ferrara D, Tetz K, Feldman L, Haglund R Jr. Modulation of the gold particle–plasmon resonance by the metal–semiconductor transition of vanadium dioxide. J Opt A 2008;10:055202. CrossrefGoogle Scholar
[49]
Eypert C, Gaillet M. Optical characterization of VO2 smart materials using spectroscopic ellipsometry. Japan, Horiba Scientific, 2013. Google Scholar
[50]
Hilton D, Prasankumar R, Fourmaux S, et al. Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide. Phys Rev Lett 2007;99:226401. PubMedCrossrefGoogle Scholar
[51]
Pashkin A, Kübler C, Ehrke H, et al. Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy. Phys Rev B 2011;83:195120. CrossrefGoogle Scholar
[52]
Bergman TL, Incropera FP, DeWitt DP, Lavine AS. Fundamentals of heat and mass transfer. USA, John Wiley & Sons, 2011. Google Scholar
[53]
Tritt TM. Thermal conductivity: theory, properties, and applications. USA, Springer Science & Business Media, 2005. Google Scholar
[54]
Serway RA, Jewett JW. Principles of physics: a calculus-based text, vol. 1. USA, Nelson Education, 2012. Google Scholar
[55]
FDTD. Lumerical solutions. Vancouver, BC, Canada, Inc., 2003. Google Scholar
[56]
Palik ED. Handbook of optical constants of solids, vol. 3. USA, Academic press, 1998. Google Scholar
[57]
Malitson I. Interspecimen comparison of the refractive index of fused silica. J Opt Soc Am 1965;55:1205–9. CrossrefGoogle Scholar
[58]
Weiner AM. Femtosecond pulse shaping using spatial light modulators. Rev Sci Instrum 2000;71:1929–60. CrossrefGoogle Scholar
[59]
Manfrinato VR, Zhang L, Su D, et al. Resolution limits of electron-beam lithography toward the atomic scale. Nano Lett 2013;13:1555–8. PubMedCrossrefGoogle Scholar
[60]
Nag J, Haglund R Jr. Synthesis of vanadium dioxide thin films and nanoparticles. J Phys Condens Matter 2008;20:264016. CrossrefGoogle Scholar
[61]
Ye J, Van Dorpe P. Plasmonic behaviors of gold dimers perturbed by a single nanoparticle in the gap. Nanoscale 2012;4:7205–11. CrossrefPubMedGoogle Scholar
[62]
Haus HA. Mode-locking of lasers. J Sel Topics Quantum Electron 2000;6:1173–85. CrossrefGoogle Scholar
[63]
Jullien A, Bortolozzo U, Grabielle S, Huignard J-P, Forget N, Residori S. Continuously tunable femtosecond delay-line based on liquid crystal cells. Opt Express 2016;24:14483–93. PubMedCrossrefGoogle Scholar
Comments (0)