[1]

Bao Q, Loh KP. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 2012;6:3677. Google Scholar

[2]

Grigorenko AN, Polini M, Novoselov KS. Graphene plasmonics. Nat Photonics 2012;6:749–58. Google Scholar

[3]

de Abajo FJG. Graphene plasmonics: challenges and opportunities. ACS Photonics 2014;1:135. Google Scholar

[4]

Huang S, Song C, Zhang G, Yan H. Graphene plasmonics: physics and potential applications. Nanophotonics 2016;6:1191. Google Scholar

[5]

Chen P-Y, Argyropoulos C, Farhat M, Gomez-Diaz JS. Flatland plasmonics and nanophotonics based on graphene and beyond. Nanophotonics 2017;6:1239. Google Scholar

[6]

Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 2014;8:1086. Google Scholar

[7]

Low T, Chaves A, Caldwell JD, et al. Polaritons in layered two-dimensional materials. Nat Mater 2017;16:182. Google Scholar

[8]

Mikhailov SA, Ziegler K. New electromagnetic mode in graphene. Phys Rev Lett 2007;99:016803. Google Scholar

[9]

Hanson GW. Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J Appl Phys 2008;104:084314. Google Scholar

[10]

Bludov YV, Ferreira A, Peres NMR, Vasilevskiy M. A primer on surface plasmon-polaritons in graphene. Int J Mod Phys B. 2013;27:1341001. Google Scholar

[11]

Kotov OV, Kol’chenko MA, Lozovik YE. Ultrahigh refractive index sensitivity of TE-polarized electromagnetic waves in graphene at the interface between two dielectric media. Opt Express 2013;21:13533. Google Scholar

[12]

Buslaev PI, Iorsh IV, Shadrivov IV, Belov PA, Kivshar YS. Plasmons in waveguide structures formed by two graphene layers. JETP Lett 2013;97:535. Google Scholar

[13]

Smirnova DA, Iorsh IV, Shadrivov IV, Kivshar YS. Multilayer graphene waveguides. JETP Lett 2014;99:456. Google Scholar

[14]

Lamata IS, Alonso-González P, Hillenbrand R, Nikitin AY. Plasmons in cylindrical 2D materials as a platform for nanophotonic circuits. ACS Photonics 2015;2:280. Google Scholar

[15]

Kuzmin DA, Bychkov IV, Shavrov VG, Kotov LN. Transverse-electric plasmonic modes of cylindrical graphene-based waveguide at near-infrared and visible frequencies. Sci Rep 2016;6:26915. Google Scholar

[16]

Gao Y, Ren G, Zhu B, Liu H, Lian Y, Jian S. Analytical model for plasmon modes in graphene-coated nanowire. Opt Express 2014;22:24322. Google Scholar

[17]

Koppens FHL, Chang DE, de Abajo FJG. Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 2011;11:3370–7. Google Scholar

[18]

Krasavin AV, Zheludev NI. Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations. Appl Phys Lett 2004;84:1416. Google Scholar

[19]

Fedutik Y, Temnov VV, Schöps O, Woggon U, Artemyev MV. Exciton-plasmon-photon conversion in plasmonic nanostructures. Phys Rev Lett 2007;99:136802. Google Scholar

[20]

Temnov VV, Armelles G, Woggon U, et al. Active magneto-plasmonics in hybrid metal-ferromagnet structures. Nat Photonics 2010;4:107. Google Scholar

[21]

LeBlanc SJ, McClanahan MR, Jones M, Moyer PJ. Enhancement of multiphoton emission from single CdSe quantum dots coupled to gold films. Nano Lett 2013;13:1662. Google Scholar

[22]

Abbasi F, Davoyan AR, Engheta N. One-way surface states due to nonreciprocal light-line crossing. New J Phys 2015;17:063014. Google Scholar

[23]

Kurkin MI, Bakulina NB, Pisarev RV. Transient inverse Faraday effect and ultrafast optical switching of magnetization. Phys Rev B 2008;78:134430. Google Scholar

[24]

Mentink JH, Hellsvik J, Afanasiev DV, et al. Ultrafast spin dynamics in multisublattice magnets. Phys Rev Lett 2012;108:057202. Google Scholar

[25]

Kirilyuk A, Kimel AV, Rasing T. Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys. Rep Prog Phys 2013;76:026501. Google Scholar

[26]

Kurkin MI, Orlova NB. Femtosecond magnetooptics and ultrafast magnetization reversal of ferromagnetic. J Magn Magn Mater 2014;361:224. Google Scholar

[27]

Belotelov VI, Doskolovich LL, Zvezdin AK. Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems. Phys Rev Lett 2007;98:077401. Google Scholar

[28]

Jain PK, Xiao Y, Walsworth R, Cohen AE. Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals. Nano Lett 2009;9:1644. Google Scholar

[29]

Wang L, Yang K, Clavero C, et al. Localized surface plasmon resonance enhanced magneto-optical activity in core-shell Fe-Ag nanoparticles. J Appl Phys 2010;107:09B303. Google Scholar

[30]

Belotelov VI, Akimov IA, Pohl M, et al. Enhanced magneto-optical effects in magnetoplasmonic crystals. Nat Nanotechnol 2011;6:370. Google Scholar

[31]

Kreilkamp LE, Belotelov VI, Chin JY, et al. Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect. Phys Rev X 2013;3:041019. Google Scholar

[32]

Khokhlov NE, Prokopov AR, Shaposhnikov AN, et al. Photonic crystals with plasmonic patterns: novel type of the heterostructures for enhanced magneto-optical activity. J Phys D Appl Phys 2015;48:095001. Google Scholar

[33]

Razdolski I, Makarov D, Schmidt OG, et al. Nonlinear surface magnetoplasmonics in Kretschmann multilayers. ACS Photonics 2016;3:179. Google Scholar

[34]

Temnov VV. Ultrafast acousto-magneto-plasmonics. Nat Photonics 2012;6:728. Google Scholar

[35]

Gomez-Diaz JS, Tymchenko M, Alù A. Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene stripes. Opt Mater Express 2015;5:246047. Google Scholar

[36]

Gomez-Diaz JS, Tymchenko M, Alù A. Hyperbolic plasmons and topological transitions over uniaxial metasurface. Phys Rev Lett 2015;114:233901. Google Scholar

[37]

Gomez-Diaz JS, Alù A. Flatland optics with hyperbolic metasurfaces. ACS Photonics 2016;3:2211. Google Scholar

[38]

Schaferling M, Yin X, Engheta N, Giessen H. Helical plasmonic nanostructures as prototypical chiral near-field sources. ACS Photonics 2014;1:530. Google Scholar

[39]

Engheta N, Pelet P. The theory of chirowaveguides. IEEE Trans Microwave Theory Tech 1990;38:1631. Google Scholar

[40]

Jaggard DL, Engheta N, Kowarz MW, Pelet P, Liu JC, Kim Y. Periodic chiral structures. IEEE Trans Antennas Propag 1989;37:1447. Google Scholar

[41]

Fedotov VA, Mladyonov PL, Prosvirnin SL, Rogacheva AV, Chen Y, Zheludev NI. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys Rev Lett 2006;97:167401. Google Scholar

[42]

Pendry JB. A chiral route to negative refraction. Science 2004;306:1353. Google Scholar

[43]

Baranova NB, Zel’dovich BY. Rotation of a ray by a magnetic field. JETP Lett 1994;59:681. Google Scholar

[44]

Darsht MY, Zhirgalova IV, Zel’dovich BY, Kundikova ND. Observation of a “magnetic” rotation of the speckle of light passed through an optical fiber. JETP Lett 1994;9:763. Google Scholar

[45]

Ardasheva LI, Sadykova MO, Sadykov NR, et al. Rotation of the speckle pattern in a low-mode optical fiber in a longitudinal magnetic field. J Opt Technol 2002;69:451. Google Scholar

[46]

Ardasheva LI, Kundikova ND, Sadykova MO, Sadykov NR, Chernyakov VE. Speckle-pattern rotation in a few-mode optical fiber in a longitudinal magnetic field. Opt Spectrosc 2003;95:645. Google Scholar

[47]

Kuzmin DA, Bychkov IV, Shavrov VG. Influence of graphene coating on speckle-pattern rotation of light in gyrotropic optical fiber. Opt Lett 2015;40:890. Google Scholar

[48]

Kuzmin DA, Bychkov IV, Shavrov VG, Temnov VV. Giant Faraday rotation of high-order plasmonic modes in graphene-covered nanowires. Nano Lett 2016;16:4391. Google Scholar

[49]

Kort-Kamp WJM, Rosa FSS, Pinheiro FA, Farina C. Tuning plasmonic cloaks with an external magnetic field. Phys Rev Lett 2013;111:215504. Google Scholar

[50]

Kort-Kamp WJM, Rosa FSS, Pinheiro FA, Farina C. Molding the flow of light with a magnetic field: plasmonic cloaking and directional scattering. J Opt Soc Am A 2014;31:1969. Google Scholar

[51]

Wang Z, Fan S. Optical circulators in two-dimensional magneto-optical photonic crystals. Opt Lett 2005;30:1989. Google Scholar

[52]

Smigaj W, Romero-Vivas J, Gralak B, Magdenko L, Dagens B, Vanwolleghem M. Magneto-optical circulator designed for operation in a uniform external magnetic field. Opt Lett 2010;35:568. Google Scholar

[53]

Dmitriev V, Kawakatsu MN, Portela G. Magneto-optical resonator switches in two-dimensional photonic crystals: geometry, symmetry, scattering matrices, and two examples. Opt Lett 2013;38:1016. Google Scholar

[54]

Falk AL, Chiu K-C, Farmer DB, et al. Coherent plasmon and phonon-plasmon resonances in carbon nanotubes. Phys Rev Lett 2017;118:257401. Google Scholar

[55]

Kim C-J, Sánchez-Castillo A, Ziegler Z, et al. Chiral atomically thin films. Nature Nanotechnol 2016;11:520. Google Scholar

[56]

Stauber T, Low T, Gómez-Santos G. Chiral response of twisted bilayer graphene. 2017; arXiv:1708.06116. Google Scholar

[57]

Kuzmin DA, Bychkov IV, Shavrov VG, Temnov VV. Topologically induced optical activity in graphene-based meta-structures. ACS Photonics 2017;4:1633. Google Scholar

[58]

Zheng Y, Ando T. Hall conductivity of a two-dimensional graphite system. Phys Rev B 2002;65:245420. Google Scholar

[59]

Gusynin VP, Sharapov SG. Unconventional integer quantum Hall effect in graphene. Phys Rev Lett 2005;95:146801. Google Scholar

[60]

Castro Neto AH, Guinea F, Peres NMR. Edge and surface states in the quantum Hall effect in graphene. Phys Rev B 2006;73:205408. Google Scholar

[61]

Sheng DN, Sheng L, Weng ZY. Quantum Hall effect in graphene: disorder effect and phase diagram. Phys Rev B 2006;73:233406. Google Scholar

[62]

Abanin DA, Lee PA, Levitov LS. Spin-filtered edge states and quantum Hall effect in graphene. Phys Rev Lett 2006;96:176803. Google Scholar

[63]

Lukose V, Shankar R, Baskaran G. Novel electric field effects on Landau levels in graphene. Phys Rev Lett 2007;98:116802. Google Scholar

[64]

Zhang Y, Tan Y-W, Stormer HL, Kim P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature (London) 2005;438:201. Google Scholar

[65]

Novoselov KS, McCann E, Morozov SV, et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat Phys 2002;2:177. Google Scholar

[66]

Zhang Y, Jiang Z, Small JP, et al. Landau-level splitting in graphene in high magnetic fields. Phys Rev Lett 2006;96:136806. Google Scholar

[67]

Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005;438:197. Google Scholar

[68]

Sharapov SG, Gusynin VP, Beck H. Magnetic oscillations in planar systems with the Dirac-like spectrum of quasiparticle excitations. Phys Rev B 2004;69:075104. Google Scholar

[69]

Sharapov SG, Gusynin VP. Magnetic oscillations in planar systems with the Dirac-like spectrum of quasiparticle excitations II: transport properties. Phys Rev B 2005;71:125124. Google Scholar

[70]

Nair RR, Blake P, Grigorenko AN, et al. Fine structure constant defines visual transparency of graphene. Science 2008;320:1308. Google Scholar

[71]

Li ZQ, Henriksen EA, Jiang Z, et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nat Phys 2008;4:532. Google Scholar

[72]

Mak KF, Sfeir MY, Wu Y, et al. Measurement of the optical conductivity of graphene. Phys Rev Lett 2008;101:196405. Google Scholar

[73]

Falkovsky LA, Pershoguba SS. Optical far-infrared properties of graphene monolayer and multilayers. Phys Rev B 2007;76:153410. Google Scholar

[74]

Stauber T, Peres NMR, Geim AK. Optical conductivity of graphene in the visible region of the spectrum. Phys Rev B 2008;78:085432. Google Scholar

[75]

Kuzmenko AB, van Heumen E, Carbone F, van der Marel D. Universal optical conductance of graphite. Phys Rev Lett 2008;100:117401. Google Scholar

[76]

Falkovsky LA, Varlamov AA. Space-time dispersion of graphene conductivity. Eur Phys J B 2007;56:281. Google Scholar

[77]

Hanson GW. Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans Antennas Propag 2008;56:747. Google Scholar

[78]

Gusynin VP, Sharapov SG, Carbotte JP. Sum rules for the optical and Hall conductivity in graphene. Phys Rev B 2007;75:165407. Google Scholar

[79]

Gusynin VP, Sharapov SG, Carbotte JP. Unusual microwave response of Dirac quasiparticles in graphene. Phys Rev Lett 2006;96:256802. Google Scholar

[80]

Dean CR, Young AF, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 2010;5:722. Google Scholar

[81]

Crassee I, Levallois J, Walter AL, et al. Giant Faraday rotation in single- and multilayer graphene. Nat Phys 2010;7:48. Google Scholar

[82]

Shimano R, Yumoto G, Yoo JY, et al. Quantum Faraday and Kerr rotations in graphene. Nat Commun 2013;4:1841. Google Scholar

[83]

Sounas DL, Skulason HS, Nguyen HV, et al. Faraday rotation in magnetically biased graphene at microwave frequencies. Appl Phys Lett 2013;102:191901. Google Scholar

[84]

Falkovsky LA. Quantum magneto-optics of graphite with trigonal warping. Phys Rev B 2011;84:115414. Google Scholar

[85]

Gusynin VP, Sharapov SG, Carbotte JP. Magneto-optical conductivity in graphene. J Phys Condens Matter 2007;19:026222. Google Scholar

[86]

Ferreira A, Peres NMR, Castro Neto AH. Confined magneto-optical waves in graphene. Phys Rev B 2012;85:205426. Google Scholar

[87]

Iorsh IV, Shadrivov IV, Belov PA, Kivshar YS. Tunable hybrid surface waves supported by a graphene layer. JETP Lett 2013;97:249. Google Scholar

[88]

Melo LGC. Theory of magnetically controlled low-terahertz surface plasmon-polariton modes in graphene-dielectric structures. J Opt Soc Am B 2015;32:2467. Google Scholar

[89]

Yan H, Li Z, Li X, Zhu W, Avouris P, Xia F. Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene. Nano Lett 2012;12:3766. Google Scholar

[90]

Crassee I, Orlita M, Potemski M, et al. Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene. Nano Lett 2012;12:2470. Google Scholar

[91]

Berman OL, Gumbs G, Lozovik YE. Magnetoplasmons in layered graphene structures. Phys Rev B 2008;78:085401. Google Scholar

[92]

Sounas DL, Caloz C. Edge surface modes in magnetically biased chemically doped graphene stripes. Appl Phys Lett 2011;99:231902. Google Scholar

[93]

Tymchenko M, Nikitin AY, Martín-Moreno L. Faraday rotation due to excitation of magnetoplasmons in graphene microribbons. ACS Nano 2013;7:9780. Google Scholar

[94]

Mast DB, Dahm AJ, Fetter AL. Observation of bulk and edge magnetoplasmons in a two-dimensional electron fluid. Phys Rev Lett 1985;54:1706. Google Scholar

[95]

Wang W, Apell SP, Kinaret JM. Edge magnetoplasmons and the optical excitations in graphene disks. Phys Rev B 2012;86:125450. Google Scholar

[96]

Kumada N, Roulleau P, Roche B. Resonant edge magnetoplasmons and their decay in graphene. Phys Rev Lett 2014;113:266601. Google Scholar

[97]

Chamanara N, Sounas D, Caloz C. Non-reciprocal magnetoplasmon graphene coupler. Opt Express 2013;21:11248. Google Scholar

[98]

Chamanara N, Sounas D, Szkopek T, Caloz C. Terahertz magnetoplasmon energy concentration and splitting in graphene PN junctions. Opt Express 2013;21:25356. Google Scholar

[99]

Liu F, Qian C, Chong YD. Directional excitation of graphene surface plasmons. Opt Express 2015;23:2383. Google Scholar

[100]

Nasari H, Abrishamian MS. Magnetically tunable focusing in a graded index planar lens based on graphene. J Opt 2014;16:105502. Google Scholar

[101]

Kuzmin DA, Bychkov IV, Shavrov VG. Magnetic field control of plasmon polaritons in graphene-covered gyrotropic planar waveguide. Opt Lett 2015;40:2557. Google Scholar

[102]

Kuzmin D, Bychkov I, Shavrov V. Electromagnetic waves absorption by graphene magnetic semiconductor multilayered nanostructure in external magnetic field: Voight geometry. Acta Phys Polon A 2015;127:528. Google Scholar

[103]

Kuzmin DA, Bychkov IV, Shavrov VG, Temnov VV, Lee H-I, Mok J. Plasmonically induced magnetic field in graphene-coated nanowires. Opt Lett 2016;41:396. Google Scholar

[104]

Martín-Becerra D, Temnov VV, Thomay T, et al. Spectral dependence of the magnetic modulation of surface plasmon polaritons in noble/ferromagnetic/noble metal films. Phys Rev B 2012;86:035118. Google Scholar

[105]

Thongrattanasiri S, Manjavacas A, García de Abajo FJ. Quantum finite-size effects in graphene plasmons. ACS Nano 2012;6:1766. Google Scholar

[106]

Zhang S, Wei H, Bao K, Håkanson U, Halas NJ, Nordlander P, Xu H. Chiral surface plasmon polaritons on metallic nanowires. Phys Rev Lett 2011;107:096801. Google Scholar

[107]

Li Zh, Bao K, Fang Y, Huang Y, Nordlander P, Xu H. Correlation between incident and emission polarization in nanowire surface plasmon waveguides. Nano Lett 2010;10:1831. Google Scholar

[108]

Wei H, Pana D, Xu H. Routing of surface plasmons in silver nanowire networks controlled by polarization and coating. Nanoscale 2015;7:19053. Google Scholar

[109]

Chettiar UK, Davoyan AR, Engheta N. Hotspots from nonreciprocal surface waves. Opt Lett 2014;39:1760. Google Scholar

[110]

Gao J, Fidler AF, Klimov VI. Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots. Nat Commun 2015;6:8185. Google Scholar

[111]

Rosenberg R, Rubinstein CB, Herriott DR. Resonant optical Faraday rotator. Appl Opt 1964;3:1079. Google Scholar

[112]

Silveirinha MG. Bulk-edge correspondence for topological photonic continua. Phys Rev B 2016;94:205105. Google Scholar

[113]

Gangaraj SAH, Silveirinha MG, Hanson GW. Berry phase, Berry connection, and Chern number for a continuum bianisotropic material from a classical electromagnetics perspective. IEEE J Multiscale Multiphys Comput Technol 2017;2:3. Google Scholar

[114]

Silveirinha MG. Chern invariants for continuous media. Phys Rev B 2015;92:125153. Google Scholar

[115]

Jin D, Lu L, Wang Z, et al. Topological magnetoplasmon. Nat Commun 2016;7:13486. Google Scholar

[116]

Jin D, Christensen T, Soljačić M, et al. Infrared topological plasmons in graphene. Phys Rev Lett 2017;118:245301. Google Scholar

[117]

Gao W, Lawrence M, Yang B, et al. Topological photonic phase in chiral hyperbolic metamaterials. Phys Rev Lett 2015;114:037402. Google Scholar

[118]

Hadad Y, Steinberg BZ. Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides. Phys Rev Lett 2010;105:233904. Google Scholar

[119]

Kumar A, Nemilentsau A, Fung KH, et al. Chiral plasmon in gapped Dirac systems. Phys Rev B 2016;93:041413. Google Scholar

[120]

Songa JCW, Rudner MS. Chiral plasmons without magnetic field. Proc Natl Acad Sci USA 2015;113:4658. Google Scholar

[121]

Im S-J, Ri C-S, Ho K-S, Herrmann J. Third-order nonlinearity by the inverse Faraday effect in planar magnetoplasmonic structures. Phys Rev B 2017;96:165437. Google Scholar

[122]

Levy N, Burke SA, Meaker KL, et al. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 2010;329:544. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.