[1]

Dhillon SS, Vitiello MS, Linfield EH, et al. The 2017 terahertz science and technology roadmap. J Phys D Appl Phys 2017;50:43001. CrossrefGoogle Scholar

[2]

Hangyo M. Development and future prospects of terahertz technology. Jpn J Appl Phys 2015;54:120101. CrossrefGoogle Scholar

[3]

Hafez HA, Chai X, Ibrahim A, et al. Intense terahertz radiation and their applications. J Opt 2016;18:93004. CrossrefGoogle Scholar

[4]

Tonouchi M. Cutting-edge terahertz technology. Nat Photon 2007;1:97–105. CrossrefGoogle Scholar

[5]

Horiuchi N. Terahertz technology: endless applications. Nat Photon 2010;4:140. CrossrefGoogle Scholar

[6]

Hu BB, Nuss MC. Imaging with terahertz waves. Opt Lett 1995;20:1716–8. CrossrefPubMedGoogle Scholar

[7]

Redo-Sanchez A, Heshmat B, Aghasi A, et al. Terahertz time-gated spectral imaging for content extraction through layered structures. Nat Comm 2016;7:12665. CrossrefGoogle Scholar

[8]

Jansen C, Wietzke S, Peters O, et al. Terahertz imaging: applications and perspectives. Appl Opt 2010;49:E48–57. CrossrefPubMedGoogle Scholar

[9]

Serita K, Mizuno S, Murakami H, et al. Scanning laser terahertz near-field imaging system. Opt Express 2012;20:12959–65. CrossrefPubMedGoogle Scholar

[10]

Mittleman DM, Gupta M, Neelamani R, Baraniuk RG, Rudd JV, Koch M. Recent advances in terahertz imaging. Appl Phys B Lasers Opt 1999;68:1085–94. CrossrefGoogle Scholar

[11]

Fitzgerald AJ, Berry E, Zinovev NN, Walker GC, Smith MA, Chamberlain JM. An introduction to medical imaging with coherent terahertz frequency radiation. Phys Med Biol 2002;47:R67. CrossrefPubMedGoogle Scholar

[12]

Fischer BM, Walther M, Uhd Jepsen P. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Phys Med Biol 2002;47:3807. PubMedCrossrefGoogle Scholar

[13]

Yu C, Fan S, Sun Y, Pickwell-Macpherson E. The potential of terahertz imaging for cancer diagnosis: a review of investigations to date. Quant Imaging Med Surg 2012;2:33–45. PubMedGoogle Scholar

[14]

Nagatsuma T, Ducournau G, Renaud CC. Advances in terahertz communications accelerated by photonics. Nat Photon 2016;10:371–9. CrossrefGoogle Scholar

[15]

Zhang Y, Qiao S, Liang S, et al. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure. Nano Lett 2015;15:3501–6. CrossrefPubMedGoogle Scholar

[16]

Koening S, Lopez-Diaz D, Antes J, et al. Wireless sub-THz communication system with high data rate. Nat Photon 2013;7:977–81. CrossrefGoogle Scholar

[17]

Kazarinov RF, Suris RA. Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice. BibSonomy. Sov Phys Semicond 1971;5:707. Google Scholar

[18]

Faist J, Capasso F, Sivco DL, Sirtori C, Hutchinson AL, Cho AY. Quantum cascade laser. Science 1994;264:553–6. PubMedCrossrefGoogle Scholar

[19]

Köhler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser. Nature 2002;417:156–9. CrossrefPubMedGoogle Scholar

[20]

Williams BS. Terahertz quantum-cascade lasers. Nat Photon 2007;1:517–25. CrossrefGoogle Scholar

[21]

Fathololoumi S, Dupont E, Chan CWI, et al. Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling. Opt Express 2012;20:3866–76. CrossrefPubMedGoogle Scholar

[22]

Vitiello MS, Scalari G, Williams B, De Natale P. Quantum cascade lasers: 20 years of challenges. Opt Exp 2015;23:5167–82. CrossrefGoogle Scholar

[23]

Bründermann E, Röser HP. First operation of a far-infrared p-germanium laser in a standard close-cycle machine at 15 K. Infra Phys Tech 1997;38:201–3. CrossrefGoogle Scholar

[24]

Klimenko OA, Mityagin YA, Savinov SA, et al. Terahertz wide range tunable cyclotron resonance p-Ge laser. J Phys Conf Ser 2009;193:12064. CrossrefGoogle Scholar

[25]

Suzuki S, Asada M, Teranishi A, Sugiyama H, Yokoyama H. Fundamental oscillation of resonant tunneling diodes above 1 THz at room temperature. Appl Phys Lett 2010;97:242102. CrossrefGoogle Scholar

[26]

Chassagneux Y, Wang QJ, Khanna SP, et al. Limiting factors to the temperature performance of THz quantum cascade lasers based on the resonant-phonon depopulation scheme. IEEE Trans Terahertz Sci Technol 2012;2:83–92. CrossrefGoogle Scholar

[27]

Hartmann RR, Kono J, Portnoi ME. Terahertz science and technology of carbon nanomaterials. Nanotechnol 2014;25:322001. CrossrefGoogle Scholar

[28]

Tredicucci A, Vitiello MS. Device concepts for graphene-based terahertz photonics. IEEE J Selected Topics Quant Electron 2014;20:8500109. Google Scholar

[29]

Geim AK, Novoselov KS. The rise of graphene. Nat Mater 2007;6:183–91. CrossrefPubMedGoogle Scholar

[30]

Grigorenko AN, Polini M, Novoselov KS. Graphene plasmonics. Nat Photon 2012;6:749–58. CrossrefGoogle Scholar

[31]

Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004;306:666–9. PubMedCrossrefGoogle Scholar

[32]

Daniels KM, Jadidi MM, Sushkov AB, et al. Narrow plasmon resonances enabled by quasi-freestanding bilayer epitaxial graphene. 2D Mater 2017;4:25034. CrossrefGoogle Scholar

[33]

Baek IH, Hamm JM, Ahn KJ, et al. Boosting the terahertz nonlinearity of graphene by orientation disorder. 2D Mater 2017;4:25035. CrossrefGoogle Scholar

[34]

Ryzhii V, Otsuji T, Ryzhii M, et al. Graphene vertical cascade interband terahertz and infrared photodetectors. 2D Mater 2015;2:25002. CrossrefGoogle Scholar

[35]

Yadav D, Tombet SB, Watanabe T, Arnold S, Ryzhii V, Otsuji T. Terahertz wave generation and detection in double-graphene layered van der Waals heterostructures. 2D Mater 2016;3:45009. CrossrefGoogle Scholar

[36]

Otsuji T, Tombet SB, Satou A, Ryzhii M, Ryzhii V. Terahertz-wave generation using graphene: toward new types of terahertz lasers. IEEE J Sel Top Quantum Electron 2013;19:8400209. CrossrefGoogle Scholar

[37]

Satou A, Otsuji T, Ryzhii V. Theoretical study of population inversion in graphene under pulse excitation. Jpn J Appl Phys 2011;50:70116. CrossrefGoogle Scholar

[38]

Satou A, Ryzhii V, Kurita Y, Otsuji T. Threshold of terahertz population inversion and negative dynamic conductivity in graphene under pulse photoexcitation. J Appl Phys 2012;113:143108. Google Scholar

[39]

Ryzhii V, Ryzhii M, Mitin V, Satou A, Otsuji T. Effect of heating and cooling of photogenerated electron-hole plasma in optically pumped graphene on population inversion. Jpn J Appl Phys 2011;50:094001. CrossrefGoogle Scholar

[40]

Boubanga-Tombet S, Chan S, Watanabe T, Satou A, Ryzhii V, Otsuji T. Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature. Phys Rev B 2012;85:35443. CrossrefGoogle Scholar

[41]

Li T, Luo L, Hupalo M, et al. Femtosecond population inversion and stimulated emission of dense dirac fermions in graphene. Phys Rev Lett 2012;108:167401. CrossrefPubMedGoogle Scholar

[42]

Ryzhii V, Ryzhii M, Mitin V, Otsuji T. Toward the creation of terahertz graphene injection laser. J Appl Phys 2011;110:094503. CrossrefGoogle Scholar

[43]

Ryzhii M, Ryzhii V. Injection and population inversion in electrically induced p–n junction in graphene with split gates. Jpn J Appl Phys 2007;46:L151–3. CrossrefGoogle Scholar

[44]

Ryzhii V, Semenikhin I, Ryzhii M, et al. Double injection in graphene p-i-n structures. J Appl Phys 2013;113:244505. CrossrefGoogle Scholar

[45]

Strait JH, Wang H, Shivaraman S, Shields V, Spencer M, Rana F. Very slow cooling dynamics of photoexcited carriers in graphene observed by optical-pump terahertz-probe spectroscopy. Nano Lett 2011;11:4902–6. PubMedCrossrefGoogle Scholar

[46]

Winzer T, Knorr A, Malic E. Carrier multiplication in grapheme. Nano Lett 2010;10:4839–43. CrossrefGoogle Scholar

[47]

Kim R, Perebeinos V, Avouris P. Relaxation of optically excited carriers in graphene. Phys Rev B 2011;84:075449. CrossrefGoogle Scholar

[48]

Winzer T, Malic E. Impact of Auger processes on carrier dynamics in graphene. Phys Rev B 2012;85:241404(R). CrossrefGoogle Scholar

[49]

Brida D, Tomadin A, Manzoni C, et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat Comm 2013;4:1987. Google Scholar

[50]

Elias DC, Gorbachev RV, Mayorov AS, et al. Dirac cones reshaped by interaction effects in suspended graphene. Nat Phys 2011;7:701–4. CrossrefGoogle Scholar

[51]

Bostowick A, Ohta T, Seyller T, Horn K, Rotenberg E. Quasiparticle dynamics in graphene. Nat Phys 2007;3:36–40. CrossrefGoogle Scholar

[52]

Tajima K, Suto R, Fukidome H, et al. “Fabrication of ultrahighquality graphene on SiC (000-1) substrate and evaluation of Bernal-stacked domain,” The 76th JSAP (Japan Society of Applied Physics) Fall Meeting Abstracts. 14a-2T-6, p. 15-015, 2015. (in Japanese). Google Scholar

[53]

Fukidome H, Kawai Y, Fromm F, et al. Precise control of epitaxy of graphene by microfabricating SiC substrate. Appl Phys Lett 2012;101:41605. CrossrefGoogle Scholar

[54]

Someya T, Fukidome H, Watanabe H, et al. Suppression of supercollision carrier cooling in high mobility graphene on SiC (0001̅). Phys Rev B 2017;95:165303. CrossrefGoogle Scholar

[55]

Satou A, Tamamushi G, Sugawara K, Mitsushio J, Ryzhii V, Otsuji T. A fitting model for asymmetric I-V characteristics of graphene FETs for extraction of intrinsic mobilities. IEEE Trans Electron Dev 2016;63:3300–6. CrossrefGoogle Scholar

[56]

Williams BS, Kumar S, Hu Q, Reno JL. Distributed-feedback terahertz quantum-cascade lasers with laterally corrugated metal waveguides. Opt Lett 2005;30:2909–11.CrossrefPubMedGoogle Scholar

[57]

Ryzhii V, Dubinov AA, Otsuji T, Mitin V, Shur MS. Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides. J Appl Phys 2010;107:54505. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.