[1]

Rudge AW, Adatia NA. Offset-parabolic-reflector antennas: a review. Proc IEEE 1978;66:1592–618. CrossrefGoogle Scholar

[2]

Jones E. Paraboloid reflector and hyperboloid lens antennas. Trans IRE Prof Group Antennas Propag 1954;2:119–27. CrossrefGoogle Scholar

[3]

Wu X, Eleftheriades GV, van Deventer-Perkins TE. Design and characterization of single- and multiple-beam mm-wave circularly polarized substrate lens antennas for wireless communications. IEEE Trans Microw Theory Tech 2001;49:431–41. CrossrefGoogle Scholar

[4]

Born M, Wolf E. Principle of optics, 6th ed. New York: Pergamon Press, 1980. Google Scholar

[5]

Huang J, Encinar JA. Reflectarray antennas. Hoboken, NJ, USA: Wiley, 2007. Google Scholar

[6]

Pozar DM. Flat lens antenna concept using aperture coupled microstrip patches. Electron Lett 1996;32:2109–11. CrossrefGoogle Scholar

[7]

Ryan CGM, Chaharmir MR, Shaker JRBJ, Antar YMM, Ittipiboon A. A wideband transmit-array using dual-resonant double square rings. IEEE Trans Antennas Propag 2010;58:1486–93. CrossrefGoogle Scholar

[8]

Li M, Behdad N. Wideband true-time-delay microwave lenses based on metallo-dielectric and all-dielectric lowpass frequency selective surfaces. IEEE Trans Antennas Propag 2013;61:4109–19. CrossrefGoogle Scholar

[9]

Hum SV, Perruisseau-Carrier J. Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review. IEEE Trans Antennas Propag 2014;62:183–98. CrossrefGoogle Scholar

[10]

Goodman J. Introduction to Fourier optics, 3rd ed. Englewood, CO, USA: Roberts and Company, 2004. Google Scholar

[11]

Gaylord T, Moharam M. Analysis and applications of optical diffraction by gratings. Proc IEEE 1985;73:894–937. CrossrefGoogle Scholar

[12]

Lukosz W. Optical systems with resolving powers exceeding the classical limit I. J Opt Soc Am 1966;56:1463–72. CrossrefGoogle Scholar

[13]

Iizuka K, Mizusawa M, Urasaki S, Ushigome H. Volume-type holographic antenna. IEEE Trans Antennas Propag 1975;23:807–10. CrossrefGoogle Scholar

[14]

Gallagher NC, Sweeney DW. Computer-generated microwave kinoforms. Opt Eng 1989;28:599–604. Google Scholar

[15]

Weiner AM. Femtosecond pulse shaping and processing. Prog Quantum Electron 1995;19:161–237. CrossrefGoogle Scholar

[16]

Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998;391:667–9. CrossrefGoogle Scholar

[17]

Yu N, Genevet P, Kats Ma, Aieta F, Tetienne J-P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011;334:333–7. CrossrefPubMedGoogle Scholar

[18]

Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014;13:139–50. PubMedCrossrefGoogle Scholar

[19]

Fong BH, Colburn JS, Ottusch JJ, Visher JL, Sievenpiper DF. Scalar and tensor holographic artificial impedance surfaces. IEEE Trans Antennas Propag 2010;58:3212–21. CrossrefGoogle Scholar

[20]

Minatti G, Caminita F, Martini E, Sabbadini M, Maci S. Synthesis of modulated-metasurface antennas with amplitude, phase and polarization control. IEEE Trans Antennas Propag 2013;64:3907–19. Google Scholar

[21]

Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett 2013;110:197401. PubMedCrossrefGoogle Scholar

[22]

Selvanayagam M, Eleftheriades GV. Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation. Opt Express 2013;3727:3720–7. Google Scholar

[23]

Monticone F, Estakhri NM, Alù A. Full control of nanoscale optical transmission with a composite metascreen. Phys Rev Lett 2013;110:203903. PubMedCrossrefGoogle Scholar

[24]

Holloway CL, Kuester EF, Gordon JA, O’Hara J, Booth J, Smith DR. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag Mag 2012;54:10–35. CrossrefGoogle Scholar

[25]

Harrington R. Time-harmonic electromagnetic fields. New York, USA: Wiley, 2001, ch. 3. Google Scholar

[26]

Wong JPS, Selvanayagam M, Eleftheriades GV. Design of unit cells and demonstration of methods for synthesizing Huygens’ metasurfaces. Photonics Nanostructures – Fundam Appl 2014;12:360–75. CrossrefGoogle Scholar

[27]

Selvanayagam M, Eleftheriades GV. An active electromagnetic cloak using the equivalence principle. IEEE Antennas Wireless Propagat Lett 2012;11;1226–9. CrossrefGoogle Scholar

[28]

Selvanayagam M, Eleftheriades GV. Experimental demonstration of active electromagnetic cloaking. Phys Rev X 2013;3:041011. Google Scholar

[29]

Epstein A, Eleftheriades GV. Floquet-Bloch analysis of refracting Huygens’ metasurfaces. Phys Rev B 2014;90:235127. CrossrefGoogle Scholar

[30]

Asadchy V, Faniayeu I, Ra’di Y, Khakhomov S, Semchenko I, Tretyakov S. Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption. Phys Rev X 2015;5:031005. Google Scholar

[31]

Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ. Perfect metamaterial absorber. Phys Rev Lett 2008;100:207402. CrossrefGoogle Scholar

[32]

Liu N, Mesch M, Weiss T, Hentschel M, Giessen H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 2010;10:2342–8. PubMedCrossrefGoogle Scholar

[33]

Diem M, Koschny T, Soukoulis CM. Wide-angle perfect absorber/thermal emitter in the terahertz regime. Phys Rev B 2009;79;033101. CrossrefGoogle Scholar

[34]

Schelkunoff SA. Some equivalence theorems of electromagnetics and their application to radiation problems. Bell Syst Tech J 1936;15;92–112. CrossrefGoogle Scholar

[35]

Balanis C. Advanced engineering electromagnetics. New York, USA: Wiley, 2012. Google Scholar

[36]

Kuester E, Mohamed M, Piket-May M, Holloway C. Averaged transition conditions for electromagnetic fields at a metafilm. IEEE Trans Antennas Propag 2003;51:2641–51. CrossrefGoogle Scholar

[37]

Achouri K, Salem M, Caloz C. General metasurface synthesis based on susceptibility tensors. IEEE Trans Antennas Propag 2015;63;2977–91. CrossrefGoogle Scholar

[38]

Albooyeh M, Tretyakov S, Simovski C. Electromagnetic characterization of bianisotropic metasurfaces on refractive substrates: general theoretical framework. Ann Phys (Berl) 2016;528:721–7. CrossrefGoogle Scholar

[39]

Holloway CL, Mohamed MA, Kuester EF, Dienstfrey A. Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles. IEEE Trans Electromag Compat 2005;47:853–65. CrossrefGoogle Scholar

[40]

Niemi T, Karilainen AO, Tretyakov S. Synthesis of polarization transformers. IEEE Trans Antennas Propag 2013;61:3102–11. CrossrefGoogle Scholar

[41]

Epstein A, Eleftheriades GV. Huygens’ metasurfaces via the equivalence principle: design and applications. J Opt Soc Am B 2016;33;A31–50. Google Scholar

[42]

Epstein A, Eleftheriades GV. Arbitrary power conserving field transformations with passive lossless omega-type bianisotropic metasurfaces. IEEE Trans Antennas Propag 2016;64:3880–95. CrossrefGoogle Scholar

[43]

Selvanayagam M, Eleftheriades GV. Polarization control using tensor Huygens’ surfaces. IEEE Trans Antennas Propag 2014;62:6155–68. CrossrefGoogle Scholar

[44]

Pfeiffer C, Zhang VRC, Guo J, Grbic A. Polarization rotation with ultra-thin bianisotropic metasurfaces. Optica 2016;3:427–32. CrossrefGoogle Scholar

[45]

Epstein A, Eleftheriades GV. Passive lossless Huygens’ metasurfaces for conversion of arbitrary source field to directive radiation. IEEE Trans Antennas Propag 2014;62:5680–95. CrossrefGoogle Scholar

[46]

Tretyakov SA. Metasurfaces for general transformations of electromagnetic fields. Phil Trans R Soc A Mathematical Phys Eng Sci 2015;373:20140362. CrossrefGoogle Scholar

[47]

Huygens C. Traité de la Lumière. Leiden: Pierre vander Aa, 1690. Google Scholar

[48]

Ra’di Y, Asadchy VS, Tretyakov SA. One-way transparent sheets. Phys Rev B 2014;89:075109. CrossrefGoogle Scholar

[49]

Kim M, Wong AMH, Eleftheriades GV. Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients. Phys Rev X 2014;4:041042. Google Scholar

[50]

Wong JPS, Selvanayagam M, Eleftheriades GV. Polarization considerations for scalar Huygens’ metasurfaces and characterization for 2-D refraction. IEEE Trans Microw Theory Techn 2015;63:913–24. CrossrefGoogle Scholar

[51]

Pfeiffer C, Emani NK, Shaltout AM, Boltasseva A, Shalaev VM, Grbic A. Efficient light bending with isotropic metamaterial Huygens’ surfaces. Nano Lett 2014;14:2491–7. CrossrefPubMedGoogle Scholar

[52]

Pfeiffer C, Grbic A. Bianisotropic metasurfaces for optimal polarization control: analysis and synthesis Phys Rev Appl 2014;2:044011. CrossrefGoogle Scholar

[53]

Epstein A, Wong JPS, Eleftheriades GV. Cavity-excited Huygens’ metasurface antennas for near-unity aperture efficiency from arbitrarily large apertures. Nat Commun 2016;7:10360. CrossrefPubMedGoogle Scholar

[54]

Wong JPS, Epstein A, Eleftheriades GV. Reflectionless wide-angle refracting metasurfaces. IEEE Antennas Wireless Propag Lett 2015;15:1293–6. Google Scholar

[55]

Asadchy VS, Albooyeh M, Tcvetkova SN, Daz-Rubio A, Ra’di Y, Tretyakov SA. Perfect control of reflection and refraction using spatially dispersive metasurfaces. Phys Rev B 2016;94:075142. CrossrefGoogle Scholar

[56]

Asadchy V, Albooyeh M, Tcvetkova S, Ra’di Y, Tretyakov SA. Metasurfaces for perfect and full control of refraction and reflection, in Proceedings of the 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), Chania, Greece, 2016. Google Scholar

[57]

Estakhri NM, Alù A. Recent progress in gradient metasurfaces. J Opt Soc Am B 2016;33:A21–30. CrossrefGoogle Scholar

[58]

Estakhri NM, Alù A. Wave-front transformation with gradient metasurfaces. Phys Rev X 2016;6:041008. Google Scholar

[59]

Kong JA. Theorems of bianisotropic media. Proc IEEE 1972;60:1036–46. CrossrefGoogle Scholar

[60]

Chen M, Abdo-Sanchez E, Epstein A, Eleftheriades GV. Experimental verification of reflectionless wide-angle refraction via a bianisotropic Huygens’ metasurface, in Proceedings of the XXXIInd URSI General Assembly and Scientific Symposium (URSI GASS), Montreal, Canada, 2017. Google Scholar

[61]

Ra’di Y, Tretyakov SA. Balanced and optimal bianisotropic particles: maximizing power extracted from electromagnetic fields. New J Phys 2013;15:053008. CrossrefGoogle Scholar

[62]

Asadchy VS, Ra’di Y, Vehmas J, Tretyakov SA. Functional metamirrors using bianisotropic elements. Phys Rev Lett 2015;114:095503. PubMedCrossrefGoogle Scholar

[63]

Epstein A, Eleftheriades GV. Synthesis of passive lossless metasurfaces using auxiliary fields for reflectionless beam splitting and perfect reflection. Phys Rev Lett 2016;117:256103. CrossrefPubMedGoogle Scholar

[64]

Epstein A, Eleftheriades GV. Arbitrary antenna arrays without feed networks based on cavity-excited omega-bianisotropic metasurfaces. IEEE Trans Antennas Propag 2017;65:1749–56. CrossrefGoogle Scholar

[65]

Epstein A, Eleftheriades GV. Emulating arbitrary antenna arrays with low-profile probe-fed cavity-excited omega-bianisotropic metasurface antennas, in Proceedings of the 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 2017. Google Scholar

[66]

Selvanayagam M, Eleftheriades GV. Circuit modelling of Huygens’ surfaces. IEEE Antennas Wireless Propagat Lett 2013;12:1642–5. CrossrefGoogle Scholar

[67]

Dorrah A, Eleftheriades GV. All-pass characteristics of a Huygens’ unit cell, in Proceedings of the 2018 United States Nat. Committee Radio Science Meeting (USNC-URSI NRSM), Boulder, CO, USA, 2018. Google Scholar

[68]

Pozar D. Microwave engineering. Hoboken, NJ, USA: Wiley, 2012. Google Scholar

[69]

Frickey DA. Conversions between S, Z, Y, h, ABCD, and T parameters which are valid for complex source and load impedances. IEEE Trans Microw Theory Techn 1994;42:205–11. CrossrefGoogle Scholar

[70]

Lavigne G, Achouri K, Asadchy V, Tretyakov S, Caloz C. Susceptibility derivation and experimental demonstration of refracting metasurfaces without spurious diffraction. IEEE Trans Antennas Propag 2018;66:1321–30. CrossrefGoogle Scholar

[71]

Wong AMH, Eleftheriades GV. Perfect anomalous reflection with a bipartite Huygens’ metasurface. Phys Rev X 2018;8:011036. Google Scholar

[72]

Asadchy VS, Wickberg A, Díaz-Rubio A, Wegener M. Eliminating scattering loss in anomalously reflecting optical metasurfaces. ACS Photonics 2017;4:1264–70. CrossrefGoogle Scholar

[73]

Díaz-Rubio A, Asadchy V, Elsakka A, Tretyakov SA. From the generalized reflection law to the realization of perfect anomalous reflectors. Sci Adv 2017;3:e1602714. PubMedCrossrefGoogle Scholar

[74]

Díaz-Rubio A, Tretyakov SA. Power-flow conformal metamirrors for engineering wave reflections. *arXiv:1710.06336* 2017. Google Scholar

[75]

Jull EV, Beaulieu NC. An unusual reflection grating behaviour suitable for efficient frequency scanning, in Proceedings of the IEEE AP-S Int. Sym. Dig., Quebec, Canada, 1980. Google Scholar

[76]

Cho YK, Ra JW, Cho UH, Lee JI. Off-bragg TE blazing of a periodic strip grating on a grounded dielectric. IET Electron Lett 1997;33:1446–7. CrossrefGoogle Scholar

[77]

Chen W, Beaulieu NC, Michelson DG, Jull EV. Off-bragg blazed rectangular groove gratings for high diffraction efficiency devices. IEEE Trans Antennas Propag 2013;61:2342–7. CrossrefGoogle Scholar

[78]

Maystre D, Cadilhac M. A phenomenological theory for gratings: perfect blazing for polarized light in nonzero deviation mounting. Radio Sci 1981;16:1003–8. CrossrefGoogle Scholar

[79]

Ra’di Y, Sounas DL, Alù A. Metagratings: beyond the limits of graded metasurfaces for wave front control. Phys Rev Lett 2017;119:067404. CrossrefPubMedGoogle Scholar

[80]

Epstein A, Rabinovich O. Unveiling the properties of metagratings via a detailed analytical model for synthesis and analysis. Phys Rev Appl 2017;8:054037. CrossrefGoogle Scholar

[81]

Wong AMH, Christian P, Eleftheriades GV. Binary Huygens’ metasurface: a simple, efficient retroreflector at near-grazing angles, in Proceedings of the 2017 United States Nat. Committee Radio Science Meeting (USNC-URSI NRSM), Boulder, CO, USA, 2017. Google Scholar

[82]

Wong AMH, Christian P, Eleftheriades GV. Binary Huygens’ metasurfaces: experimental demonstration of simple, efficient near-grazing retroreflectors for TE and TM polarizations. IEEE Trans Antennas Propag 2018, in press. Google Scholar

[83]

Hessel A, Schmoys J, Tseng DY. Bragg-angle blazing of diffraction gratings. J Opt Soc Am 1975;65:380–4. CrossrefGoogle Scholar

[84]

Wong AMH, Eleftheriades GV. Perfect anomalous reflection with an aggressively discretized Huygens’ metasurface, in Proceedings of the XXXIInd URSI General Assembly and Scientific Symposium (URSI GASS), Montreal, Canada, 2017. Google Scholar

[85]

Pfeiffer C, Grbic A. Millimeter-wave transmitarrays for wavefront and polarization control. IEEE Trans Microw Theory Techn 2013;61:4407–17. CrossrefGoogle Scholar

[86]

Kim M, Jeong J, Poon JKS, Eleftheriades GV. Vanadium-dioxide-assisted digital optical metasurfaces for dynamic wavefront engineering. J Opt Soc Am B 2016;33:980–8. CrossrefGoogle Scholar

[87]

Huang Y-W, Lee HWH, Sokhoyan R, et al. Gate-tunable conducting oxide metasurfaces. Nano Lett 2016;16:5319–25. CrossrefPubMedGoogle Scholar

[88]

Pors A, Bozhevolnyi SI. Plasmonic metasurfaces for efficient phase control in reflection. Opt Express 2013;21:27438–51. PubMedCrossrefGoogle Scholar

[89]

Pors A, Albrektsen O, Radko IP, Bozhevolnyi SI. Gap plasmon-based metasurfaces for total control of reflected light. Sci Rep 2013;3:2155. CrossrefPubMedGoogle Scholar

[90]

Sun S, Yang K-Y, Wang C-M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett 2012;12:6223–9. CrossrefPubMedGoogle Scholar

[91]

Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 2015;10:308–12. PubMedCrossrefGoogle Scholar

[92]

Mie G. “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann Phys 1908;330:377–445. CrossrefGoogle Scholar

[93]

Lewin L. The electrical constants of a material loaded with spherical particles. Electrical Engineers – Part III: radio and communication engineering. J Inst 1947;94:65–8. Google Scholar

[94]

Kerker M, Wang D-S, Giles CL. Electromagnetic scattering by magnetic spheres. J Opt Soc Am 1983;73:765–7. CrossrefGoogle Scholar

[95]

Wang Z, An N, Shen F, et al. Enhanced forward scattering of ellipsoidal dielectric nanoparticles. Nanoscale Res Lett 2017;12:58. CrossrefPubMedGoogle Scholar

[96]

García-Cámara B, de la Osa RA, Saiz JM, González F, Moreno F. Directionality in scattering by nanoparticles: Kerker’s null-scattering conditions revisited. Opt Lett 2011;36:728–30. CrossrefPubMedGoogle Scholar

[97]

Vynck K, Felbacq D, Centeno E, Căbuz AI, Cassagne D, Guizal B. All-dielectric rod-type metamaterials at optical frequencies. Phys Rev Lett 2009;102:133901. PubMedCrossrefGoogle Scholar

[98]

Evlyukhin AB, Reinhardt C, Chichkov BN. Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation. Phys Rev B 2011;84:235429. CrossrefGoogle Scholar

[99]

Kuznetsov AI, Miroshnichenko AE, Fu YH, Zhang J, Luk’yanchuk B. Magnetic light. Sci Rep 2012;2:492. CrossrefGoogle Scholar

[100]

Fu YH, Kuznetsov AI, Miroshnichenko AE, Yu YF, Luk’yanchuk B. Directional visible light scattering by silicon nanoparticles. Nat Commun 2013;4:1527. PubMedCrossrefGoogle Scholar

[101]

Person S, Jain M, Lapin Z, Sáenz JJ, Wicks G, Novotny L. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett 2013;13:1806–9. CrossrefPubMedGoogle Scholar

[102]

Cheng J, Ansari-Oghol-Beig D, Mosallaei H. Wave manipulation with designer dielectric metasurfaces. Opt Lett 2014;39:6285–8. CrossrefPubMedGoogle Scholar

[103]

Decker M, Staude I, Falkner M, et al. High-efficiency dielectric Huygens’ surfaces. Adv Opt Mater 2015;3:813–20. CrossrefGoogle Scholar

[104]

Staude I, Miroshnichenko AE, Decker M, et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 2013;7:7824–32. PubMedCrossrefGoogle Scholar

[105]

Özdemir A, Hayran Z, Takashima Y, Kurt H. Polarization independent high transmission large numerical aperture laser beam focusing and deflection by dielectric Huygens’ metasurfaces. Opt Commun 2017;401:46–53. CrossrefGoogle Scholar

[106]

Shanei MM, Hashemi M, Fathi D, Zapata-Rodríguez CJ. Dielectric metalenses with engineered point spread function. Appl Opt 2017;56:8917–23. CrossrefPubMedGoogle Scholar

[107]

Guo Z, Tian L, Shen F, Zhou H, Guo K. Mid-infrared polarization devices based on the double-phase modulating dielectric metasurface. J Phys D Appl Phys 2017;50:254001. CrossrefGoogle Scholar

[108]

Iyer PP, Pendharkar M, Schuller JA. Electrically reconfigurable metasurfaces using heterojunction resonators. Adv Opt Mat 2016;4:1582–8. CrossrefGoogle Scholar

[109]

Liu S, Vaskin A, Campione S, et al. Huygens’ metasurfaces enabled by magnetic dipole resonance tuning in split dielectric nanoresonators. Nano Lett 2017;17:4297–303. CrossrefPubMedGoogle Scholar

[110]

Forouzmand A, Mosallaei H. All-dielectric C-shaped nanoantennas for light manipulation: Tailoring both magnetic and electric resonances to the desire. Adv Opt Mater 2017;5:700:147. Google Scholar

[111]

Tian J, Yang Y, Qiu M, Laurell F, Pasiskevicius V, Jang H. All-dielectric KTiOPO4 metasurfaces based on multipolar resonances in the terahertz region. Opt Express 2017;25:24068–80. PubMedCrossrefGoogle Scholar

[112]

Arslan D, Chong KE, Miroshnichenko AE, et al. Angle-selective all-dielectric Huygens’ metasurfaces. J Phys D Appl Phys 2017;50:434002. CrossrefGoogle Scholar

[113]

Khaidarov E, Hao H, Paniagua-Dominguez R, et al. Asymmetric nanoantennas for ultrahigh angle broadband visible light bending. Nano Lett 2017;17:6267–72. CrossrefPubMedGoogle Scholar

[114]

Zhao W, Jiang H, Liu B, et al. Dielectric Huygens’ metasurface for high-efficiency hologram operating in transmission mode. Sci Rep 2016;6:30613. PubMedCrossrefGoogle Scholar

[115]

Komar A, Fang Z, Bohn J, et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals. Appl Phys Lett 2017;110:071109. CrossrefGoogle Scholar

[116]

Paniagua-Dominguez R, Yu YF, Miroshnichenko AE, et al. Generalized Brewster effect in dielectric metasurfaces. Nat Commun 2016;7:10362. PubMedCrossrefGoogle Scholar

[117]

Zuo H, Choi D-Y, Gai X, et al. High-efficiency all-dielectric metalenses for mid-infrared imaging. Adv Opt Mater 2017;5:1700585. CrossrefGoogle Scholar

[118]

Yu YF, Zhu AY, Paniagua-Dominguez R, Fu YH, Luk’yanchuk B, Kuznetsov AI. High-transmission dielectric metasurface with 2*π* phase control at visible wavelengths. Laser Photonics Rev 2015;9:412–8. CrossrefGoogle Scholar

[119]

Bar-David J, Mazurski N, Levy U. In situ planarization of huygens metasurfaces by nanoscale local oxidation of silicon. ACS Photonics 2017;4:2359–66. CrossrefGoogle Scholar

[120]

Dezert R, Richetti P, Baron A. Isotropic Huygens dipoles and multipoles with colloidal particles. Phys Rev B 2017;96:180201. CrossrefGoogle Scholar

[121]

Li Q-T, Dong F, Wang B, et al. Polarization-independent and high-efficiency dielectric metasurfaces for visible light. Opt Express 2016;24;16309–19. CrossrefPubMedGoogle Scholar

[122]

Chong KE, Staude I, James A, et al. Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett 2015;15:5369–74. PubMedCrossrefGoogle Scholar

[123]

Yoon G, Lee D, Nam KT, Rho J. Pragmatic metasurface hologram at visible wavelength: the balance between diffraction efficiency and fabrication compatibility. ACS Photonics 2017. Doi: 10.1021/acsphotonics.7b01044. Google Scholar

[124]

Iyer PP, Butakov NA, Schuller JA. Reconfigurable semiconductor phased-array metasurfaces. ACS Photonics 2015;2:1077–84. CrossrefGoogle Scholar

[125]

Babicheva VE, Petrov MI, Baryshnikova KV, Belov PA. Reflection compensation mediated by electric and magnetic resonances of all-dielectric metasurfaces (invited). J Opt Soc Am B 2017;34:D18–28. CrossrefGoogle Scholar

[126]

Babicheva VE, Evlyukhin AB. Resonant lattice Kerker effect in metasurfaces with electric and magnetic optical responses. Laser Photonics Rev 2017;11:1700132. CrossrefGoogle Scholar

[127]

Jia D, Tian Y, Ma W, et al. Transmissive terahertz metalens with full phase control based on a dielectric metasurface. Opt Lett 2017;42:4494–7. CrossrefPubMedGoogle Scholar

[128]

Shcherbakov MR, Liu S, Zubyuk VV, et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat Commun 2017;8:17. CrossrefPubMedGoogle Scholar

[129]

Kruk S, Hopkins B, Kravchenko II, Miroshnichenko A, Neshev DN, Kivshar YS. Invited article: broadband highly efficient dielectric metadevices for polarization control. APL Photonics 2016;1:030801. CrossrefGoogle Scholar

[130]

Sautter J, Staude I, Decker M, et al. Active tuning of all-dielectric metasurfaces ACS Nano 2015;9:4308–15. PubMedCrossrefGoogle Scholar

[131]

Polischuk OV, Melnikova VS, Popov VV. Giant cross-polarization conversion of terahertz radiation by plasmons in an active graphene metasurface. Appl Phys Lett 2016;109:131101. CrossrefGoogle Scholar

[132]

Popescu A, Ali T, Bendoym I, et al. Active metasurfaces, in Proceedings of Terahertz, RF, Millimeter and Submillimeter-Wave Tech. and Appl. VII, San Francisco, USA, 2014. Google Scholar

[133]

Li Q, Tian Z, Zhang X, et al. Dual control of active graphene–silicon hybrid metamaterial devices. Carbon 2015;90:146–53. CrossrefGoogle Scholar

[134]

Chu CH, Tseng ML, Chen J, et al. Active dielectric metasurface based on phase-change medium. Laser Photon Rev 2016;10:986–94. CrossrefGoogle Scholar

[135]

Li T, Huang L, Liu J, Wang Y, Zentgraf T. Tunable wave plate based on active plasmonic metasurfaces. Opt Express 2017;24:4216–26. Google Scholar

[136]

Su X, Ouyang C, Xu N, et al. Active metasurface terahertz deflector with phase discontinuities. Opt Express 2015;23:27152–8. PubMedCrossrefGoogle Scholar

[137]

Zhu BO, Zhao J, Feng Y. Active impedance metasurface with full 360° reflection phase tuning. Sci Rep 2013;3:3059. PubMedCrossrefGoogle Scholar

[138]

Yoo M, Lim S. Active metasurface for controlling reflection and absorption properties. Appl Phys Express 2014;7:112204. CrossrefGoogle Scholar

[139]

Chen K, Feng Y, Monticone F, et al. A reconfigurable active Huygens’ metalens. Adv Mater 2017;29:1606422. CrossrefGoogle Scholar

[140]

Burokur SN, Daniel J, Ratajczak P, de Lustrac A. Low-profile frequency agile directive antenna based on an active metasurface. Micro Opt Technol Lett 2011;53:2291–5. CrossrefGoogle Scholar

[141]

Li W, Xia S, He B, et al. A reconfigurable polarization converter using active metasurface and its application in horn antenna. IEEE Trans Antennas Propag 2016;64:5281–90. CrossrefGoogle Scholar

[142]

Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science 2016;312:1780–2. Google Scholar

[143]

Alù A, Engheta N. Multifrequency optical invisibility cloak with layered plasmonic shells. Phys Rev Lett 2008;100:113901. PubMedCrossrefGoogle Scholar

[144]

Monticone F, Alù A. Do cloaked objects really scatter less? Phys Rev X 2013;3:041005. Google Scholar

[145]

Miller DAB. On perfect cloaking. Opt Express 2006;14:12457–66. PubMedCrossrefGoogle Scholar

[146]

Vasquez FG, Milton GW, Onofrei D. Active exterior cloaking for the 2D Laplace and Helmholtz equations. Phys Rev Lett 2009;103:073901. PubMedCrossrefGoogle Scholar

[147]

Zheng HH, Xiao JJ, Lai Y, Chan CT. Exterior optical cloaking and illusions by using active sources: a boundary element perspective. Phys Rev B 2010;81:195116. CrossrefGoogle Scholar

[148]

Sounas DL, Fleury R, Alù A. Unidirectional cloaking based on metasurfaces with balanced loss and gain. Phys Rev Appl 2015;4:014005. CrossrefGoogle Scholar

[149]

Wong AMH, Eleftheriades GV. A simple active Huygens source for studying waveform synthesis with Huygens metasurfaces and antenna arrays, in Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (AP-S), Vancouver, BC, Canada, 2015. Google Scholar

[150]

Wong AMH, Eleftheriades GV. Active Huygens’ metasurfaces for RF waveform synthesis in a cavity, in Proceedings of the 18th Mediterranean Electrotechnical Conference (MELECON), Lemesos, Cyprus, 2016. Google Scholar

[151]

Wong AMH, Eleftheriades GV. Superoscillations without sidebands: power efficient sub-diffraction imaging with propagating waves. Sci Rep 2015;5:8449. PubMedCrossrefGoogle Scholar

[152]

Ludwig A, Wong JPS, Epstein A, Wong AMH, Eleftheriades GV, Sarris CD. Focusing and steering for medical applications with magnetic near-field arrays and metasurfaces, in Proceedings of the 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 2015. Google Scholar

[153]

Li G, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces. Nat Rev Mater 2017;2:17010. CrossrefGoogle Scholar

[154]

Chen S, Fan F, Wang X, Wu P, Zhang H, Chang S. Terahertz isolator based on nonreciprocal magneto-metasurface. Opt Express 2015;23:1015–24. PubMedCrossrefGoogle Scholar

[155]

Alù A. Enhancing metasurfaces and metamaterials with time-modulation and nonlinear responses, in Proceedings of the 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), Chania, Greece, 2016. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.