[1]

Gabor D. A new microscopic principle. Nature 1948;161:777–8. CrossrefPubMedGoogle Scholar

[2]

Leith EN, Upatnieks J. Reconstructed wavefronts and communication theory. J Opt Soc Am 1962;52:1123. CrossrefGoogle Scholar

[3]

Brown BR, Lohmann AW. Complex spatial filtering with binary masks. Appl Opt 1966;5:967. CrossrefPubMedGoogle Scholar

[4]

Xu K, Snyman LW, Aharoni H. Si light-emitting device in integrated photonic Cmos ICS. Opt Mat 2017;69:274–82. CrossrefGoogle Scholar

[5]

Cowan JJ. Surface-plasma-wave holography in dielectric and photoresist layers. J Opt Soc Am 1974;64:563–3. Google Scholar

[6]

Gabor D. Holography 1948–1971. Science 1972;177:299. CrossrefGoogle Scholar

[7]

Tricoles G. Computer generated holograms – an historical review. Appl Opt 1987;26:4351–60. PubMedCrossrefGoogle Scholar

[8]

Hess O, Pendry JB, Maier SA, Oulton RF, Hamm JM, Tsakmakidis KL. Active nanoplasmonic metamaterials. Nat Mat 2012;11:573–84. CrossrefGoogle Scholar

[9]

Zheludev NI, Kivshar YS. From metamaterials to metadevices. Nat Mat 2012;11:917–24. CrossrefGoogle Scholar

[10]

Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mat 2014;13:139–50. CrossrefGoogle Scholar

[11]

Yu N, Genevet P, Kats MA, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011;334:333–7. CrossrefPubMedGoogle Scholar

[12]

Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science 2013;339:1232009. CrossrefPubMedGoogle Scholar

[13]

Meinzer N, Barnes WL, Hooper IR. Plasmonic meta-atoms and metasurfaces. Nat Photonics 2014;8:889–98. CrossrefGoogle Scholar

[14]

Zhou Z, Yin B, Michel J. On-chip light sources for silicon photonics. Light Sci Appl 2015;4:e358. CrossrefGoogle Scholar

[15]

Xu K, Ogudo KA, Polleux JL, et al. Light-emitting devices in si CMOS and RF bipolar integrated circuits. Leukos 2016;12:203–12. CrossrefGoogle Scholar

[16]

Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY, Capasso F. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 2016;352:1190–4. PubMedCrossrefGoogle Scholar

[17]

Huang L, Chen X, Mühlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett 2012;12:5750–5. CrossrefPubMedGoogle Scholar

[18]

Arbabi A, Arbabi E, Kamali SM, Horie Y, Han S, Faraon A. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat Commun 2016;7:13682. CrossrefPubMedGoogle Scholar

[19]

Jha PK, Ni X, Wu C, Wang Y, Zhang X. Metasurface-enabled remote quantum interference. Phys Rev Lett 2015;115:025501. PubMedCrossrefGoogle Scholar

[20]

Yin X, Ye Z, Rho J, Wang Y, Zhang X. Photonic spin hall effect at metasurfaces. Science 2013;339:1405–7. CrossrefPubMedGoogle Scholar

[21]

Li G, Kang M, Chen S, et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Lett 2013;13:4148–51. PubMedCrossrefGoogle Scholar

[22]

Shitrit N, Yulevich I, Maguid E, et al. Spin-optical metamaterial route to spin–controlled photonics. Science 2013;340:724–6. PubMedCrossrefGoogle Scholar

[23]

Smalley DE, Smithwick QY, Bove VM, Barabas J, Jolly S. Anisotropic leaky-mode modulator for holographic video displays. Nature 2013;498:313. CrossrefPubMedGoogle Scholar

[24]

Sun J, Timurdogan E, Yaacobi A, Hosseini ES, Watts MR. Large-scale nanophotonic phased array. Nat 2013;493:195–9. CrossrefGoogle Scholar

[25]

Genevet P, Capasso F. Holographic optical metasurfaces: a review of current progress. Rep Prog Phys 2015;78:024401. CrossrefPubMedGoogle Scholar

[26]

Larouche S, Tsai YJ, Tyler T, Jokerst NM, Smith DR. Infrared metamaterial phase holograms. Nat Mat 2012;11:450–4. CrossrefGoogle Scholar

[27]

Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 2015;10:308–12. PubMedCrossrefGoogle Scholar

[28]

Wang L, Kruk S, Tang H, et al. Grayscale transparent metasurface holograms. Optica 2016;3:1504–5. CrossrefGoogle Scholar

[29]

Huang K, Liu H, Garcia-Vidal FJ, et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat Commun 2015;6:7059. PubMedCrossrefGoogle Scholar

[30]

Ni X, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun 2013;4:2807. CrossrefGoogle Scholar

[31]

Wang Q, Zhang X, Xu Y, et al. Broadband metasurface holograms: toward complete phase and amplitude engineering. Sci Rep 2016;6:32867. CrossrefPubMedGoogle Scholar

[32]

Chong KE, Wang L, Staude I, et al. Efficient polarization-insensitive complex wavefront control using huygens’ metasurfaces based on dielectric resonant meta-atoms. ACS Photonics 2016;3:514–9. CrossrefGoogle Scholar

[33]

Wang B, Dong F, Li QT, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett 2016;16:5235–40. PubMedCrossrefGoogle Scholar

[34]

Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 2015;10:937–43. CrossrefPubMedGoogle Scholar

[35]

Huang L, Mühlenbernd H, Li X, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces. Adv Mat 2015;27:6444. CrossrefGoogle Scholar

[36]

Chen J, Li T, Wang S, Zhu S. Multiplexed holograms by surface plasmon propagation and polarized scattering. Nano Lett 2017;17:5051–5. CrossrefPubMedGoogle Scholar

[37]

Xiao S, Zhong F, Liu H, Zhu S, Li J. Flexible coherent control of plasmonic spin-Hall effect. Nat Commun 2015;6:8360. PubMedCrossrefGoogle Scholar

[38]

Ye W, Zeuner F, Li X, et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat Commun 2016;7:11930. CrossrefPubMedGoogle Scholar

[39]

Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography. Nat Commun 2016;7:12533. PubMedCrossrefGoogle Scholar

[40]

Li X, Ren H, Chen X, et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat Commun 2015;6:6984. CrossrefPubMedGoogle Scholar

[41]

Lee SY, Kim YH, Cho SM, et al. Holographic image generation with a thin-film resonance caused by chalcogenide phase-change material. Sci Rep 2017;7:41152. CrossrefPubMedGoogle Scholar

[42]

Holloway CL, Kuester EF, Gordon JA, O’Hara J, Booth J, Smith DR. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas and Propagation Magazine 2012;54:10–35. CrossrefGoogle Scholar

[43]

Minovich AE, Miroshnichenko AE, Bykov AY, Murzina TV, Neshev DN, Kivshar YS. Functional and nonlinear optical metasurfaces. Laser Photonics Rev 2015;9:195–213. CrossrefGoogle Scholar

[44]

Hsiao H, Chu CH, Tsai DP. Fundamentals and applications of metasurfaces. Small Methods 2017;1:1600064. CrossrefGoogle Scholar

[45]

Kats MA, Genevet P, Aoust G, et al. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy. Proc Natl Acad Sci USA 2012;109:12364–8. CrossrefGoogle Scholar

[46]

Liu L, Zhang X, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv Mat 2014;26:5031–6. CrossrefGoogle Scholar

[47]

Grady NK, Heyes JE, Chowdhury DR, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 2013;340:1304–7. PubMedCrossrefGoogle Scholar

[48]

Kuznetsov AI, Miroshnichenko AE, Brongersma ML, Kivshar YS, Luk’yanchuk B. Optically resonant dielectric nanostructures. Science 2016;354:aag2472. PubMedCrossrefGoogle Scholar

[49]

Yu YF, Zhu AY, Paniagua-Domínguez R, Fu YH, Luk’yanchuk B, Kuznetsov AI. High-transmission dielectric metasurface with 2 phase control at visible wavelengths. Laser Photonics Rev 2015;9:412–8. CrossrefGoogle Scholar

[50]

Lin D, Fan P, Hasman E, Brongersma ML. Dielectric gradient metasurface optical elements. Science 2014;345:298–302. CrossrefPubMedGoogle Scholar

[51]

Berry MV. Quantal phase-factors accompanying adiabatic changes. Proc Roy Soc London Ser A Math Phys Sci 1984;392:45–57. CrossrefGoogle Scholar

[52]

Pfeiffer C, Grbic A. Metamaterial huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett 2013;110:197401. PubMedCrossrefGoogle Scholar

[53]

Ogando K, Foley JJ, Lopez D. High-index dielectric Huygens metasurface. In: International Conference on Optical MEMS and Nanophotonics, 2015.

[54]

Kim M, Wong AMH, Eleftheriades GV. Optical huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients. Phys Rev X 2014;4:041042. Google Scholar

[55]

Chong KE, Staude I, James A, et al. Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett 2015;15:5369–74. PubMedCrossrefGoogle Scholar

[56]

Zhao W, Jiang H, Liu B, et al. Dielectric huygens’ metasurface for high-efficiency hologram operating in transmission mode. Sci Rep 2016;6:30613. PubMedCrossrefGoogle Scholar

[57]

Huang L, Chen X, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 2013;4:2808. CrossrefGoogle Scholar

[58]

Yaroslavsky LP. On the possibility of holographing by intensity-modulated radiations. Optika I Spektroskopiya 1984;57:741–3. Google Scholar

[59]

Hariharan P. Basics of holography. Cambridge University Press, Cambridge, UK, 2002, 161.

[60]

Valiant LG. Holographic algorithms. SIAM J Comput 2008;37:1565–94. CrossrefGoogle Scholar

[61]

Shimobaba T, Kakue T, Ito T. Review of fast algorithms and hardware implementations on computer holography. IEEE Trans Ind Informat 2016;12:1611–22. CrossrefGoogle Scholar

[62]

Zhang X, Jin J, Wang Y, et al. Metasurface-based broadband hologram with high tolerance to fabrication errors. Sci Rep 2016;6:19856. CrossrefPubMedGoogle Scholar

[63]

Devlin RC, Khorasaninejad M, Chen WT, Oh J, Capasso F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc Natl Acad Sci USA 2016;113:10473–8. CrossrefGoogle Scholar

[64]

Huang K, Dong Z, Mei S, et al. Silicon multi-meta-holograms for the broadband visible light. Laser Photonics Rev 2016;10:500–9. CrossrefGoogle Scholar

[65]

Li QT, Dong F, Wang B, et al. Polarization-independent and high-efficiency dielectric metasurfaces for visible light. Opt Exp 2016;24:16309–19. CrossrefGoogle Scholar

[66]

Butt H, Montelongo Y, Butler T, et al. Carbon nanotube based high resolution holograms. Adv Mat 2012;24:OP331. Google Scholar

[67]

Walther B, Helgert C, Rockstuhl C, et al. Spatial and spectral light shaping with metamaterials. Adv Mat 2012;24:6300–4. CrossrefGoogle Scholar

[68]

Montelongo Y, Tenorio-Pearl JO, Williams C, Zhang S, Milne WI, Wilkinson TD. Plasmonic nanoparticle scattering for color holograms. Proc Natl Acad Sci USA 2014;111:12679–83. CrossrefGoogle Scholar

[69]

Montelongo Y, Tenorio-Pearl JO, Milne WI, Wilkinson TD. Polarization switchable diffraction based on subwavelength plasmonic nanoantennas. Nano Lett 2014;14:294–8. CrossrefPubMedGoogle Scholar

[70]

Yue Z, Xue G, Liu J, Wang Y, Gu M. Nanometric holograms based on a topological insulator material. Nat Commun 2017;8:15354. CrossrefPubMedGoogle Scholar

[71]

Walther B, Helgert C, Rockstuhl C, Pertsch T. Diffractive optical elements based on plasmonic metamaterials. Appl Phys Lett 2011;98:191101. CrossrefGoogle Scholar

[72]

Geng J. Three-dimensional display technologies. Adv Opt Photonics 2013;5:456–535. CrossrefPubMedGoogle Scholar

[73]

Heanue JF, Bashaw MC, Esselink L. Volume holographic storage and retrieval of digital data. Science 1994;265:749–52. CrossrefPubMedGoogle Scholar

[74]

Dhar L, Curtis K, Tackitt M, et al. Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems. Opt Lett 1998;23:1710–2. PubMedCrossrefGoogle Scholar

[75]

Huang YW, Chen WT, Tsai WY, et al. Aluminum plasmonic multicolor meta–hologram. Nano Lett 2015;15:3122–7. PubMedCrossrefGoogle Scholar

[76]

Wan W, Gao J, Yang X. Full-color plasmonic metasurface holograms. ACS Nano 2016;10:10671–80. CrossrefPubMedGoogle Scholar

[77]

Li X, Chen L, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2016;2:e1601102. PubMedCrossrefGoogle Scholar

[78]

Zhao W, Liu B, Jiang H, Song J, Pei Y, Jiang Y. Full-color hologram using spatial multiplexing of dielectric metasurface. Opt Lett 2016;41:147–50. CrossrefPubMedGoogle Scholar

[79]

Wang S, Wu PC, Su VC, et al. Broadband achromatic optical metasurface devices. Nat Commun 2017;8:187. CrossrefPubMedGoogle Scholar

[80]

Aieta F, Kats MA, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 2015;347:1342–5. PubMedCrossrefGoogle Scholar

[81]

Chen WT, Yang KY, Wang CM, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 2014;14:225–30. CrossrefPubMedGoogle Scholar

[82]

Wen D, Yue F, Li G, et al. Helicity multiplexed broadband metasurface holograms. Nat Commun 2015;6:8241. CrossrefPubMedGoogle Scholar

[83]

Mueller JB, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 2017;118:113901. PubMedCrossrefGoogle Scholar

[84]

Fienup JR, Goodman JW. New ways to make computer-generated color holograms. J Opt Soc Am 1973;63:1325. Google Scholar

[85]

Bucklew J, Gallagher NC. Comprehensive error models and a comparative-study of some detour-phase holograms. Appl Opt 1979;18:2861–9. CrossrefGoogle Scholar

[86]

Khorasaninejad M, Ambrosio A, Kanhaiya P, Capasso F. Broadband and chiral binary dielectric meta-holograms. Sci Adv 2016;2:e1501258. CrossrefPubMedGoogle Scholar

[87]

Wei Q, Huang L, Li X, Liu J, Wang Y. Broadband multiplane holography based on plasmonic metasurface. Adv Opt Mat 2017;5:1700434. CrossrefGoogle Scholar

[88]

Chu DC, Fienup JR. Recent approaches to computer – generated holograms. Opt Eng 1974;13:189–95. Google Scholar

[89]

Ozaki M, Kato J, Kawata S. Surface-plasmon holography with white-light illumination. Science 2011;332:218–20. CrossrefPubMedGoogle Scholar

[90]

Chen YG, Yang FY, Liu J, Li ZY. Broadband focusing and demultiplexing of surface plasmon polaritons on metal surface by holographic groove patterns. Opt Exp 2014;22:14727–37. CrossrefGoogle Scholar

[91]

Xu Q, Zhang X, Xu Y, et al. Polarization-controlled surface plasmon holography. Laser Photonics Rev 2017;11: 16002121. Google Scholar

[92]

Chen YH, Gan L, Li J, Li ZY. Methodology of surface wave holography for wavefront shaping of light. In: Conference on Lasers and Electro-Optics, 2013. Google Scholar

[93]

Raether H. Surface-plasmons on smooth and rough surfaces and on gratings. Springer Tracts in Modern Physics 1988;111:1–133. Google Scholar

[94]

Epstein I, Tsur Y, Arie A. Surface–plasmon wavefront and spectral shaping by near-field holography. Laser Photonics Rev 2016;10:360–81. CrossrefGoogle Scholar

[95]

Ward AJ, Pendry JB. Refraction and geometry in Maxwell’s equations. J Mod Opt 1996;43:773–93. CrossrefGoogle Scholar

[96]

Genevet P, Lin J, Kats MA, Capasso F. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nat Commun 2012;3:1278. CrossrefPubMedGoogle Scholar

[97]

Li G, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces. Nat Rev Mat 2017;2:17010. CrossrefGoogle Scholar

[98]

Li G, Chen S, Pholchai N, et al. Continuous control of the nonlinearity phase for harmonic generations. Nat Mat 2015;14:607–12. CrossrefGoogle Scholar

[99]

Tymchenko M, Gomez-Diaz JS, Lee J, Nookala N, Belkin MA, Alù A. Advanced control of nonlinear beams with Pancharatnam-Berry metasurfaces. Phys Rev B 2016;94:214303. CrossrefGoogle Scholar

[100]

Xu M, Liang T, Shi M, Chen H. Graphene-like two-dimensional materials. Chem Rev 2013;113:3766–98. CrossrefPubMedGoogle Scholar

[101]

Malek SC, Ee H, Agarwal R. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett 2017;6:3641–5. Google Scholar

[102]

Li L, Cui TJ, Ji W, et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun 2017;8:197. PubMedCrossrefGoogle Scholar

[103]

Ye W, Guo Q, Xiang Y, Fan D, Zhang S. Phenomenological modeling of geometric metasurfaces. Opt Exp 2016;24:7120–32. CrossrefGoogle Scholar

[104]

Kobashi J, Yoshida H, Ozaki M. Planar optics with patterned chiral liquid crystals. Nat Photonics 2016;10:389. CrossrefGoogle Scholar

[105]

Verrier N, Atlan M. Absolute measurement of small-amplitude vibrations by time-averaged heterodyne holography with a dual local oscillator. Opt Lett 2013;38:739–41. CrossrefPubMedGoogle Scholar

[106]

Ahmed R, Yetisen AK, Yun SH, Butt H. Color-selective holographic retroreflector array for sensing applications. Light Sci Appl 2017;6:e16214. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.