[1]

Zouhdi S, Sihvola A, Arsalane M. Advances in electromagnetics of complex media and metamaterials. Boston, Kluwer Academic Publishers, 2002.

[2]

Holloway CL, Delyser RR, German RF, McKenna P, Kanda M. Comparison of electromagnetic absorber used in anechoic and semi-anechoic chambers for emissions and immunity testing of digital devices. IEEE Trans Electromagn Compat 1997;39:33–47. CrossrefGoogle Scholar

[3]

Eleftheriades GV, Balmain KG. Negative-refraction metamaterials: fundamental principles and applications. Hoboken, NJ, John Wiley & Sons, 2005.

[4]

Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 2000;84:4184. PubMedCrossrefGoogle Scholar

[5]

Holloway CL, Kuester EF, Baker-Jarvis J, Kabos P. A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix. IEEE Trans Antennas Propag 2003;51:2596–603. CrossrefGoogle Scholar

[6]

Sihvola A. Metamaterials in electromagnetics. Metamaterials 2007;1:2–11. CrossrefGoogle Scholar

[7]

Shamonina E, Solymar L. Metamaterials: how the subject started. Metamaterials 2007;1:12–8. CrossrefGoogle Scholar

[8]

Walia S, Shah CM, Gutruf P, et al. Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro-and nano-scales. Appl Phys Rev 2015;2:011303. CrossrefGoogle Scholar

[9]

Sakai O, Tachibana K. Plasmas as metamaterials: a review. Plasma Sources Sci Technol 2012;21:013001. CrossrefGoogle Scholar

[10]

Engheta N, Ziolkowski RW. Metamaterials: physics and engineering explorations. Hoboken, NJ, John Wiley & Sons, 2006.

[11]

Alici KB, Özbay E. Radiation properties of a split ring resonator and monopole composite. Phys Status Solidi B 2007;244:1192–6. CrossrefGoogle Scholar

[12]

Enoch S, Tayeb G, Sabouroux P, Guérin N, Vincent P. A metamaterial for directive emission. Phys Rev Lett 2002;89:213902. CrossrefPubMedGoogle Scholar

[13]

Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ. Perfect metamaterial absorber. Phys Rev Lett 2008;100:207402. CrossrefGoogle Scholar

[14]

Li W, Valentine J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett 2014;14:3510–4. PubMedCrossrefGoogle Scholar

[15]

Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M. High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 2010;96:251104. CrossrefGoogle Scholar

[16]

Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett 2000;85:3966. PubMedCrossrefGoogle Scholar

[17]

Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science 2005;308:534–7. CrossrefPubMedGoogle Scholar

[18]

Schurig D, Mock JJ, Justice BJ, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006;314:977–80. PubMedCrossrefGoogle Scholar

[19]

Alù A, Engheta N. Achieving transparency with plasmonic and metamaterial coatings. Phys Rev E 2005;72:016623. CrossrefGoogle Scholar

[20]

Cai W, Chettiar UK, Kildishev AV, Shalaev VM. Optical cloaking with metamaterials. Nat Photonics 2007;1:224–7. CrossrefGoogle Scholar

[21]

Modi AY, Balanis CA, Birtcher CR, Shaman HN. Novel design of ultrabroadband radar cross section reduction surfaces using artificial magnetic conductors. IEEE Trans Antennas Propag 2017;65:5406–17. CrossrefGoogle Scholar

[22]

Hawkes AM, Katko AR, Cummer SA. A microwave metamaterial with integrated power harvesting functionality. Appl Phys Lett 2013;103:163901. CrossrefGoogle Scholar

[23]

Ramahi OM, Almoneef TS, AlShareef M, Boybay MS. Metamaterial particles for electromagnetic energy harvesting. Appl Phys Lett 2012;101:173903. CrossrefGoogle Scholar

[24]

Chen Z, Guo B, Yang Y, Cheng C. Metamaterials-based enhanced energy harvesting: a review. Phys B Condens Matter 2014;438:1–8. CrossrefGoogle Scholar

[25]

Glybovski SB, Tretyakov SA, Belov PA, Kivshar YS, Simovski CR. Metasurfaces: from microwaves to visible. Phys Rep 2016;634:1–72. CrossrefGoogle Scholar

[26]

Holloway CL, Kuester EF, Gordon JA, O’Hara J, Booth J, Smith DR. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag Mag 2012;54:10–35. CrossrefGoogle Scholar

[27]

Chen H-T, Taylor AJ, Yu N. A review of metasurfaces: physics and applications. Rep Prog Phys 2016;79:076401. CrossrefPubMedGoogle Scholar

[28]

Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science 2013;339:1232009. CrossrefPubMedGoogle Scholar

[29]

Minovich AE, Miroshnichenko AE, Bykov AY, Murzina TV, Neshev DN, Kivshar YS. Functional and nonlinear optical metasurfaces. Laser Photonics Rev 2015;9:195–213. CrossrefGoogle Scholar

[30]

Quarfoth R, Sievenpiper D. Artificial tensor impedance surface waveguides. IEEE Trans Antennas Propag 2013;61:3597–606. CrossrefGoogle Scholar

[31]

Achouri K, Lavigne G, Salem MA, Caloz C. Metasurface spatial processor for electromagnetic remote control. IEEE Trans Antennas Propag 2016;64:1759–67. CrossrefGoogle Scholar

[32]

Wu Z, Ra’di Y, Grbic A. A tunable polarization rotator based on metasurfaces. Paris, IEEE, 2017, 728–30.

[33]

Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett 2013;110:197401. PubMedCrossrefGoogle Scholar

[34]

Orazbayev B, Mohammadi Estakhri N, Alù A, Beruete Díaz M. Metasurface-based ultrathin carpet cloaks for millimeter waves. Communication 2017;5:1600606. Google Scholar

[35]

Iwaszczuk K, Strikwerda AC, Fan K, Zhang X, Averitt RD, Jepsen PU. Flexible metamaterial absorbers for stealth applications at terahertz frequencies. Opt Express 2012;20:635–43. PubMedCrossrefGoogle Scholar

[36]

Eleftheriades GV. Protecting the weak from the strong. Nature 2014;505:490–2. CrossrefPubMedGoogle Scholar

[37]

Fong BH, Colburn JS, Ottusch JJ, Visher JL, Sievenpiper DF. Scalar and tensor holographic artificial impedance surfaces. IEEE Trans Antennas Propag 2010;58:3212–21. CrossrefGoogle Scholar

[38]

Li A, Kim S, Luo Y, Li Y, Long J, Sievenpiper DF. High-power transistor-based tunable and switchable metasurface absorber. IEEE Trans Microwave Theory Tech 2017;65:2810–8. CrossrefGoogle Scholar

[39]

Kim S, Wakatsuchi H, Rushton JJ, Sievenpiper DF. Switchable nonlinear metasurfaces for absorbing high power surface waves. Appl Phys Lett 2016;108:041903. CrossrefGoogle Scholar

[40]

Sievenpiper D, Schaffner J. Beam steering microwave reflector based on electrically tunable impedance surface. Electron Lett 2002;38:1237–8. CrossrefGoogle Scholar

[41]

Mittra R, Chan CH, Cwik T. Techniques for analyzing frequency selective surfaces-a review. Proc IEEE 1988;76:1593–15. CrossrefGoogle Scholar

[42]

Kuester EF, Mohamed MA, M. Piket-May, Holloway CL. Averaged transition conditions for electromagnetic fields at a metafilm. IEEE Trans Antennas Propag 2003;51:2641–51. CrossrefGoogle Scholar

[43]

Sievenpiper D, Zhang L, Broas RFJ, Alexopolous NG, Yablonovitch E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans Microwave Theory Tech 1999;47:2059–74. CrossrefGoogle Scholar

[44]

Ramo S, Whinnery JR, Van Duzer T. Fields and waves in communication electronics. New York, John Wiley & Sons, 1965. Google Scholar

[45]

Collin RE. Field theory of guided waves. 2nd ed, New York, IEEE, 1991. Google Scholar

[46]

Kildal PS. Artificially soft and hard surfaces in electromagnetics. IEEE Trans Antennas Propag 1990;38:1537–44. CrossrefGoogle Scholar

[47]

Clavijo S, Diaz RE, McKinzie WE. Design methodology for Sievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas. IEEE Trans Antennas Propag 2003;51:2678–90. CrossrefGoogle Scholar

[48]

Feresidis AP, Goussetis G, Wang S, Vardaxoglou JC. Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas. IEEE Trans Antennas Propag 2005;53:209–15. CrossrefGoogle Scholar

[49]

Sievenpiper D, Hsu HP, Schaffner J, Tangonan G, Garcia R, Ontiveros S. Low-profile, four-sector diversity antenna on high-impedance ground plane. Electron Lett 2000;36:1343–5. CrossrefGoogle Scholar

[50]

Li A, Forati E, Sievenpiper D. Study of the electric field enhancement of high-impedance surfaces, in Antennas and Propagation (APSURSI), 2016 IEEE International Symposium on, Fajardo, Puerto Rico, IEEE, 2016, 105–6. Google Scholar

[51]

Tretyakov SA, Maslovski SI. Thin absorbing structure for all incidence angles based on the use of a high-impedance surface. Microwave Opt Technol Lett 2003;38:175–8. CrossrefGoogle Scholar

[52]

Sievenpiper DF. Nonlinear grounded metasurfaces for suppression of high-power pulsed RF currents. IEEE Antennas Wireless Propag Lett 2011;10:1516–9. CrossrefGoogle Scholar

[53]

Li A, Forati E, Sievenpiper D. Study of the electric field enhancement in resonant metasurfaces. J Opt 2017;19:125104. CrossrefGoogle Scholar

[54]

Wang C, Li E, Sievenpiper DF. Surface-wave coupling and antenna properties in two dimensions. IEEE Trans Antennas Propag 2017;65:5052–60. CrossrefGoogle Scholar

[55]

Vallecchi A, De Luis JR, Capolino F, De Flaviis F. Low profile fully planar folded dipole antenna on a high impedance surface. IEEE Trans Antennas Propag 2012;60:51–62. CrossrefGoogle Scholar

[56]

Kern DJ, Werner DH. A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers. Microwave Opt Technol Lett 2003;38:61–4. CrossrefGoogle Scholar

[57]

Yang F, Rahmat-Samii Y. Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications. IEEE Trans Antennas Propag 2003;51:2936–46. CrossrefGoogle Scholar

[58]

Yang F-R, Ma K-P, Qian Y, Itoh T. A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure. IEEE Trans Microwave Theory Tech 1999;47:2092–8. CrossrefGoogle Scholar

[59]

Rozanov KN. Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans Antennas Propag 2000;48:1230–4. CrossrefGoogle Scholar

[60]

Hashemi SM, Tretyakov SA, Soleimani M, Simovski CR. Dual-polarized angularly stable high-impedance surface. IEEE Trans Antennas Propag 2013;61:4101–8. CrossrefGoogle Scholar

[61]

Simovski CR, de Maagt P, Melchakova IV. High-impedance surfaces having stable resonance with respect to polarization and incidence angle. IEEE Trans Antennas Propag 2005;53:908–14. CrossrefGoogle Scholar

[62]

Kim S, Li A, Sievenpiper DF. Reconfigurable impedance ground plane for broadband antenna systems. San Diego, IEEE, 2017, 1503–4. Google Scholar

[63]

Li A, Luo Z, Wakatsuchi H, Kim S, Sievenpiper DF. Nonlinear, active, and tunable metasurfaces for advanced electromagnetics applications. IEEE Access 2017;5:27439–52. CrossrefGoogle Scholar

[64]

Sievenpiper DF, Schaffner JH, Song HJ, Loo RY, Tangonan G. Two-dimensional beam steering using an electrically tunable impedance surface. IEEE Trans Antennas Propag 2003;51:2713–22. CrossrefGoogle Scholar

[65]

Radwan A, Verri V, D’Amico M, Gentili GG. Beam reconfigurable antenna for the THz band based on a graphene high impedance surface. Phys E Low-dimensional Syst Nanostructures 2017;85:316–23. CrossrefGoogle Scholar

[66]

Luo Z, Chen X, Long J, Quarfoth R, Sievenpiper D. Nonlinear power-dependent impedance surface. IEEE Trans Antennas Propag 2015;63:1736–45. CrossrefGoogle Scholar

[67]

Tian J, Nagarkoti DS, Rajab KZ, Hao Y. High-impedance surface loaded with graphene non-foster circuits for low-profile antennas. IEEE Antennas Wireless Propag Lett 2017;16:2655–8. CrossrefGoogle Scholar

[68]

Long J, Sievenpiper DF. Low-profile and low-dispersion artificial impedance surface in the UHF band based on non-foster circuit loading. IEEE Trans Antennas Propag 2016;64:3003–10. CrossrefGoogle Scholar

[69]

Sleasman T, Imani MF, Gollub JN, Smith DR. Microwave imaging using a disordered cavity with a dynamically tunable impedance surface. Phys Rev Appl 2016;6:054019. CrossrefGoogle Scholar

[70]

Li A, Forati E, Kim S, Lee J, Li Y, Sievenpiper D. Periodic structures for scalable high-power microwave transmitters. San Diego, IEEE, 2017, 867–8. Google Scholar

[71]

Ruck GT. Radar cross section handbook. New York, Plenum Publishing Corporation, 1970.

[72]

Knott EF. Radar cross section measurements. New York, Van Nostrand Reinhold, 1993. Google Scholar

[73]

Cheng Y, Yang H, Cheng Z, Xiao B. A planar polarization-insensitive metamaterial absorber. Photonics Nanostructures Fundam Appl 2011;9:8–14. CrossrefGoogle Scholar

[74]

Zhu B, Wang Z, Huang C, Feng Y, Zhao J, Jiang T. Polarization insensitive metamaterial absorber with wide incident angle. Prog Electromagn Res 2010;101:231–9. CrossrefGoogle Scholar

[75]

Dallenbach W, Kleinsteuber W. Reflection and absorption of decimeter-waves by plane dielectric layers. Hochfreq. U Elektroak 1938;51:152–6. Google Scholar

[76]

Salisbury WW. Absorbent body for electromagnetic waves. U.S. Patent 2599944, 1952.

[77]

Ra’Di Y, Simovski CR, Tretyakov SA. Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys Rev Applied 2015;3:037001. CrossrefGoogle Scholar

[78]

Engheta N. Thin absorbing screens using metamaterial surfaces. San Antonio, IEEE, 2002, 392–5. Google Scholar

[79]

Luukkonen O, Costa F, Simovski CR, Monorchio A, Tretyakov SA. A thin electromagnetic absorber for wide incidence angles and both polarizations. IEEE Trans Antennas Propag 2009;57: 3119–25. CrossrefGoogle Scholar

[80]

Simms S, Fusco V. Thin radar absorber using artificial magnetic ground plane. Electron Lett 2005;41:1311–3. CrossrefGoogle Scholar

[81]

Chen L, Qu S-W, Chen B-J, Bai X, Ng K-B, Chan CH. Terahertz metasurfaces for absorber or reflectarray applications. IEEE Trans Antennas Propag 2017;65:234–41. CrossrefGoogle Scholar

[82]

Liu N, Mesch M, Weiss T, Hentschel M, Giessen H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 2010;10:2342–8. PubMedCrossrefGoogle Scholar

[83]

Azad AK, Kort-Kamp WJM, Sykora M, et al. Metasurface broadband solar absorber. Sci Rep 2016;6:20347. CrossrefPubMedGoogle Scholar

[84]

Liu X, Fan K, Shadrivov IV, Padilla WJ. Experimental realization of a terahertz all-dielectric metasurface absorber. Opt Express 2017;25:191–201. CrossrefPubMedGoogle Scholar

[85]

Kim S, Sievenpiper DF. Theoretical limitations for TM surface wave attenuation by lossy coatings on conducting surfaces. IEEE Trans Antennas Propag 2014;62:475–80. CrossrefGoogle Scholar

[86]

Zhu B, Feng Y, Zhao J, Huang C, Jiang T. Switchable metamaterial reflector/absorber for different polarized electromagnetic waves. Appl Phys Lett 2010;97:051906. CrossrefGoogle Scholar

[87]

Shrekenhamer D, Chen W-C, Padilla WJ. Liquid crystal tunable metamaterial absorber. Phys Rev Lett 2013;110:177403. PubMedCrossrefGoogle Scholar

[88]

Yao Y, Shankar R, Kats MA, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett 2014;14:6526–32. CrossrefPubMedGoogle Scholar

[89]

Wakatsuchi H, Kim S, Rushton JJ, Sievenpiper DF. Waveform-dependent absorbing metasurfaces. Phys Rev Lett 2013;111:245501. PubMedCrossrefGoogle Scholar

[90]

Luo Z, Long J, Chen X, Sievenpiper D. Electrically tunable metasurface absorber based on dissipating behavior of embedded varactors. Appl Phys Lett 2016;109:071107. CrossrefGoogle Scholar

[91]

Kelley PL. Self-focusing of optical beams. Phys Rev Lett 1965;15:1005. CrossrefGoogle Scholar

[92]

Sievenpiper D, Kim S, Long J, Lee J. Advances in nonlinear, active, and anisotropic artificial impedance surfaces. London, IEEE, 2016, 799–802. Google Scholar

[93]

Shaltout A, Liu J, Shalaev VM, Kildishev AV. Optically active metasurface with non-chiral plasmonic nanoantennas. Nano Lett 2014;14:4426–31. PubMedCrossrefGoogle Scholar

[94]

Fallahi A, Perruisseau-Carrier J. Design of tunable biperiodic graphene metasurfaces. Phys Rev B 2012;86:195408. CrossrefGoogle Scholar

[95]

Forati E, Dill TJ, Tao AR, Sievenpiper D. Photoemission-based microelectronic devices. Nat Commun 2016;7:13399. CrossrefPubMedGoogle Scholar

[96]

Yatooshi T, Ishikawa A, Tsuruta K. Terahertz wavefront control by tunable metasurface made of graphene ribbons. Appl Phys Lett 2015;107:053105. CrossrefGoogle Scholar

[97]

Chang Z, You B, Wu L-S, Tang M, Zhang Y-P, Mao J-F. A reconfigurable graphene reflectarray for generation of vortex THz waves. IEEE Antennas Wireless Propag Lett 2016;15:1537–40. CrossrefGoogle Scholar

[98]

Mias C, Yap JH. A varactor-tunable high impedance surface with a resistive-lumped-element biasing grid. IEEE Trans Antennas Propag 2007;55:1955–62. CrossrefGoogle Scholar

[99]

Costa F, Monorchio A, Talarico S, Valeri FM. An active high-impedance surface for low-profile tunable and steerable antennas. IEEE Antennas Wireless Propag Lett 2008;7:676–80. CrossrefGoogle Scholar

[100]

Mavridou M, Konstantinidis K, Feresidis AP. Continuously tunable mm-wave high impedance surface. IEEE Antennas Wireless Propag Lett 2016;15:1390–3. CrossrefGoogle Scholar

[101]

Huang Y, Wu L-S, Tang M, Mao J. Design of a beam reconfigurable THz antenna with graphene-based switchable high-impedance surface. IEEE Trans Nanotechnol 2012;11:836–42. CrossrefGoogle Scholar

[102]

Gregoire DJ, Kabakian AV. Surface-wave waveguides. IEEE Antennas Wireless Propag Lett 2011;10:1512–5. CrossrefGoogle Scholar

[103]

Bisharat DJ, Sievenpiper DF. Guiding waves along an infinitesimal line between impedance surfaces. Phys Rev Lett 2017;119:106802. PubMedCrossrefGoogle Scholar

[104]

Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater 2012;11:426–31. CrossrefPubMedGoogle Scholar

[105]

Hou H, Long J, Wang J, Sievenpiper DF. Reduced electromagnetic edge scattering using inhomogeneous anisotropic impedance surfaces. IEEE Trans Antennas Propag 2017;65:1193–201. CrossrefGoogle Scholar

[106]

Achouri K, Salem MA, Caloz C. General metasurface synthesis based on susceptibility tensors. IEEE Trans Antennas Propag 2015;63:2977–91. CrossrefGoogle Scholar

[107]

Lee J, Sievenpiper DF. Patterning technique for generating arbitrary anisotropic impedance surfaces. IEEE Trans Antennas Propag 2016;64:4725–32. CrossrefGoogle Scholar

[108]

Epstein A, Wong JPS, Eleftheriades GV. Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures. Nat Commun 2016;7:10360. CrossrefPubMedGoogle Scholar

[109]

Kim M, Wong AMH, Eleftheriades GV. Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients. Phys Rev X 2014;4:041042. Google Scholar

[110]

Epstein A, Eleftheriades GV. Arbitrary power-conserving field transformations with passive lossless omega-type bianisotropic metasurfaces. IEEE Trans Antennas Propag 2016;64:3880–95. CrossrefGoogle Scholar

[111]

Epstein A, Eleftheriades GV. Reflectionless wide-angle beam splitter based on omega-type bianisotropic metasurface. In: Antennas and Propagation (APSURSI), 2016 IEEE International Symposium on, Fajardo, Puerto Rico, IEEE, 2016, 97–8. Google Scholar

[112]

Caloz C, Itoh T. Electromagnetic metamaterials: transmission line theory and microwave applications. Hoboken, NJ, John Wiley & Sons, 2005. Google Scholar

[113]

Caloz C, Itoh T, Rennings A. CRLH metamaterial leaky-wave and resonant antennas. IEEE Antennas Propag Mag 2008;50:25–39. CrossrefGoogle Scholar

[114]

Sievenpiper DF. Forward and backward leaky wave radiation with large effective aperture from an electronically tunable textured surface. IEEE Trans Antennas Propag 2005;53:236–47. CrossrefGoogle Scholar

[115]

Esquius-Morote M, Gómez-Dı JS, Perruisseau-Carrier J. Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. IEEE Trans Terahertz Sci Technol 2014;4:116–22. CrossrefGoogle Scholar

[116]

Wang X-C, Zhao W-S, Hu J, Yin W-Y. Reconfigurable terahertz leaky-wave antenna using graphene-based high-impedance surface. IEEE Trans Nanotechnol 2015;14:62–9. CrossrefGoogle Scholar

[117]

Hariharan P. Optical holography: principles, techniques and applications. Cambridge, Cambridge University Press, 1996.

[118]

Li YB, Cai BG, Cheng Q, Cui TJ. Isotropic holographic metasurfaces for dual-functional radiations without mutual interferences. Adv Functional Mater 2016;26:29–35. CrossrefGoogle Scholar

[119]

Maci S, Minatti G, Casaletti M, Bosiljevac M. Metasurfing: addressing waves on impenetrable metasurfaces. IEEE Antennas Wireless Propag Lett 2011;10:1499–502. CrossrefGoogle Scholar

[120]

Minatti G, Maci S, De Vita P, Freni A, Sabbadini M. A circularly-polarized isoflux antenna based on anisotropic metasurface. IEEE Trans Antennas Propag 2012;60:4998–5009. CrossrefGoogle Scholar

[121]

Minatti G, Caminita F, Martini E, Sabbadini M, Maci S. Synthesis of modulated-metasurface antennas with amplitude, phase, and polarization control. IEEE Trans Antennas Propag 2016;64:3907–19. CrossrefGoogle Scholar

[122]

Patel AM, Grbic A. A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface. IEEE Trans Antennas Propag 2011;59:2087–96. CrossrefGoogle Scholar

[123]

Li M, Xiao S-Q, Sievenpiper DF. Polarization-insensitive holographic surfaces with broadside radiation. IEEE Trans Antennas Propag 2016;64:5272–80. CrossrefGoogle Scholar

[124]

Chen H-T, Padilla WJ, Cich MJ, Azad AK, Averitt RD, Taylor AJ. A metamaterial solid-state terahertz phase modulator. Nat Photonics 2009;3:148–51. CrossrefGoogle Scholar

[125]

Miao Z, Wu Q, Li X, et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys Rev X 2015;5:041027. Google Scholar

[126]

Procházka P, Mareček D, Lišková Z, Čechal J, Šikola T. X-ray induced electrostatic graphene doping via defect charging in gate dielectric. Sci Rep 2017;7:563. CrossrefPubMedGoogle Scholar

[127]

Yao Y, Wu Q, Li X, et al. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett 2013;13:1257–64. PubMedCrossrefGoogle Scholar

[128]

Lee SH, Choi M, Kim TT, et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat Mater 2012;11:936. CrossrefPubMedGoogle Scholar

[129]

Yu N, Choi M, Kim TT, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011;334:333–7. CrossrefPubMedGoogle Scholar

[130]

Yu N, Aieta F, Genevet P, Kats MA, Gaburro Z, Capasso F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett 2012;12:6328–33. PubMedCrossrefGoogle Scholar

[131]

Genevet P, Yu N, Aieta F, et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl Phys Lett 2012;100:013101. CrossrefGoogle Scholar

[132]

Khoo EH, Li EP, Crozier KB. Plasmonic wave plate based on subwavelength nanoslits. Optics Lett 2011;36: 2498–500. CrossrefGoogle Scholar

[133]

Pors A, Nielsen MG, Della Valle G, Willatzen M, Albrektsen O, Bozhevolnyi SI. Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles. Optics Lett 2011;36:1626–8. CrossrefGoogle Scholar

[134]

Drezet A, Genet C, Ebbesen TW. Miniature plasmonic wave plates. Phys Rev Lett 2008;101:043902. CrossrefPubMedGoogle Scholar

[135]

Bai B, Svirko Y, Turunen J, Vallius T. Optical activity in planar chiral metamaterials: theoretical study. Phys Rev A 2007;76:023811. CrossrefGoogle Scholar

[136]

Drezet A, Genet C, Laluet J-Y, Ebbesen TW. Optical chirality without optical activity: how surface plasmons give a twist to light. Optics Express 2008;16:12559–70. CrossrefPubMedGoogle Scholar

[137]

Huang W-X, Zhang Y, Tang X-m, et al. Optical properties of a planar metamaterial with chiral symmetry breaking. Optics Lett 2011;36:3359–61. CrossrefGoogle Scholar

[138]

Pfeiffer C, Grbic A. Cascaded metasurfaces for complete phase and polarization control. Appl Phys Lett 2013;102:231116. CrossrefGoogle Scholar

[139]

Pfeiffer C, Grbic A. Millimeter-wave transmitarrays for wavefront and polarization control. IEEE Trans Microwave Theory Tech 2013;61:4407–17. CrossrefGoogle Scholar

[140]

Fleury R, Monticone F, Alù A. Invisibility and cloaking: origins, present, and future perspectives. Phys Rev Appl 2015;4:037001. CrossrefGoogle Scholar

[141]

Chen P-Y, Alu A. Mantle cloaking using thin patterned metasurfaces. Phys Rev B 2011;84:205110. CrossrefGoogle Scholar

[142]

Chen P-Y, Soric J, Padooru YR, Bernety HM, Yakovlev AB, Alù A. Nanostructured graphene metasurface for tunable terahertz cloaking. New J Phys 2013;15:123029. CrossrefGoogle Scholar

[143]

Liu S, Xu H-X, Zhang HC, Cui TJ. Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface. Opt Express 2014;22:13403–17. PubMedCrossrefGoogle Scholar

[144]

Orazbayev B, Estakhri NM, Beruete M, Alù A. Terahertz carpet cloak based on a ring resonator metasurface. Phys Rev B 2015;91:195444. CrossrefGoogle Scholar

[145]

Chen P-Y, Argyropoulos C, Alù A. Broadening the cloaking bandwidth with non-Foster metasurfaces. Phys Rev Lett 2013;111:233001. CrossrefPubMedGoogle Scholar

[146]

Sounas DL, Fleury R, Alù A. Unidirectional cloaking based on metasurfaces with balanced loss and gain. Phys Rev Appl 2015;4:014005. CrossrefGoogle Scholar

[147]

Caloz C, Lai A, Itoh T. Wave interactions in a left-handed mushroom structure. Monterey, IEEE, 2004, 1403–6. Google Scholar

[148]

Caloz C, Itoh T. Positive/negative refractive index anisotropic 2-D metamaterials. IEEE Microw Wirel Comp Lett 2003;13:547–9. CrossrefGoogle Scholar

[149]

Caloz C, Itoh T. Novel microwave devices and structures based on the transmission line approach of meta-materials. Philadelphia, IEEE, 2003, 1:195–8. Google Scholar

[150]

Morgan SP. General solution of the Luneberg lens problem. J Appl Phys 1958;29:1358–68. CrossrefGoogle Scholar

[151]

Bosiljevac M, Casaletti M, Caminita F, Sipus Z, Maci S. Non-uniform metasurface Luneburg lens antenna design. IEEE Trans Antennas Propag 2012;60:4065–73. CrossrefGoogle Scholar

[152]

Khorasaninejad M, Aieta F, Kanhaiya P, et al. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett 2015;15:5358–62. PubMedCrossrefGoogle Scholar

[153]

Aieta F, Genevet P, Kats MA, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 2012;12:4932–6. PubMedCrossrefGoogle Scholar

[154]

Ni X, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun 2013;4:2807. CrossrefGoogle Scholar

[155]

Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 2015;10:308–12. PubMedCrossrefGoogle Scholar

[156]

Ye W, Zeuner F, Li X, et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat Commun 2016;7:11930. CrossrefPubMedGoogle Scholar

[157]

Mueller JPB, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 2017;118:113901. PubMedCrossrefGoogle Scholar

[158]

Hunt J, Driscoll T, Mrozack A, et al. Metamaterial apertures for computational imaging. Science 2013;339:310–3. PubMedCrossrefGoogle Scholar

[159]

Watts CM, Shrekenhamer D, Montoya J, et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nat Photonics 2014;8:605–9. CrossrefGoogle Scholar

[160]

Sleasman T, Boyarsky M, Imani MF, Fromenteze T, Gollub JN, Smith DR. Single-frequency microwave imaging with dynamic metasurface apertures. JOSA B 2017;34: 1713–26. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.