[1]

Smith DR, Pendry JB, Wiltshire MCK. Metamaterials and negative refractive index. Science 2004;305:788–92. CrossrefPubMedGoogle Scholar

[2]

Enoch S, Tayeb G, Sabouroux P, Guérin N, Vincent P. A metamaterial for directive emission. Phys Rev Lett 2002;89:213902. CrossrefPubMedGoogle Scholar

[3]

Smith DR, Vier DC, Koschny T, Soukoulis CM. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 2005;71:036617. CrossrefGoogle Scholar

[4]

Smith DR, Mock JJ, Starr AF, Schurig D. Gradient index metamaterials. Phys Rev E 2005;71:036609. CrossrefGoogle Scholar

[5]

Li J, Chan CT. Double-negative acoustic metamaterial. Phys Rev E 2004;70:055602. CrossrefGoogle Scholar

[6]

Fang N, Xi D, Xu J, et al. Ultrasonic metamaterials with negative modulus. Nat Mater 2006;5:452–6. CrossrefPubMedGoogle Scholar

[7]

Ding Y, Liu Z, Qiu C, Shi J. Metamaterial with simultaneously negative bulk modulus and mass density. Phys Rev Lett 2007;99:093904. PubMedCrossrefGoogle Scholar

[8]

Liu Z, Zhang X, Mao Y, et al. Locally resonant sonic materials. Science 2000;289:1734–6. CrossrefPubMedGoogle Scholar

[9]

Cummer SA, Christensen J, Alu A. Controlling sound with acoustic metamaterials. Nat Rev Mater 2016;1. Article no: 16001. Google Scholar

[10]

Ma GC, Sheng P. Acoustic metamaterials: from local resonances to broad horizons. Sci Adv 2016;2:e1501595. CrossrefPubMedGoogle Scholar

[11]

Christensen J, García de Abajo F. Negative refraction and backward waves in layered acoustic metamaterials. Phys Rev B 2012;86. Article no: 024301. Google Scholar

[12]

Liu F, Huang X, Chan CT. Dirac cones at $\overrightarrow{\text{k}}=0$ in acoustic crystals and zero refractive index acoustic materials. Appl Phys Lett 2012;100:071911. CrossrefGoogle Scholar

[13]

Jing Y, Xu J, Fang NX. Numerical study of a near-zero-index acoustic metamaterial. Phys Lett A 2012;376:2834–7. CrossrefGoogle Scholar

[14]

Li Y, Liang B, Gu ZM, Zou XY, Cheng JC. Unidirectional acoustic transmission through a prism with near-zero refractive index. Appl Phys Lett 2013;103:053505. CrossrefGoogle Scholar

[15]

Daniel T, José SD. Anisotropic mass density by two-dimensional acoustic metamaterials. New J Phys 2008;10:023004. CrossrefGoogle Scholar

[16]

Torrent D, Sánchez-Dehesa J. Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves. Phys Rev Lett 2009;103:064301. CrossrefPubMedGoogle Scholar

[17]

Norris AN. Acoustic metafluids. J Acoust Soc Am 2009;125:839–49. PubMedCrossrefGoogle Scholar

[18]

Gu ZM, Liang B, Zou X, et al. One-way acoustic mirror based on anisotropic zero-index media. Appl Phys Lett 2015;107:213503. CrossrefGoogle Scholar

[19]

Gu ZM, Jiang X, Liang B, et al. Experimental realization of broadband acoustic omnidirectional absorber by homogeneous anisotropic metamaterials. J Appl Phys 2015;117:074502. CrossrefGoogle Scholar

[20]

Ma GC, Fu C, Wang G, et al. Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials. Nat Commun 2016;7:13536. CrossrefPubMedGoogle Scholar

[21]

Zhang S, Yin L, Fang N. Focusing ultrasound with an acoustic metamaterial network. Phys Rev Lett 2009;102:194301. CrossrefPubMedGoogle Scholar

[22]

Li JS, Fok L, Yin XB, Bartal G, Zhang X. Experimental demonstration of an acoustic magnifying hyperlens. Nature Mater 2009;8:931–4. CrossrefGoogle Scholar

[23]

Li JS, Pendry JB. Hiding under the carpet: a new strategy for cloaking. Phys Rev Lett 2008;101:203901. CrossrefPubMedGoogle Scholar

[24]

Chen H, Chan CT. Acoustic cloaking and transformation acoustics. J Phys D Appl Phys 2010;43:113001. CrossrefGoogle Scholar

[25]

Zhu XF, Liang B, Kan WW, Zou XY, Cheng JC. Acoustic cloaking by a superlens with single-negative materials. Phys Rev Lett 2011;106:014301. CrossrefPubMedGoogle Scholar

[26]

Kan W, García-Chocano VM, Cervera F, Liang B, Zou X. Broadband acoustic cloaking within an arbitrary hard cavity. Phys Rev Appl 2015;3:064019. CrossrefGoogle Scholar

[27]

Kan W, Liang B, Zhu X, et al. Acoustic illusion near boundaries of arbitrary curved geometry. Sci Rep 2013;3:1427. CrossrefPubMedGoogle Scholar

[28]

Kan W, Liang B, Li R, et al. Three-dimensional broadband acoustic illusion cloak for sound-hard boundaries of curved geometry. Sci Rep 2016;6:36936. PubMedCrossrefGoogle Scholar

[29]

Yu N, Genevet P, Kats MA, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011;334:333–7. CrossrefPubMedGoogle Scholar

[30]

Holloway CL, Kuester EF, Gordon JA, O’Hara J, Booth J, Smith DR. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antenn Propag 2012;M54:10–35. Google Scholar

[31]

Pors A, Nielsen MG, Eriksen RL, Bozhevolnyi SI. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett 2013;13:829–34. CrossrefPubMedGoogle Scholar

[32]

Huang LL, Chen X, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface. Nature Commun.2013;4:2808. CrossrefGoogle Scholar

[33]

Huang LL, Chen X, Bai B, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light-Sci Appl 2013;2:e70. CrossrefGoogle Scholar

[34]

Li Y, Liang B, Gu ZM, Zou XY, Cheng J.C. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Sci Rep 2013;3:2546. CrossrefPubMedGoogle Scholar

[35]

Liang Z, Li J. Extreme acoustic metamaterial by coiling up space. Phys Rev Lett 2012;108:114301. CrossrefPubMedGoogle Scholar

[36]

Liang Z, Feng T, Lok S, et al. Space-coiling metamaterials with double negativity and conical dispersion. Sci Rep 2013;3:1614. PubMedCrossrefGoogle Scholar

[37]

Li Y, Jiang X, Li R, et al. Experimental realization of full control of reflected waves with subwavelength acoustic metasurfaces. Phys Rev Appl 2014;2:064002. CrossrefGoogle Scholar

[38]

Zhao JJ, Li BW, Chen ZN, Qiu CW. Manipulating acoustic wavefront by inhomogeneous impedance and steerable extraordinary reflection. Sci Rep 2013;3:2537. CrossrefPubMedGoogle Scholar

[39]

Zhu Y-F, Zou X, Li R, et al. Dispersionless manipulation of reflected acoustic wavefront by subwavelength corrugated surface. Sci Rep 2015;5:10966. CrossrefPubMedGoogle Scholar

[40]

Li Y, Jiang X, Liang B, Cheng J-C, Zhang L. Metascreen-based acoustic passive phased array. Phys Rev Appl 2015;4:024003. CrossrefGoogle Scholar

[41]

Tang K, Qiu C, Ke M, Lu J, Ye Y, Liu Z. Anomalous refraction of airborne sound through ultrathin metasurfaces. Sci Rep 2014;4:6517. PubMedGoogle Scholar

[42]

Xie YB, Wang W, Chen H, Konneker A, Popa B-I, Cummer SA. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nature Commun 2014;5:5553. CrossrefGoogle Scholar

[43]

Zhu XF, Li K, Zhang P, et al. Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials. Nature Commun 2016;7:11731. CrossrefGoogle Scholar

[44]

Marchiano R, Thomas JL. Synthesis and analysis of linear and nonlinear acoustical vortices. Phys Rev E 2005;71:066616. CrossrefGoogle Scholar

[45]

Baresch D, Thomas JL, Marchiano R. Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers. Phys Rev Lett 2016;116:024301. PubMedCrossrefGoogle Scholar

[46]

Riaud A, Thomas J-L, Charron E, Bussonnière A, Matar OB, Baudoin M. Anisotropic swirling surface acoustic waves from inverse filtering for on-chip generation of acoustic vortices. Phys Rev Appl 2015;4:034004. CrossrefGoogle Scholar

[47]

Jiang X, Zhao J, Liu S, et al. Broadband and stable acoustic vortex emitter with multi-arm coiling slits. Appl Phys Lett 2016;108:203501. CrossrefGoogle Scholar

[48]

Jiang X, Li Y, Liang B, Cheng J-C, Zhang L. Convert acoustic resonances to orbital angular momentum. Phys Rev Lett 2016;117:034301. PubMedCrossrefGoogle Scholar

[49]

Ye LP, Qiu C, Lu J, et al. Making sound vortices by metasurfaces. AIP Adv 2016;6:085007. CrossrefGoogle Scholar

[50]

Schroeder MR. Diffuse sound reflection by maximum-length sequences. J Acoust Soc Am 1975;57:149–50. CrossrefGoogle Scholar

[51]

Schroeder MR. Binaural dissimilarity and optimum ceilings for concert halls – more lateral sound diffusion. J Acoust Soc Am 1979;65:958–63. CrossrefGoogle Scholar

[52]

Zhu Y, Fan X, Liang B, Cheng J, Jing Y. Ultrathin acoustic metasurface-based schroeder diffuser. Phys Rev X 2017;7:021034. Google Scholar

[53]

Fan XD, Zhu Y-F, Liang B, Yang J, Yang J, Cheng J-C. Ultra-broadband and planar sound diffuser with high uniformity of reflected intensity. Appl Phys Lett 2017;111:103502. CrossrefGoogle Scholar

[54]

Jiang X, Liang B, Li R, Zou X, Yin L, Cheng JC. Ultra-broadband absorption by acoustic metamaterials. Appl Phys Lett 2014;105:243505. CrossrefGoogle Scholar

[55]

Ma GC, Yang M, Xiao SW, Yang ZY, Sheng P. Acoustic metasurface with hybrid resonances. Nature Mater 2014;13:873–8. CrossrefGoogle Scholar

[56]

Li Y, Assouar BM. Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl Phys Lett 2016;108:063502. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.