[1]

Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. New York, NY, Elsevier, 2013. Google Scholar

[2]

Yu N, Genevet P, Kats MA, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011;334:333–7. CrossrefPubMedGoogle Scholar

[3]

Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014;13:139–50. PubMedCrossrefGoogle Scholar

[4]

Sihvola A. Metamaterials in electromagnetics. Metamaterials 2007;1:2–11. CrossrefGoogle Scholar

[5]

Cai W, Shalaev V. Optical metamaterials: fundamentals and applications. New York, NY, Springer, 2010. Google Scholar

[6]

Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science 2006;312:1780–2. CrossrefPubMedGoogle Scholar

[7]

Meinzer N, Barnes WL, Hooper IR. Plasmonic meta-atoms and metasurfaces. Nat Photon 2014;8:889–98. CrossrefGoogle Scholar

[8]

Koenderink AF, Alù A, Polman A. Nanophotonics: shrinking light-based technology. Science 2015;348:516–21. CrossrefPubMedGoogle Scholar

[9]

Luo X, Pu M, Ma X, Li X. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices. Int J Antennas Propag 2015;2015:204127. Google Scholar

[10]

Minovich AE, Miroshnichenko AE, Bykov AY, Murzina TV, Neshev DN, Kivshar YS. Functional and nonlinear optical metasurfaces. Laser Photon Rev 2015;9:195–213. CrossrefGoogle Scholar

[11]

Shaltout AM, Kildishev AV, Shalaev VM. Evolution of photonic metasurfaces: from static to dynamic. J Opt Soc Am B 2016;33:501–10. CrossrefGoogle Scholar

[12]

Zhang L, Mei S, Huang K, Qiu CW. Advances in full control of electromagnetic waves with metasurfaces. Adv Opt Mater 2016;4:818–33. CrossrefGoogle Scholar

[13]

Glybovski SB, Tretyakov SA, Belov PA, Kivshar YS, Simovski CR. Metasurfaces: from microwaves to visible. Phys Rep 2016;634:1–72. CrossrefGoogle Scholar

[14]

Chen HT, Taylor AJ, Yu N. A review of metasurfaces: physics and applications. Rep Prog Phys 2016;79:076401. CrossrefPubMedGoogle Scholar

[15]

Hsiao HH, Chu CH, Tsai DP. Fundamentals and applications of metasurfaces. Small Methods 2017;1:1600064. CrossrefGoogle Scholar

[16]

Ding F, Pors A, Bozhevolnyi SI. Gradient metasurfaces: a review of fundamentals and applications. Rep Prog Phys 2018;81:026401. CrossrefPubMedGoogle Scholar

[17]

Yu N, Genevet P, Aieta F, et al. Flat optics: controlling wavefronts with optical antenna metasurfaces. IEEE J Sel Top Quant Electron 2013;19:4700423. CrossrefGoogle Scholar

[18]

Hum SV, Perruisseau-Carrier J. Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review. IEEE Trans Antennas Propag 2014;62:183–98. CrossrefGoogle Scholar

[19]

Rui G, Zhan Q. Tailoring optical complex fields with nano-metallic surfaces. Nanophotonics 2015;4:2–25. Google Scholar

[20]

Estakhri NM, Alù A. Recent progress in gradient metasurfaces. J Opt Soc Am B 2016;33:A21–A30. CrossrefGoogle Scholar

[21]

Jahani S, Jacob Z. All-dielectric metamaterials. Nat Nanotechnol 2016;11:23–36. CrossrefPubMedGoogle Scholar

[22]

Zheludev NI, Kivshar YS. From metamaterials to metadevices. Nat Mater 2012;11:917–24. PubMedCrossrefGoogle Scholar

[23]

Yu N, Capasso F. Optical metasurfaces and prospect of their applications including fiber optics. J Lightwave Technol 2015;33:2344–58. CrossrefGoogle Scholar

[24]

Genevet P, Capasso F. Holographic optical metasurfaces: a review of current progress. Rep Prog Phys 2015;78:024401. CrossrefPubMedGoogle Scholar

[25]

Krasnok A, Tymchenko M, Alù A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater Today 2018;21: 8–21. CrossrefGoogle Scholar

[26]

Li G, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces. Nat Rev Mater 2017;2:17010. CrossrefGoogle Scholar

[27]

Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature 2003;424:824–30. PubMedCrossrefGoogle Scholar

[28]

Anker JN, Hall WP, Lyandres O, et al. Biosensing with plasmonic nanosensors. Nat Mater 2008;7:442–53. CrossrefPubMedGoogle Scholar

[29]

Tame MS, McEnery KR, Özdemir SK, Lee J, Maier SA, Kim MS. Quantum plasmonics. Nat Phys 2013;9:329–40. CrossrefGoogle Scholar

[30]

Gramotnev DK, Bozhevolnyi SI. Plasmonics beyond the diffraction limit. Nat Photon 2010;4:83–91. CrossrefGoogle Scholar

[31]

Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater 2010;9:865. CrossrefGoogle Scholar

[32]

Bozhevolnyi SI. Effective-index modeling of channel plasmon polaritons. Opt Express 2006;14:9467–76. CrossrefPubMedGoogle Scholar

[33]

Søndergaard T, Bozhevolnyi S. Slow-plasmon resonant nanostructures: scattering and field enhancements. Phys Rev B 2007;75:073402. CrossrefGoogle Scholar

[34]

Pors A, Bozhevolnyi SI. Plasmonic metasurfaces for efficient phase control in reflection. Opt Express 2013;21:27438–51. PubMedCrossrefGoogle Scholar

[35]

Søndergaard T, Jung J, Bozhevolnyi SI, Valle GD. Theoretical analysis of gold nano-strip gap plasmon resonators. New J Phys 2008;10:105008. CrossrefGoogle Scholar

[36]

Bozhevolnyi SI, Søndergaard T. General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. Opt Express 2007;15:10869–77. CrossrefPubMedGoogle Scholar

[37]

Yuan H-K, Chettiar UK, Cai W, et al. A negative permeability material at red light. Opt Express 2007;15:1076–83. CrossrefPubMedGoogle Scholar

[38]

Cai W, Chettiar UK, Yuan H-K, et al. Metamagnetics with rainbow colors. Opt Express 2007;15:3333–41. PubMedCrossrefGoogle Scholar

[39]

Liu N, Mesch M, Weiss T, Hentschel M, Giessen H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 2010;10:2342–8. PubMedCrossrefGoogle Scholar

[40]

Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M. High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 2010;96:251104. CrossrefGoogle Scholar

[41]

Moreau A, Cirací C, Mock JJ, et al. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 2012;493:86–9. Google Scholar

[42]

Ma S, Xiao S, Zhou L. Resonant modes in metal/insulator/metal metamaterials: an analytical study on near-field couplings. Phys Rev B 2016;93:045305. CrossrefGoogle Scholar

[43]

Jung J, Søndergaard T, Bozhevolnyi SI. Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons. Phys Rev B 2009;79:035401. CrossrefGoogle Scholar

[44]

Nielsen MG, Gramotnev DK, Pors A, Albrektsen O, Bozhevolnyi SI. Continuous layer gap plasmon resonators. Opt Express 2011;19:19310–22. PubMedCrossrefGoogle Scholar

[45]

Wu C, Neuner B, Shvets G, et al. Large-area wide-angle spectrally selective plasmonic absorber. Phys Rev B 2011;84:075102. CrossrefGoogle Scholar

[46]

Qu C, Ma S, Hao J, et al. Tailor the functionalities of metasurfaces based on a complete phase diagram. Phys Rev Lett 2015;115:235503. CrossrefPubMedGoogle Scholar

[47]

Miao Z, Wu Q, Li X, et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys Rev X 2015;5:041027. Google Scholar

[48]

Ni X, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM. Broadband light bending with plasmonic nanoantennas. Science 2012;335:427–7. CrossrefPubMedGoogle Scholar

[49]

Pors A, Nielsen MG, Valle GD, Willatzen M, Albrektsen O, Bozhevolnyi SI. Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles. Opt Lett 2011;36:1626–8. CrossrefPubMedGoogle Scholar

[50]

Zhao Y, Alù A. Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys Rev B 2011;84:205428. CrossrefGoogle Scholar

[51]

Monticone F, Estakhri NM, Alù A. Full control of nanoscale optical transmission with a composite metascreen. Phys Rev Lett 2013;110:203903. PubMedCrossrefGoogle Scholar

[52]

Ding X, Monticone F, Zhang K, et al. Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency. Adv Mater 2015;27:1195–200. CrossrefPubMedGoogle Scholar

[53]

Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater 2012;11:426–31. CrossrefPubMedGoogle Scholar

[54]

Asadchy VS, Albooyeh M, Tcvetkova SN, Daz-Rubio A, Ra’di Y, Tretyakov SA. Perfect control of reflection and refraction using spatially dispersive metasurfaces. Phys Rev B 2016;94:075142. CrossrefGoogle Scholar

[55]

Ra’di Y, Sounas DL, Alù A. Metagratings: beyond the limits of graded metasurfaces for wave front control. Phys Rev Lett 2017;119:067404. CrossrefPubMedGoogle Scholar

[56]

Wong AMH, Eleftheriades GV. Perfect anomalous reflection with a bipartite Huygens’ metasurface. Phys Rev X 2018;8:011036. Google Scholar

[57]

Daz-Rubio A, Asadchy VS, Elsakka A, Tretyakov SA. From the generalized reflection law to the realization of perfect anomalous reflectors. Sci Adv 2017;3:e1602714. PubMedCrossrefGoogle Scholar

[58]

Pancharatnam S. Generalized theory of interference, and its applications. Proc Indian Acad Sci Sect 1956;44:247–62. Google Scholar

[59]

Berry MV. Quantal phase factors accompanying adiabatic changes. Proc R Soc A Math Phys Eng Sci 1984;392:45–57. CrossrefGoogle Scholar

[60]

Bomzon Z, Kleiner V, Hasman E. Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt Lett 2001;26:1424–6. PubMedCrossrefGoogle Scholar

[61]

Bomzon Z, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt Lett 2002;27:1141–3. PubMedCrossrefGoogle Scholar

[62]

Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam–Berry phase optical elements. Opt Lett 2002;27:1875–7. PubMedCrossrefGoogle Scholar

[63]

Hasman E, Kleiner V, Biener G, Niv A. Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics. Appl Phys Lett 2003;82:328–30. CrossrefGoogle Scholar

[64]

Menzel C, Rockstuhl C, Lederer F. Advanced jones calculus for the classification of periodic metamaterials. Phys Rev A 2010;82:053811. CrossrefGoogle Scholar

[65]

Luo W, Xiao S, He Q, Sun S, Zhou L. Photonic spin hall effect with nearly 100% efficiency. Adv Opt Mater 2015;3:1102–8. CrossrefGoogle Scholar

[66]

Pors A, Albrektsen O, Radko IP, Bozhevolnyi SI. Gap plasmon-based metasurfaces for total control of reflected light. Sci Rep 2013;3:2155. CrossrefPubMedGoogle Scholar

[67]

Li Z, Palacios E, Butun S, Aydin K. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting. Nano Lett 2015;15:1615–21. PubMedCrossrefGoogle Scholar

[68]

Jiang S-C, Xiong X, Hu Y-S, et al. High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection. Phys Rev B 2015;91:125421. CrossrefGoogle Scholar

[69]

Sun S, Yang K-Y, Wang C-M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett 2012;12:6223–9. CrossrefPubMedGoogle Scholar

[70]

Huang Y, Zhao Q, Kalyoncu SK, et al. Phase-gradient gap-plasmon metasurface based blazed grating for real time dispersive imaging. Appl Phys Lett 2014;104:161106. CrossrefGoogle Scholar

[71]

Farmahini-Farahani M, Mosallaei H. Birefringent reflectarray metasurface for beam engineering in infrared. Opt Lett 2013;38:462–4. CrossrefPubMedGoogle Scholar

[72]

Niu T, Withayachumnankul W, Upadhyay A, et al. Terahertz reflectarray as a polarizing beam splitter. Opt Express 2014;22:16148–60. PubMedCrossrefGoogle Scholar

[73]

Deshpande R, Pors A, Bozhevolnyi SI. Third-order gap plasmon based metasurfaces for visible light. Opt Express 2017;25:12508–17. PubMedCrossrefGoogle Scholar

[74]

Zhang L, Hao J, Qiu M, et al. Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array. Nanoscale 2014;6:12303–9. CrossrefPubMedGoogle Scholar

[75]

Gao S, Yue W, Park C-S, Lee S-S, Kim E-S, Choi D-Y. Aluminum plasmonic metasurface enabling a wavelength-insensitive phase gradient for linearly polarized visible light. ACS Photonics 2017;4:322–8. CrossrefGoogle Scholar

[76]

Li X, Xiao S, Cai B, He Q, Cui TJ, Zhou L. Flat metasurfaces to focus electromagnetic waves in reflection geometry. Opt Lett 2012;37:4940–2. CrossrefPubMedGoogle Scholar

[77]

Pors A, Nielsen MG, Eriksen RL, Bozhevolnyi SI. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett 2013;13:829–34. CrossrefPubMedGoogle Scholar

[78]

Boroviks S, Deshpande RA, Mortensen NA, Bozhevolnyi SI. Multifunctional meta-mirror: polarization splitting and focusing. ACS Photonics 2017 (in press). doi: 10.1021/acsphotonics.7b01091. Google Scholar

[79]

Yi H, Qu S-W, Chen BJ, Bai X, Ng KB, Chan CH. Flat terahertz reflective focusing metasurface with scanning ability. Sci Rep 2017;7:3478. CrossrefPubMedGoogle Scholar

[80]

Wang S, Wu PC, Su V-C, et al. Broadband achromatic optical metasurface devices. Nat Commun 2017;8:187. CrossrefPubMedGoogle Scholar

[81]

Aieta F, Genevet P, Kats MA, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 2012;12:4932–6. PubMedCrossrefGoogle Scholar

[82]

Ni X, Ishii S, Kildishev AV, Shalaev VM. Ultra-thin, planar, babinet-inverted plasmonic metalenses. Light Sci Appl 2013;2:e72. CrossrefGoogle Scholar

[83]

Larouche S, Smith DR. Reconciliation of generalized refraction with diffraction theory. Opt Lett 2012;37:2391–3. PubMedCrossrefGoogle Scholar

[84]

Aieta F, Kats MA, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science2015;347:1342–5. PubMedCrossrefGoogle Scholar

[85]

Khorasaninejad M, Aieta F, Kanhaiya P, et al. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett 2015;15:5358–62. PubMedCrossrefGoogle Scholar

[86]

Eisenbach O, Avayu O, Ditcovski R, Ellenbogen T. Metasurfaces based dual wavelength diffractive lenses. Opt Express 2015;23:3928–36. CrossrefPubMedGoogle Scholar

[87]

Khorasaninejad M, Shi Z, Zhu AY, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett 2017;17:1819–24. CrossrefPubMedGoogle Scholar

[88]

Chen WT, Yang KY, Wang CM, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 2013;14:225–30. PubMedGoogle Scholar

[89]

Huang Y-W, Chen WT, Tsai W-Y, et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett 2015;15:3122–7. PubMedCrossrefGoogle Scholar

[90]

Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 2015;10:308–12. PubMedCrossrefGoogle Scholar

[91]

Wen D, Yue F, Li G, et al. Helicity multiplexed broadband metasurface holograms. Nat Commun 2015;6:8241. CrossrefPubMedGoogle Scholar

[92]

Walther B, Helgert C, Rockstuhl C, et al. Spatial and spectral light shaping with metamaterials. Adv Mater 2012;24:6300–4. CrossrefPubMedGoogle Scholar

[93]

Ni X, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun 2013;4:2807. CrossrefGoogle Scholar

[94]

Yifat Y, Eitan M, Iluz Z, Hanein Y, Boag A, Scheuer J. Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays. Nano Lett 2014;14:2485–90. PubMedCrossrefGoogle Scholar

[95]

Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater 2010;9:193–204. CrossrefPubMedGoogle Scholar

[96]

Chalabi H, Schoen D, Brongersma ML. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett 2014;14:1374–80. PubMedCrossrefGoogle Scholar

[97]

Liu X, Tyler T, Starr T, Starr AF, Jokerst NM, Padilla WJ. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 2011;107:045901. CrossrefPubMedGoogle Scholar

[98]

Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 2012;41:2740–79. PubMedCrossrefGoogle Scholar

[99]

Guo CF, Sun T, Cao F, Liu Q, Ren Z. Metallic nanostructures for light trapping in energy-harvesting devices. Light Sci Appl 2014;3:e161. CrossrefGoogle Scholar

[100]

Ra’di Y, Simovski CR, Tretyakov SA. Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys Rev Appl 2015;3:037001. CrossrefGoogle Scholar

[101]

Cui Y, He Y, Jin Y, et al. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photon Rev 2014;8:495–520. CrossrefGoogle Scholar

[102]

Wang J, Chen Y, Chen X, Hao J, Yan M, Qiu M. Photothermal reshaping of gold nanoparticles in a plasmonic absorber. Opt Express 2011;19:14726–34. CrossrefGoogle Scholar

[103]

Nielsen MG, Pors A, Albrektsen O, Bozhevolnyi SI. Efficient absorption of visible radiation by gap plasmon resonators. Opt Express 2012;20:13311–9. PubMedCrossrefGoogle Scholar

[104]

Ding F, Dai J, Chen Y, Zhu J, Jin Y, Bozhevolnyi SI. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals. Sci Rep 2016;6:39445. PubMedCrossrefGoogle Scholar

[105]

Chen X, Chen Y, Yan M, Qiu M. Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 2012;6:2550–7. CrossrefPubMedGoogle Scholar

[106]

Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts Chem Res 2008;41:1578–86. CrossrefGoogle Scholar

[107]

Zhou H, Ding F, Jin Y, He S. Terahertz metamaterial modulators based on absorption. Prog Electromagn Res 2011;119:449–60. CrossrefGoogle Scholar

[108]

Shi Y, Chen X, Lou F, et al. All-optical switching of silicon disk resonator based on photothermal effect in metal–insulator–metal absorber. Opt Lett 2014;39:4431–4. PubMedCrossrefGoogle Scholar

[109]

Gong H, Chen X, Qu Y, Li Q, Yan M, Qiu M. Photothermal switching based on silicon Mach–Zehnder interferometer integrated with light absorber. IEEE Photonics J 2016;8:1–10. Google Scholar

[110]

Gong H, Yang Y, Chen X, et al. Gold nanoparticle transfer through photothermal effects in a metamaterial absorber by nanosecond laser. Sci Rep 2014;4:6080. Google Scholar

[111]

Zhu X, Vannahme C, Højlund-Nielsen E, Mortensen NA, Kristensen A. Plasmonic colour laser printing. Nat Nanotechnol 2015;11:325–9. CrossrefPubMedGoogle Scholar

[112]

Meng L, Zhao D, Ruan Z, Li Q, Yang Y, Qiu M. Optimized grating as an ultra-narrow band absorber or plasmonic sensor. Opt Lett 2014;39:1137–40. PubMedCrossrefGoogle Scholar

[113]

Aydin K, Ferry VE, Briggs RM, Atwater HA. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2011;2:517. CrossrefPubMedGoogle Scholar

[114]

Ding F, Cui Y, Ge X, Jin Y, He S. Ultra-broadband microwave metamaterial absorber. Appl Phys Lett 2012;100:103506. CrossrefGoogle Scholar

[115]

Chen K, Adato R, Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. ACS Nano 2012;6:7998–8006. PubMedCrossrefGoogle Scholar

[116]

Zhang B, Zhao Y, Hao Q, et al. Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Opt Express 2011;19:15221–8. PubMedCrossrefGoogle Scholar

[117]

Ding F, Jin Y, Li B, Cheng H, Mo L, He S. Ultrabroadband strong light absorption based on thin multilayered metamaterials. Laser Photon Rev 2014;8:946–53. CrossrefGoogle Scholar

[118]

Lu X, Wan R, Zhang T. Metal-dielectric-metal based narrow band absorber for sensing applications. Opt Express 2015;23:29842–7. PubMedCrossrefGoogle Scholar

[119]

Zhong S, Jiang W, Xu P, Liu T, Huang J, Ma Y. A radar-infrared bi-stealth structure based on metasurfaces. Appl Phys Lett 2017;110:063502. CrossrefGoogle Scholar

[120]

Hedayati MK, Javaherirahim M, Mozooni B, et al. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv Mater 2011;23:5410–4. PubMedCrossrefGoogle Scholar

[121]

Chen X, Gong H, Dai S, et al. Near-infrared broadband absorber with film-coupled multilayer nanorods. Opt Lett 2013;38:2247–9. PubMedCrossrefGoogle Scholar

[122]

Akselrod GM, Huang J, Hoang TB, et al. Large-area metasurface perfect absorbers from visible to near-infrared. Adv Mater 2015;27:8028–34. CrossrefPubMedGoogle Scholar

[123]

Chirumamilla M, Roberts AS, Ding F, et al. Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications. Opt Mater Express 2016;6:2704–14. CrossrefGoogle Scholar

[124]

Wang W, Qu Y, Du K, et al. Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-*ε*″ metals. Appl Phys Lett 2017;110:101101. CrossrefGoogle Scholar

[125]

Lin Y, Cui Y, Ding F, et al. Tungsten based anisotropic metamaterial as an ultra-broadband absorber. Opt Mater Express 2017;7:606–17. CrossrefGoogle Scholar

[126]

Xu T, Shi H, Wu Y-K, Kaplan AF, Ok JG, Guo LJ. Structural colors: from plasmonic to carbon nanostructures. Small 2011;7:3128–36. PubMedCrossrefGoogle Scholar

[127]

Kumar K, Duan H, Hegde RS, Koh SCW, Wei JN, Yang JKW. Printing colour at the optical diffraction limit. Nat Nanotechnol 2012;7:557–61. PubMedCrossrefGoogle Scholar

[128]

Gu Y, Zhang L, Yang JKW, Yeo SP, Qiu C-W. Color generation via subwavelength plasmonic nanostructures. Nanoscale 2015;7:6409–19. PubMedCrossrefGoogle Scholar

[129]

Kristensen A, Yang JKW, Bozhevolnyi SI, et al. Plasmonic colour generation. Nat Rev Mater 2016;2:16088. Google Scholar

[130]

Roberts AS, Pors A, Albrektsen O, Bozhevolnyi SI. Subwavelength plasmonic color printing protected for ambient use. Nano Lett 2014;14:783–7. CrossrefPubMedGoogle Scholar

[131]

Wang H, Wang X, Yan C, et al. Martin. Full color generation using silver tandem nanodisks. ACS Nano 2017;11:4419–27. CrossrefPubMedGoogle Scholar

[132]

Miyata M, Hatada H, Takahara J. Full-color subwavelength printing with gap-plasmonic optical antennas. Nano Lett 2016;16:3166–72. PubMedCrossrefGoogle Scholar

[133]

Pors A, Nielsen MG, Sergey I. Bozhevolnyi. Broadband plasmonic half-wave plates in reflection. Opt Lett 2013;38:513–5. PubMedCrossrefGoogle Scholar

[134]

Yang Y, Wang W, Moitra P, Kravchenko II, Briggs DP, Valentine J. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 2014;14:1394–9. CrossrefPubMedGoogle Scholar

[135]

Ding F, Wang Z, He S, Shalaev VM, Kildishev AV. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS Nano 2015;9:4111–9. CrossrefGoogle Scholar

[136]

Wu PC, Tsai W-Y, Chen WT, et al. Versatile polarization generation with an aluminum plasmonic metasurface. Nano Lett 2017;17:445–52. PubMedCrossrefGoogle Scholar

[137]

Markovich DL, Andryieuski A, Zalkovskij M, Malureanu R, Lavrinenko AV. Metamaterial polarization converter analysis: limits of performance. Appl Phys B 2013;112:143–52. CrossrefGoogle Scholar

[138]

Pors A, Bozhevolnyi SI. Efficient and broadband quarter-wave plates by gap-plasmon resonators. Opt Express 2013;21:2942–52. CrossrefPubMedGoogle Scholar

[139]

Chen Z, Wang C, Xu F, Lou Y, Cao B, Li X. Reflective plasmonic waveplates based on metal-insulator-metal subwavelength rectangular annular arrays. Photonics Nanostruct Fundam Appl 2014;12:189–98. CrossrefGoogle Scholar

[140]

Jiang S-C, Xiong X, Hu Y-S, et al. Controlling the polarization state of light with a dispersion-free metastructure. Phys Rev X 2014;4:021026. Google Scholar

[141]

Hao J, Yuan Y, Ran L, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys Rev Lett 2007;99:063908. CrossrefPubMedGoogle Scholar

[142]

Hao J, Ren Q, An Z, et al. Optical metamaterial for polarization control. Phys Rev A 2009;80:023807. CrossrefGoogle Scholar

[143]

Dai Y, Ren W, Cai H, Ding H, Pan N, Wang X. Realizing full visible spectrum metamaterial half-wave plates with patterned metal nanoarray/insulator/metal film structure. Opt Express 2014;22:7465–72. PubMedCrossrefGoogle Scholar

[144]

Lévesque Q, Makhsiyan M, Bouchon P, et al. Plasmonic planar antenna for wideband and efficient linear polarization conversion. Appl Phys Lett 2014;104:111105. CrossrefGoogle Scholar

[145]

Ribaudo T, Taylor A, Nguyen B-M, Bethke D, Shaner EA. High efficiency reflective waveplates in the midwave infrared. Opt Express 2014;22:2821–9. PubMedCrossrefGoogle Scholar

[146]

Guo Y, Wang Y, Pu M, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Sci Rep 2015;5:8434. CrossrefPubMedGoogle Scholar

[147]

Yu N, Aieta F, Genevet P, Kats MA, Gaburro Z, Capasso F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett 2012;12:6328–33. PubMedCrossrefGoogle Scholar

[148]

Shaltout A, Liu J, Shalaev VM, Kildishev AV. Optically active metasurface with non-chiral plasmonic nanoantennas. Nano Lett 2014;14:4426–31. PubMedCrossrefGoogle Scholar

[149]

Shaltout A, Liu J, Kildishev A, Shalaev V. Photonic spin hall effect in gap plasmon metasurfaces for on-chip chiroptical spectroscopy. Optica 2015;2:860–3. CrossrefGoogle Scholar

[150]

Pors A, Nielsen MG, Bozhevolnyi SI. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica 2015;2:716–23. CrossrefGoogle Scholar

[151]

Pors A, Bozhevolnyi SI. Waveguide metacouplers for in-plane polarimetry. Phys Rev Appl 2016;5:064015. CrossrefGoogle Scholar

[152]

Chen WT, Török P, Foreman MR, et al. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology 2016;27:224002. PubMedCrossrefGoogle Scholar

[153]

Maguid E, Yulevich I, Veksler D, Kleiner V, Brongersma ML, Hasman E. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 2016;352:1202–6. CrossrefPubMedGoogle Scholar

[154]

Ding F, Pors A, Chen Y, Zenin VA, Bozhevolnyi SI. Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces. ACS Photonics 2017;4:943–9. CrossrefGoogle Scholar

[155]

Maier SA. Plasmonics: fundamentals and applications. Berlin, Springer Science & Business Media, 2007. Google Scholar

[156]

Wang J, Qu S, Ma H, et al. High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces. Appl Phys Lett 2012;101:201104. CrossrefGoogle Scholar

[157]

Qu C, Xiao S, Sun S, He Q, Zhou L. A theoretical study on the conversion efficiencies of gradient meta-surfaces. Europhys Lett 2013;101:54002. CrossrefGoogle Scholar

[158]

Sun W, He Q, Sun S, Zhou L. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light Sci Appl 2016;5:e16003. CrossrefGoogle Scholar

[159]

Pors A, Nielsen MG, Bernardin T, Weeber JC, Bozhevolnyi SI. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light Sci Appl 2014;3:e197. CrossrefGoogle Scholar

[160]

Ding F, Deshpande R, Bozhevolnyi SI. Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence. Light Sci Appl 2018;7:e17178. CrossrefGoogle Scholar

[161]

Mühlenbernd H, Georgi P, Pholchai N, et al. Amplitude- and phase-controlled surface plasmon polariton excitation with metasurfaces. ACS Photonics 2016;3:124–9. CrossrefGoogle Scholar

[162]

Duan J, Guo H, Dong S, et al. High-efficiency chirality-modulated spoof surface plasmon meta-coupler. Sci Rep 2017;7:1354. PubMedCrossrefGoogle Scholar

[163]

Boardman AD, Grimalsky VV, Kivshar YS, et al. Active and tunable metamaterials. Laser Photon Rev 2011;5:287–307. CrossrefGoogle Scholar

[164]

Zhu H, Yi F, Cubukcu E. Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances. Nat Photon 2016;10:709–14. CrossrefGoogle Scholar

[165]

Abad PC, Ou J-Y, Plum E, Zheludev N, et al. Electro-mechanical light modulator based on controlling the interaction of light with a metasurface. Sci Rep 2017;7:5405. CrossrefPubMedGoogle Scholar

[166]

Liu L, Kang L, Mayer TS, Werner DH. Hybrid metamaterials for electrically triggered multifunctional control. Nat Commun 2016;7:13236. PubMedGoogle Scholar

[167]

Huang Y-W, Lee HWH, Sokhoyan R, et al. Gate-tunable conducting oxide metasurfaces. Nano Lett 2016;16:5319–25. CrossrefPubMedGoogle Scholar

[168]

Yao Y, Shankar R, Kats MA, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett 2014;14:6526–32. CrossrefPubMedGoogle Scholar

[169]

Emani NK, Kildishev AV, Shalaev VM, Boltasseva A. Graphene: a dynamic platform for electrical control of plasmonic resonance. Nanophotonics 2015;4:214–23. Google Scholar

[170]

Sherrott MC, Hon PWC, Fountaine KT, et al. Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces. Nano Lett 2017;17:3027–34. CrossrefPubMedGoogle Scholar

[171]

Wang Z, Li T, Almdal K, Mortensen NA, Xiao S, Ndoni S. Experimental demonstration of graphene plasmons working close to the near-infrared window. Opt Lett 2016;41:5345–8. CrossrefPubMedGoogle Scholar

[172]

Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nat Mater 2007;6:824–32. PubMedCrossrefGoogle Scholar

[173]

Wuttig M, Bhaskaran H, Taubner T. Phase-change materials for non-volatile photonic applications. Nat Photon 2017;11:465–76. CrossrefGoogle Scholar

[174]

Tittl A, Michel A-KU, Schäferling M, et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv Mater 2015;27:4597–603. CrossrefPubMedGoogle Scholar

[175]

Wang Q, Rogers ETF, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat Photon 2016;10:60–5. CrossrefGoogle Scholar

[176]

Liu M, Hwang HY, Tao H, et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 2012;487:345–8. CrossrefPubMedGoogle Scholar

[177]

Kats MA, Blanchard R, Zhang S, et al. Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance. Phys Rev X 2013;3:041004. Google Scholar

[178]

Zhu Z, Evans PG, Haglund Jr RF, Valentine JG. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett 2017;17:4881–5. CrossrefPubMedGoogle Scholar

[179]

Ding F, Zhong S, Bozhevolnyi SI. Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies. Adv Opt Mater 2018;1701204. https://onlinelibrary.wiley.com/doi/abs/10.1002/adom.201701204.

[180]

Yi F, Shim E, Zhu AY, Zhu H, Reed JC, Cubukcu E. Voltage tuning of plasmonic absorbers by indium tin oxide. Appl Phys Lett 2013;102:221102. CrossrefGoogle Scholar

[181]

Park J, Kang J-H, Kim SJ, Liu X, Brongersma ML. Dynamic reflection phase and polarization control in metasurfaces. Nano Lett 2017;17:407–13. PubMedCrossrefGoogle Scholar

[182]

Xu H-X, Ma S, Luo W, et al. Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces. Appl Phys Lett 2016;109:193506. CrossrefGoogle Scholar

[183]

Xu H-X, Sun S, Tang S, et al. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces. Sci Rep 2016;6:27503. CrossrefPubMedGoogle Scholar

[184]

Xu H-X, Tang S, Ma S, et al. Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch. Sci Rep 2016;6:38255. CrossrefPubMedGoogle Scholar

[185]

Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N. Performing mathematical operations with metamaterials. Science 2014;343:160–3. CrossrefPubMedGoogle Scholar

[186]

Farmahini-Farahani M, Cheng J, Mosallaei H. Metasurfaces nanoantennas for light processing. J Opt Soc Am B 2013;30:2365–70. CrossrefGoogle Scholar

[187]

Pors A, Nielsen MG, Bozhevolnyi SI. Analog computing using reflective plasmonic metasurfaces. Nano Lett 2015;15:791–7. PubMedCrossrefGoogle Scholar

[188]

Chizari A, Abdollahramezani S, Jamali MV, Salehi JA. Analog optical computing based on a dielectric meta-reflect array. Opt lett 2016;41:3451–4. PubMedCrossrefGoogle Scholar

[189]

Ni X, Wong ZJ, Mrejen M, Wang Y, Zhang X. An ultrathin invisibility skin cloak for visible light. Science 2015;349:1310–4. CrossrefPubMedGoogle Scholar

[190]

Yue F, Wen D, Zhang C, et al. Multichannel polarization-controllable superpositions of orbital angular momentum states. Adv Mater 2017;29:1603838. CrossrefGoogle Scholar

[191]

Lee J, Tymchenko M, Argyropoulos C, et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 2014;511:65–9. CrossrefPubMedGoogle Scholar

[192]

Zhang J, Mei ZL, Zhang WR, Yang F, Cui TJ. An ultrathin directional carpet cloak based on generalized Snell’s law. Appl Phys Lett 2013;103:151115. CrossrefGoogle Scholar

[193]

Estakhri NM, Alù A. Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces. IEEE Antennas Wireless Propag Lett 2014;13:1775–8. CrossrefGoogle Scholar

[194]

Yang Y, Jing L, Zheng B, et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase. Adv Mater 2016;28:6866–71. CrossrefPubMedGoogle Scholar

[195]

Orazbayev B, Estakhri NM, Alù A, Beruete M. Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves. Adv Opt Mater 2017;5:1600606. CrossrefGoogle Scholar

[196]

Bliokh KY, Rodrguez-Fortuño FJ, Nori F, Zayats AV. Spin-orbit interactions of light. Nat Photon 2015;9:796–808. CrossrefGoogle Scholar

[197]

Yue F, Wen D, Xin J, Gerardot BD, Li J, Chen X. Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics 2016;3:1558–63. CrossrefGoogle Scholar

[198]

Lassiter JB, Chen X, Liu X, et al. Third-harmonic generation enhancement by film-coupled plasmonic stripe resonators. ACS Photonics 2014;1:1212–7. CrossrefGoogle Scholar

[199]

Shen S, Meng L, Zhang Y, et al. Plasmon-enhanced second-harmonic generation nanorulers with ultrahigh sensitivities. Nano Lett 2015;15:6716–21. PubMedCrossrefGoogle Scholar

[200]

Kruk S, Weismann M, Bykov AY, et al. Enhanced magnetic second-harmonic generation from resonant metasurfaces. ACS Photonics 2015;2:1007–12. CrossrefGoogle Scholar

[201]

Butet J, Brevet P-F, Martin OJF. Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications. ACS Nano 2015;9:10545–62. CrossrefPubMedGoogle Scholar

[202]

Wang F, Martinson ABF, Harutyunyan H. Efficient nonlinear metasurface based on nonplanar plasmonic nanocavities. ACS Photonics 2017;4:1188–94. CrossrefGoogle Scholar

[203]

Lee J, Nookala N, Gomez-Diaz JS, et al. Ultrathin second-harmonic metasurfaces with record-high nonlinear optical response. Adv Opt Mater 2016;4:664–70. CrossrefGoogle Scholar

[204]

Nookala N, Lee J, Tymchenko M, et al. Ultrathin gradient nonlinear metasurface with a giant nonlinear response. Optica 2016;3:283–8. CrossrefGoogle Scholar

[205]

Cai T, Tang SW, Wang GM, et al. High-performance bifunctional metasurfaces in transmission and reflection geometries. Adv Opt Mater 2017;5:1600506. CrossrefGoogle Scholar

[206]

Oulton RF, Sorger VJ, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale. Nature 2009;461:629–32. PubMedCrossrefGoogle Scholar

[207]

Falk AL, Koppens FHL, Chun LY, et al. Near-field electrical detection of optical plasmons and single-plasmon sources. Nat Phys 2009;5:475–9. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.