[1]
Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. New York, NY, Elsevier, 2013. Google Scholar
[2]
Yu N, Genevet P, Kats MA, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011;334:333–7. CrossrefPubMedGoogle Scholar
[3]
Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014;13:139–50. PubMedCrossrefGoogle Scholar
[4]
Sihvola A. Metamaterials in electromagnetics. Metamaterials 2007;1:2–11. CrossrefGoogle Scholar
[5]
Cai W, Shalaev V. Optical metamaterials: fundamentals and applications. New York, NY, Springer, 2010. Google Scholar
[6]
Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science 2006;312:1780–2. CrossrefPubMedGoogle Scholar
[7]
Meinzer N, Barnes WL, Hooper IR. Plasmonic meta-atoms and metasurfaces. Nat Photon 2014;8:889–98. CrossrefGoogle Scholar
[8]
Koenderink AF, Alù A, Polman A. Nanophotonics: shrinking light-based technology. Science 2015;348:516–21. CrossrefPubMedGoogle Scholar
[9]
Luo X, Pu M, Ma X, Li X. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices. Int J Antennas Propag 2015;2015:204127. Google Scholar
[10]
Minovich AE, Miroshnichenko AE, Bykov AY, Murzina TV, Neshev DN, Kivshar YS. Functional and nonlinear optical metasurfaces. Laser Photon Rev 2015;9:195–213. CrossrefGoogle Scholar
[11]
Shaltout AM, Kildishev AV, Shalaev VM. Evolution of photonic metasurfaces: from static to dynamic. J Opt Soc Am B 2016;33:501–10. CrossrefGoogle Scholar
[12]
Zhang L, Mei S, Huang K, Qiu CW. Advances in full control of electromagnetic waves with metasurfaces. Adv Opt Mater 2016;4:818–33. CrossrefGoogle Scholar
[13]
Glybovski SB, Tretyakov SA, Belov PA, Kivshar YS, Simovski CR. Metasurfaces: from microwaves to visible. Phys Rep 2016;634:1–72. CrossrefGoogle Scholar
[14]
Chen HT, Taylor AJ, Yu N. A review of metasurfaces: physics and applications. Rep Prog Phys 2016;79:076401. CrossrefPubMedGoogle Scholar
[15]
Hsiao HH, Chu CH, Tsai DP. Fundamentals and applications of metasurfaces. Small Methods 2017;1:1600064. CrossrefGoogle Scholar
[16]
Ding F, Pors A, Bozhevolnyi SI. Gradient metasurfaces: a review of fundamentals and applications. Rep Prog Phys 2018;81:026401. CrossrefPubMedGoogle Scholar
[17]
Yu N, Genevet P, Aieta F, et al. Flat optics: controlling wavefronts with optical antenna metasurfaces. IEEE J Sel Top Quant Electron 2013;19:4700423. CrossrefGoogle Scholar
[18]
Hum SV, Perruisseau-Carrier J. Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review. IEEE Trans Antennas Propag 2014;62:183–98. CrossrefGoogle Scholar
[19]
Rui G, Zhan Q. Tailoring optical complex fields with nano-metallic surfaces. Nanophotonics 2015;4:2–25. Google Scholar
[20]
Estakhri NM, Alù A. Recent progress in gradient metasurfaces. J Opt Soc Am B 2016;33:A21–A30. CrossrefGoogle Scholar
[21]
Jahani S, Jacob Z. All-dielectric metamaterials. Nat Nanotechnol 2016;11:23–36. CrossrefPubMedGoogle Scholar
[22]
Zheludev NI, Kivshar YS. From metamaterials to metadevices. Nat Mater 2012;11:917–24. PubMedCrossrefGoogle Scholar
[23]
Yu N, Capasso F. Optical metasurfaces and prospect of their applications including fiber optics. J Lightwave Technol 2015;33:2344–58. CrossrefGoogle Scholar
[24]
Genevet P, Capasso F. Holographic optical metasurfaces: a review of current progress. Rep Prog Phys 2015;78:024401. CrossrefPubMedGoogle Scholar
[25]
Krasnok A, Tymchenko M, Alù A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater Today 2018;21: 8–21. CrossrefGoogle Scholar
[26]
Li G, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces. Nat Rev Mater 2017;2:17010. CrossrefGoogle Scholar
[27]
Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature 2003;424:824–30. PubMedCrossrefGoogle Scholar
[28]
Anker JN, Hall WP, Lyandres O, et al. Biosensing with plasmonic nanosensors. Nat Mater 2008;7:442–53. CrossrefPubMedGoogle Scholar
[29]
Tame MS, McEnery KR, Özdemir SK, Lee J, Maier SA, Kim MS. Quantum plasmonics. Nat Phys 2013;9:329–40. CrossrefGoogle Scholar
[30]
Gramotnev DK, Bozhevolnyi SI. Plasmonics beyond the diffraction limit. Nat Photon 2010;4:83–91. CrossrefGoogle Scholar
[31]
Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater 2010;9:865. CrossrefGoogle Scholar
[32]
Bozhevolnyi SI. Effective-index modeling of channel plasmon polaritons. Opt Express 2006;14:9467–76. CrossrefPubMedGoogle Scholar
[33]
Søndergaard T, Bozhevolnyi S. Slow-plasmon resonant nanostructures: scattering and field enhancements. Phys Rev B 2007;75:073402. CrossrefGoogle Scholar
[34]
Pors A, Bozhevolnyi SI. Plasmonic metasurfaces for efficient phase control in reflection. Opt Express 2013;21:27438–51. PubMedCrossrefGoogle Scholar
[35]
Søndergaard T, Jung J, Bozhevolnyi SI, Valle GD. Theoretical analysis of gold nano-strip gap plasmon resonators. New J Phys 2008;10:105008. CrossrefGoogle Scholar
[36]
Bozhevolnyi SI, Søndergaard T. General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. Opt Express 2007;15:10869–77. CrossrefPubMedGoogle Scholar
[37]
Yuan H-K, Chettiar UK, Cai W, et al. A negative permeability material at red light. Opt Express 2007;15:1076–83. CrossrefPubMedGoogle Scholar
[38]
Cai W, Chettiar UK, Yuan H-K, et al. Metamagnetics with rainbow colors. Opt Express 2007;15:3333–41. PubMedCrossrefGoogle Scholar
[39]
Liu N, Mesch M, Weiss T, Hentschel M, Giessen H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 2010;10:2342–8. PubMedCrossrefGoogle Scholar
[40]
Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M. High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 2010;96:251104. CrossrefGoogle Scholar
[41]
Moreau A, Cirací C, Mock JJ, et al. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 2012;493:86–9. Google Scholar
[42]
Ma S, Xiao S, Zhou L. Resonant modes in metal/insulator/metal metamaterials: an analytical study on near-field couplings. Phys Rev B 2016;93:045305. CrossrefGoogle Scholar
[43]
Jung J, Søndergaard T, Bozhevolnyi SI. Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons. Phys Rev B 2009;79:035401. CrossrefGoogle Scholar
[44]
Nielsen MG, Gramotnev DK, Pors A, Albrektsen O, Bozhevolnyi SI. Continuous layer gap plasmon resonators. Opt Express 2011;19:19310–22. PubMedCrossrefGoogle Scholar
[45]
Wu C, Neuner B, Shvets G, et al. Large-area wide-angle spectrally selective plasmonic absorber. Phys Rev B 2011;84:075102. CrossrefGoogle Scholar
[46]
Qu C, Ma S, Hao J, et al. Tailor the functionalities of metasurfaces based on a complete phase diagram. Phys Rev Lett 2015;115:235503. CrossrefPubMedGoogle Scholar
[47]
Miao Z, Wu Q, Li X, et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys Rev X 2015;5:041027. Google Scholar
[48]
Ni X, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM. Broadband light bending with plasmonic nanoantennas. Science 2012;335:427–7. CrossrefPubMedGoogle Scholar
[49]
Pors A, Nielsen MG, Valle GD, Willatzen M, Albrektsen O, Bozhevolnyi SI. Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles. Opt Lett 2011;36:1626–8. CrossrefPubMedGoogle Scholar
[50]
Zhao Y, Alù A. Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys Rev B 2011;84:205428. CrossrefGoogle Scholar
[51]
Monticone F, Estakhri NM, Alù A. Full control of nanoscale optical transmission with a composite metascreen. Phys Rev Lett 2013;110:203903. PubMedCrossrefGoogle Scholar
[52]
Ding X, Monticone F, Zhang K, et al. Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency. Adv Mater 2015;27:1195–200. CrossrefPubMedGoogle Scholar
[53]
Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater 2012;11:426–31. CrossrefPubMedGoogle Scholar
[54]
Asadchy VS, Albooyeh M, Tcvetkova SN, Daz-Rubio A, Ra’di Y, Tretyakov SA. Perfect control of reflection and refraction using spatially dispersive metasurfaces. Phys Rev B 2016;94:075142. CrossrefGoogle Scholar
[55]
Ra’di Y, Sounas DL, Alù A. Metagratings: beyond the limits of graded metasurfaces for wave front control. Phys Rev Lett 2017;119:067404. CrossrefPubMedGoogle Scholar
[56]
Wong AMH, Eleftheriades GV. Perfect anomalous reflection with a bipartite Huygens’ metasurface. Phys Rev X 2018;8:011036. Google Scholar
[57]
Daz-Rubio A, Asadchy VS, Elsakka A, Tretyakov SA. From the generalized reflection law to the realization of perfect anomalous reflectors. Sci Adv 2017;3:e1602714. PubMedCrossrefGoogle Scholar
[58]
Pancharatnam S. Generalized theory of interference, and its applications. Proc Indian Acad Sci Sect 1956;44:247–62. Google Scholar
[59]
Berry MV. Quantal phase factors accompanying adiabatic changes. Proc R Soc A Math Phys Eng Sci 1984;392:45–57. CrossrefGoogle Scholar
[60]
Bomzon Z, Kleiner V, Hasman E. Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt Lett 2001;26:1424–6. PubMedCrossrefGoogle Scholar
[61]
Bomzon Z, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt Lett 2002;27:1141–3. PubMedCrossrefGoogle Scholar
[62]
Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam–Berry phase optical elements. Opt Lett 2002;27:1875–7. PubMedCrossrefGoogle Scholar
[63]
Hasman E, Kleiner V, Biener G, Niv A. Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics. Appl Phys Lett 2003;82:328–30. CrossrefGoogle Scholar
[64]
Menzel C, Rockstuhl C, Lederer F. Advanced jones calculus for the classification of periodic metamaterials. Phys Rev A 2010;82:053811. CrossrefGoogle Scholar
[65]
Luo W, Xiao S, He Q, Sun S, Zhou L. Photonic spin hall effect with nearly 100% efficiency. Adv Opt Mater 2015;3:1102–8. CrossrefGoogle Scholar
[66]
Pors A, Albrektsen O, Radko IP, Bozhevolnyi SI. Gap plasmon-based metasurfaces for total control of reflected light. Sci Rep 2013;3:2155. CrossrefPubMedGoogle Scholar
[67]
Li Z, Palacios E, Butun S, Aydin K. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting. Nano Lett 2015;15:1615–21. PubMedCrossrefGoogle Scholar
[68]
Jiang S-C, Xiong X, Hu Y-S, et al. High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection. Phys Rev B 2015;91:125421. CrossrefGoogle Scholar
[69]
Sun S, Yang K-Y, Wang C-M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett 2012;12:6223–9. CrossrefPubMedGoogle Scholar
[70]
Huang Y, Zhao Q, Kalyoncu SK, et al. Phase-gradient gap-plasmon metasurface based blazed grating for real time dispersive imaging. Appl Phys Lett 2014;104:161106. CrossrefGoogle Scholar
[71]
Farmahini-Farahani M, Mosallaei H. Birefringent reflectarray metasurface for beam engineering in infrared. Opt Lett 2013;38:462–4. CrossrefPubMedGoogle Scholar
[72]
Niu T, Withayachumnankul W, Upadhyay A, et al. Terahertz reflectarray as a polarizing beam splitter. Opt Express 2014;22:16148–60. PubMedCrossrefGoogle Scholar
[73]
Deshpande R, Pors A, Bozhevolnyi SI. Third-order gap plasmon based metasurfaces for visible light. Opt Express 2017;25:12508–17. PubMedCrossrefGoogle Scholar
[74]
Zhang L, Hao J, Qiu M, et al. Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array. Nanoscale 2014;6:12303–9. CrossrefPubMedGoogle Scholar
[75]
Gao S, Yue W, Park C-S, Lee S-S, Kim E-S, Choi D-Y. Aluminum plasmonic metasurface enabling a wavelength-insensitive phase gradient for linearly polarized visible light. ACS Photonics 2017;4:322–8. CrossrefGoogle Scholar
[76]
Li X, Xiao S, Cai B, He Q, Cui TJ, Zhou L. Flat metasurfaces to focus electromagnetic waves in reflection geometry. Opt Lett 2012;37:4940–2. CrossrefPubMedGoogle Scholar
[77]
Pors A, Nielsen MG, Eriksen RL, Bozhevolnyi SI. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett 2013;13:829–34. CrossrefPubMedGoogle Scholar
[78]
Boroviks S, Deshpande RA, Mortensen NA, Bozhevolnyi SI. Multifunctional meta-mirror: polarization splitting and focusing. ACS Photonics 2017 (in press). doi: 10.1021/acsphotonics.7b01091. Google Scholar
[79]
Yi H, Qu S-W, Chen BJ, Bai X, Ng KB, Chan CH. Flat terahertz reflective focusing metasurface with scanning ability. Sci Rep 2017;7:3478. CrossrefPubMedGoogle Scholar
[80]
Wang S, Wu PC, Su V-C, et al. Broadband achromatic optical metasurface devices. Nat Commun 2017;8:187. CrossrefPubMedGoogle Scholar
[81]
Aieta F, Genevet P, Kats MA, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 2012;12:4932–6. PubMedCrossrefGoogle Scholar
[82]
Ni X, Ishii S, Kildishev AV, Shalaev VM. Ultra-thin, planar, babinet-inverted plasmonic metalenses. Light Sci Appl 2013;2:e72. CrossrefGoogle Scholar
[83]
Larouche S, Smith DR. Reconciliation of generalized refraction with diffraction theory. Opt Lett 2012;37:2391–3. PubMedCrossrefGoogle Scholar
[84]
Aieta F, Kats MA, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science2015;347:1342–5. PubMedCrossrefGoogle Scholar
[85]
Khorasaninejad M, Aieta F, Kanhaiya P, et al. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett 2015;15:5358–62. PubMedCrossrefGoogle Scholar
[86]
Eisenbach O, Avayu O, Ditcovski R, Ellenbogen T. Metasurfaces based dual wavelength diffractive lenses. Opt Express 2015;23:3928–36. CrossrefPubMedGoogle Scholar
[87]
Khorasaninejad M, Shi Z, Zhu AY, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett 2017;17:1819–24. CrossrefPubMedGoogle Scholar
[88]
Chen WT, Yang KY, Wang CM, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 2013;14:225–30. PubMedGoogle Scholar
[89]
Huang Y-W, Chen WT, Tsai W-Y, et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett 2015;15:3122–7. PubMedCrossrefGoogle Scholar
[90]
Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 2015;10:308–12. PubMedCrossrefGoogle Scholar
[91]
Wen D, Yue F, Li G, et al. Helicity multiplexed broadband metasurface holograms. Nat Commun 2015;6:8241. CrossrefPubMedGoogle Scholar
[92]
Walther B, Helgert C, Rockstuhl C, et al. Spatial and spectral light shaping with metamaterials. Adv Mater 2012;24:6300–4. CrossrefPubMedGoogle Scholar
[93]
Ni X, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun 2013;4:2807. CrossrefGoogle Scholar
[94]
Yifat Y, Eitan M, Iluz Z, Hanein Y, Boag A, Scheuer J. Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays. Nano Lett 2014;14:2485–90. PubMedCrossrefGoogle Scholar
[95]
Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater 2010;9:193–204. CrossrefPubMedGoogle Scholar
[96]
Chalabi H, Schoen D, Brongersma ML. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett 2014;14:1374–80. PubMedCrossrefGoogle Scholar
[97]
Liu X, Tyler T, Starr T, Starr AF, Jokerst NM, Padilla WJ. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 2011;107:045901. CrossrefPubMedGoogle Scholar
[98]
Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 2012;41:2740–79. PubMedCrossrefGoogle Scholar
[99]
Guo CF, Sun T, Cao F, Liu Q, Ren Z. Metallic nanostructures for light trapping in energy-harvesting devices. Light Sci Appl 2014;3:e161. CrossrefGoogle Scholar
[100]
Ra’di Y, Simovski CR, Tretyakov SA. Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys Rev Appl 2015;3:037001. CrossrefGoogle Scholar
[101]
Cui Y, He Y, Jin Y, et al. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photon Rev 2014;8:495–520. CrossrefGoogle Scholar
[102]
Wang J, Chen Y, Chen X, Hao J, Yan M, Qiu M. Photothermal reshaping of gold nanoparticles in a plasmonic absorber. Opt Express 2011;19:14726–34. CrossrefGoogle Scholar
[103]
Nielsen MG, Pors A, Albrektsen O, Bozhevolnyi SI. Efficient absorption of visible radiation by gap plasmon resonators. Opt Express 2012;20:13311–9. PubMedCrossrefGoogle Scholar
[104]
Ding F, Dai J, Chen Y, Zhu J, Jin Y, Bozhevolnyi SI. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals. Sci Rep 2016;6:39445. PubMedCrossrefGoogle Scholar
[105]
Chen X, Chen Y, Yan M, Qiu M. Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 2012;6:2550–7. CrossrefPubMedGoogle Scholar
[106]
Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts Chem Res 2008;41:1578–86. CrossrefGoogle Scholar
[107]
Zhou H, Ding F, Jin Y, He S. Terahertz metamaterial modulators based on absorption. Prog Electromagn Res 2011;119:449–60. CrossrefGoogle Scholar
[108]
Shi Y, Chen X, Lou F, et al. All-optical switching of silicon disk resonator based on photothermal effect in metal–insulator–metal absorber. Opt Lett 2014;39:4431–4. PubMedCrossrefGoogle Scholar
[109]
Gong H, Chen X, Qu Y, Li Q, Yan M, Qiu M. Photothermal switching based on silicon Mach–Zehnder interferometer integrated with light absorber. IEEE Photonics J 2016;8:1–10. Google Scholar
[110]
Gong H, Yang Y, Chen X, et al. Gold nanoparticle transfer through photothermal effects in a metamaterial absorber by nanosecond laser. Sci Rep 2014;4:6080. Google Scholar
[111]
Zhu X, Vannahme C, Højlund-Nielsen E, Mortensen NA, Kristensen A. Plasmonic colour laser printing. Nat Nanotechnol 2015;11:325–9. CrossrefPubMedGoogle Scholar
[112]
Meng L, Zhao D, Ruan Z, Li Q, Yang Y, Qiu M. Optimized grating as an ultra-narrow band absorber or plasmonic sensor. Opt Lett 2014;39:1137–40. PubMedCrossrefGoogle Scholar
[113]
Aydin K, Ferry VE, Briggs RM, Atwater HA. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2011;2:517. CrossrefPubMedGoogle Scholar
[114]
Ding F, Cui Y, Ge X, Jin Y, He S. Ultra-broadband microwave metamaterial absorber. Appl Phys Lett 2012;100:103506. CrossrefGoogle Scholar
[115]
Chen K, Adato R, Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. ACS Nano 2012;6:7998–8006. PubMedCrossrefGoogle Scholar
[116]
Zhang B, Zhao Y, Hao Q, et al. Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Opt Express 2011;19:15221–8. PubMedCrossrefGoogle Scholar
[117]
Ding F, Jin Y, Li B, Cheng H, Mo L, He S. Ultrabroadband strong light absorption based on thin multilayered metamaterials. Laser Photon Rev 2014;8:946–53. CrossrefGoogle Scholar
[118]
Lu X, Wan R, Zhang T. Metal-dielectric-metal based narrow band absorber for sensing applications. Opt Express 2015;23:29842–7. PubMedCrossrefGoogle Scholar
[119]
Zhong S, Jiang W, Xu P, Liu T, Huang J, Ma Y. A radar-infrared bi-stealth structure based on metasurfaces. Appl Phys Lett 2017;110:063502. CrossrefGoogle Scholar
[120]
Hedayati MK, Javaherirahim M, Mozooni B, et al. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv Mater 2011;23:5410–4. PubMedCrossrefGoogle Scholar
[121]
Chen X, Gong H, Dai S, et al. Near-infrared broadband absorber with film-coupled multilayer nanorods. Opt Lett 2013;38:2247–9. PubMedCrossrefGoogle Scholar
[122]
Akselrod GM, Huang J, Hoang TB, et al. Large-area metasurface perfect absorbers from visible to near-infrared. Adv Mater 2015;27:8028–34. CrossrefPubMedGoogle Scholar
[123]
Chirumamilla M, Roberts AS, Ding F, et al. Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications. Opt Mater Express 2016;6:2704–14. CrossrefGoogle Scholar
[124]
Wang W, Qu Y, Du K, et al. Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals. Appl Phys Lett 2017;110:101101. CrossrefGoogle Scholar
[125]
Lin Y, Cui Y, Ding F, et al. Tungsten based anisotropic metamaterial as an ultra-broadband absorber. Opt Mater Express 2017;7:606–17. CrossrefGoogle Scholar
[126]
Xu T, Shi H, Wu Y-K, Kaplan AF, Ok JG, Guo LJ. Structural colors: from plasmonic to carbon nanostructures. Small 2011;7:3128–36. PubMedCrossrefGoogle Scholar
[127]
Kumar K, Duan H, Hegde RS, Koh SCW, Wei JN, Yang JKW. Printing colour at the optical diffraction limit. Nat Nanotechnol 2012;7:557–61. PubMedCrossrefGoogle Scholar
[128]
Gu Y, Zhang L, Yang JKW, Yeo SP, Qiu C-W. Color generation via subwavelength plasmonic nanostructures. Nanoscale 2015;7:6409–19. PubMedCrossrefGoogle Scholar
[129]
Kristensen A, Yang JKW, Bozhevolnyi SI, et al. Plasmonic colour generation. Nat Rev Mater 2016;2:16088. Google Scholar
[130]
Roberts AS, Pors A, Albrektsen O, Bozhevolnyi SI. Subwavelength plasmonic color printing protected for ambient use. Nano Lett 2014;14:783–7. CrossrefPubMedGoogle Scholar
[131]
Wang H, Wang X, Yan C, et al. Martin. Full color generation using silver tandem nanodisks. ACS Nano 2017;11:4419–27. CrossrefPubMedGoogle Scholar
[132]
Miyata M, Hatada H, Takahara J. Full-color subwavelength printing with gap-plasmonic optical antennas. Nano Lett 2016;16:3166–72. PubMedCrossrefGoogle Scholar
[133]
Pors A, Nielsen MG, Sergey I. Bozhevolnyi. Broadband plasmonic half-wave plates in reflection. Opt Lett 2013;38:513–5. PubMedCrossrefGoogle Scholar
[134]
Yang Y, Wang W, Moitra P, Kravchenko II, Briggs DP, Valentine J. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 2014;14:1394–9. CrossrefPubMedGoogle Scholar
[135]
Ding F, Wang Z, He S, Shalaev VM, Kildishev AV. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS Nano 2015;9:4111–9. CrossrefGoogle Scholar
[136]
Wu PC, Tsai W-Y, Chen WT, et al. Versatile polarization generation with an aluminum plasmonic metasurface. Nano Lett 2017;17:445–52. PubMedCrossrefGoogle Scholar
[137]
Markovich DL, Andryieuski A, Zalkovskij M, Malureanu R, Lavrinenko AV. Metamaterial polarization converter analysis: limits of performance. Appl Phys B 2013;112:143–52. CrossrefGoogle Scholar
[138]
Pors A, Bozhevolnyi SI. Efficient and broadband quarter-wave plates by gap-plasmon resonators. Opt Express 2013;21:2942–52. CrossrefPubMedGoogle Scholar
[139]
Chen Z, Wang C, Xu F, Lou Y, Cao B, Li X. Reflective plasmonic waveplates based on metal-insulator-metal subwavelength rectangular annular arrays. Photonics Nanostruct Fundam Appl 2014;12:189–98. CrossrefGoogle Scholar
[140]
Jiang S-C, Xiong X, Hu Y-S, et al. Controlling the polarization state of light with a dispersion-free metastructure. Phys Rev X 2014;4:021026. Google Scholar
[141]
Hao J, Yuan Y, Ran L, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys Rev Lett 2007;99:063908. CrossrefPubMedGoogle Scholar
[142]
Hao J, Ren Q, An Z, et al. Optical metamaterial for polarization control. Phys Rev A 2009;80:023807. CrossrefGoogle Scholar
[143]
Dai Y, Ren W, Cai H, Ding H, Pan N, Wang X. Realizing full visible spectrum metamaterial half-wave plates with patterned metal nanoarray/insulator/metal film structure. Opt Express 2014;22:7465–72. PubMedCrossrefGoogle Scholar
[144]
Lévesque Q, Makhsiyan M, Bouchon P, et al. Plasmonic planar antenna for wideband and efficient linear polarization conversion. Appl Phys Lett 2014;104:111105. CrossrefGoogle Scholar
[145]
Ribaudo T, Taylor A, Nguyen B-M, Bethke D, Shaner EA. High efficiency reflective waveplates in the midwave infrared. Opt Express 2014;22:2821–9. PubMedCrossrefGoogle Scholar
[146]
Guo Y, Wang Y, Pu M, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Sci Rep 2015;5:8434. CrossrefPubMedGoogle Scholar
[147]
Yu N, Aieta F, Genevet P, Kats MA, Gaburro Z, Capasso F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett 2012;12:6328–33. PubMedCrossrefGoogle Scholar
[148]
Shaltout A, Liu J, Shalaev VM, Kildishev AV. Optically active metasurface with non-chiral plasmonic nanoantennas. Nano Lett 2014;14:4426–31. PubMedCrossrefGoogle Scholar
[149]
Shaltout A, Liu J, Kildishev A, Shalaev V. Photonic spin hall effect in gap plasmon metasurfaces for on-chip chiroptical spectroscopy. Optica 2015;2:860–3. CrossrefGoogle Scholar
[150]
Pors A, Nielsen MG, Bozhevolnyi SI. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica 2015;2:716–23. CrossrefGoogle Scholar
[151]
Pors A, Bozhevolnyi SI. Waveguide metacouplers for in-plane polarimetry. Phys Rev Appl 2016;5:064015. CrossrefGoogle Scholar
[152]
Chen WT, Török P, Foreman MR, et al. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology 2016;27:224002. PubMedCrossrefGoogle Scholar
[153]
Maguid E, Yulevich I, Veksler D, Kleiner V, Brongersma ML, Hasman E. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 2016;352:1202–6. CrossrefPubMedGoogle Scholar
[154]
Ding F, Pors A, Chen Y, Zenin VA, Bozhevolnyi SI. Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces. ACS Photonics 2017;4:943–9. CrossrefGoogle Scholar
[155]
Maier SA. Plasmonics: fundamentals and applications. Berlin, Springer Science & Business Media, 2007. Google Scholar
[156]
Wang J, Qu S, Ma H, et al. High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces. Appl Phys Lett 2012;101:201104. CrossrefGoogle Scholar
[157]
Qu C, Xiao S, Sun S, He Q, Zhou L. A theoretical study on the conversion efficiencies of gradient meta-surfaces. Europhys Lett 2013;101:54002. CrossrefGoogle Scholar
[158]
Sun W, He Q, Sun S, Zhou L. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light Sci Appl 2016;5:e16003. CrossrefGoogle Scholar
[159]
Pors A, Nielsen MG, Bernardin T, Weeber JC, Bozhevolnyi SI. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light Sci Appl 2014;3:e197. CrossrefGoogle Scholar
[160]
Ding F, Deshpande R, Bozhevolnyi SI. Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence. Light Sci Appl 2018;7:e17178. CrossrefGoogle Scholar
[161]
Mühlenbernd H, Georgi P, Pholchai N, et al. Amplitude- and phase-controlled surface plasmon polariton excitation with metasurfaces. ACS Photonics 2016;3:124–9. CrossrefGoogle Scholar
[162]
Duan J, Guo H, Dong S, et al. High-efficiency chirality-modulated spoof surface plasmon meta-coupler. Sci Rep 2017;7:1354. PubMedCrossrefGoogle Scholar
[163]
Boardman AD, Grimalsky VV, Kivshar YS, et al. Active and tunable metamaterials. Laser Photon Rev 2011;5:287–307. CrossrefGoogle Scholar
[164]
Zhu H, Yi F, Cubukcu E. Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances. Nat Photon 2016;10:709–14. CrossrefGoogle Scholar
[165]
Abad PC, Ou J-Y, Plum E, Zheludev N, et al. Electro-mechanical light modulator based on controlling the interaction of light with a metasurface. Sci Rep 2017;7:5405. CrossrefPubMedGoogle Scholar
[166]
Liu L, Kang L, Mayer TS, Werner DH. Hybrid metamaterials for electrically triggered multifunctional control. Nat Commun 2016;7:13236. PubMedGoogle Scholar
[167]
Huang Y-W, Lee HWH, Sokhoyan R, et al. Gate-tunable conducting oxide metasurfaces. Nano Lett 2016;16:5319–25. CrossrefPubMedGoogle Scholar
[168]
Yao Y, Shankar R, Kats MA, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett 2014;14:6526–32. CrossrefPubMedGoogle Scholar
[169]
Emani NK, Kildishev AV, Shalaev VM, Boltasseva A. Graphene: a dynamic platform for electrical control of plasmonic resonance. Nanophotonics 2015;4:214–23. Google Scholar
[170]
Sherrott MC, Hon PWC, Fountaine KT, et al. Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces. Nano Lett 2017;17:3027–34. CrossrefPubMedGoogle Scholar
[171]
Wang Z, Li T, Almdal K, Mortensen NA, Xiao S, Ndoni S. Experimental demonstration of graphene plasmons working close to the near-infrared window. Opt Lett 2016;41:5345–8. CrossrefPubMedGoogle Scholar
[172]
Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nat Mater 2007;6:824–32. PubMedCrossrefGoogle Scholar
[173]
Wuttig M, Bhaskaran H, Taubner T. Phase-change materials for non-volatile photonic applications. Nat Photon 2017;11:465–76. CrossrefGoogle Scholar
[174]
Tittl A, Michel A-KU, Schäferling M, et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv Mater 2015;27:4597–603. CrossrefPubMedGoogle Scholar
[175]
Wang Q, Rogers ETF, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat Photon 2016;10:60–5. CrossrefGoogle Scholar
[176]
Liu M, Hwang HY, Tao H, et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 2012;487:345–8. CrossrefPubMedGoogle Scholar
[177]
Kats MA, Blanchard R, Zhang S, et al. Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance. Phys Rev X 2013;3:041004. Google Scholar
[178]
Zhu Z, Evans PG, Haglund Jr RF, Valentine JG. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett 2017;17:4881–5. CrossrefPubMedGoogle Scholar
[179]
Ding F, Zhong S, Bozhevolnyi SI. Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies. Adv Opt Mater 2018;1701204. https://onlinelibrary.wiley.com/doi/abs/10.1002/adom.201701204.
[180]
Yi F, Shim E, Zhu AY, Zhu H, Reed JC, Cubukcu E. Voltage tuning of plasmonic absorbers by indium tin oxide. Appl Phys Lett 2013;102:221102. CrossrefGoogle Scholar
[181]
Park J, Kang J-H, Kim SJ, Liu X, Brongersma ML. Dynamic reflection phase and polarization control in metasurfaces. Nano Lett 2017;17:407–13. PubMedCrossrefGoogle Scholar
[182]
Xu H-X, Ma S, Luo W, et al. Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces. Appl Phys Lett 2016;109:193506. CrossrefGoogle Scholar
[183]
Xu H-X, Sun S, Tang S, et al. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces. Sci Rep 2016;6:27503. CrossrefPubMedGoogle Scholar
[184]
Xu H-X, Tang S, Ma S, et al. Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch. Sci Rep 2016;6:38255. CrossrefPubMedGoogle Scholar
[185]
Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N. Performing mathematical operations with metamaterials. Science 2014;343:160–3. CrossrefPubMedGoogle Scholar
[186]
Farmahini-Farahani M, Cheng J, Mosallaei H. Metasurfaces nanoantennas for light processing. J Opt Soc Am B 2013;30:2365–70. CrossrefGoogle Scholar
[187]
Pors A, Nielsen MG, Bozhevolnyi SI. Analog computing using reflective plasmonic metasurfaces. Nano Lett 2015;15:791–7. PubMedCrossrefGoogle Scholar
[188]
Chizari A, Abdollahramezani S, Jamali MV, Salehi JA. Analog optical computing based on a dielectric meta-reflect array. Opt lett 2016;41:3451–4. PubMedCrossrefGoogle Scholar
[189]
Ni X, Wong ZJ, Mrejen M, Wang Y, Zhang X. An ultrathin invisibility skin cloak for visible light. Science 2015;349:1310–4. CrossrefPubMedGoogle Scholar
[190]
Yue F, Wen D, Zhang C, et al. Multichannel polarization-controllable superpositions of orbital angular momentum states. Adv Mater 2017;29:1603838. CrossrefGoogle Scholar
[191]
Lee J, Tymchenko M, Argyropoulos C, et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 2014;511:65–9. CrossrefPubMedGoogle Scholar
[192]
Zhang J, Mei ZL, Zhang WR, Yang F, Cui TJ. An ultrathin directional carpet cloak based on generalized Snell’s law. Appl Phys Lett 2013;103:151115. CrossrefGoogle Scholar
[193]
Estakhri NM, Alù A. Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces. IEEE Antennas Wireless Propag Lett 2014;13:1775–8. CrossrefGoogle Scholar
[194]
Yang Y, Jing L, Zheng B, et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase. Adv Mater 2016;28:6866–71. CrossrefPubMedGoogle Scholar
[195]
Orazbayev B, Estakhri NM, Alù A, Beruete M. Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves. Adv Opt Mater 2017;5:1600606. CrossrefGoogle Scholar
[196]
Bliokh KY, Rodrguez-Fortuño FJ, Nori F, Zayats AV. Spin-orbit interactions of light. Nat Photon 2015;9:796–808. CrossrefGoogle Scholar
[197]
Yue F, Wen D, Xin J, Gerardot BD, Li J, Chen X. Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics 2016;3:1558–63. CrossrefGoogle Scholar
[198]
Lassiter JB, Chen X, Liu X, et al. Third-harmonic generation enhancement by film-coupled plasmonic stripe resonators. ACS Photonics 2014;1:1212–7. CrossrefGoogle Scholar
[199]
Shen S, Meng L, Zhang Y, et al. Plasmon-enhanced second-harmonic generation nanorulers with ultrahigh sensitivities. Nano Lett 2015;15:6716–21. PubMedCrossrefGoogle Scholar
[200]
Kruk S, Weismann M, Bykov AY, et al. Enhanced magnetic second-harmonic generation from resonant metasurfaces. ACS Photonics 2015;2:1007–12. CrossrefGoogle Scholar
[201]
Butet J, Brevet P-F, Martin OJF. Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications. ACS Nano 2015;9:10545–62. CrossrefPubMedGoogle Scholar
[202]
Wang F, Martinson ABF, Harutyunyan H. Efficient nonlinear metasurface based on nonplanar plasmonic nanocavities. ACS Photonics 2017;4:1188–94. CrossrefGoogle Scholar
[203]
Lee J, Nookala N, Gomez-Diaz JS, et al. Ultrathin second-harmonic metasurfaces with record-high nonlinear optical response. Adv Opt Mater 2016;4:664–70. CrossrefGoogle Scholar
[204]
Nookala N, Lee J, Tymchenko M, et al. Ultrathin gradient nonlinear metasurface with a giant nonlinear response. Optica 2016;3:283–8. CrossrefGoogle Scholar
[205]
Cai T, Tang SW, Wang GM, et al. High-performance bifunctional metasurfaces in transmission and reflection geometries. Adv Opt Mater 2017;5:1600506. CrossrefGoogle Scholar
[206]
Oulton RF, Sorger VJ, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale. Nature 2009;461:629–32. PubMedCrossrefGoogle Scholar
[207]
Falk AL, Koppens FHL, Chun LY, et al. Near-field electrical detection of optical plasmons and single-plasmon sources. Nat Phys 2009;5:475–9. CrossrefGoogle Scholar
Comments (0)