[1]

Holloway CL, Kuester EF, Gordon JA, O’Hara JF, Booth J, Smith DR. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag Mag 2012;54:10–35. CrossrefGoogle Scholar

[2]

Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science 2013;339. Article number: 1232009. Google Scholar

[3]

Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014;13:139–50. PubMedCrossrefGoogle Scholar

[4]

Estakhri NM, Alu A. Recent progress in gradient metasurfaces. J Opt Soc Am B 2016;33:A21–A30. CrossrefGoogle Scholar

[5]

Jahani S, Jacob Z. All-dielectric metamaterials. Nat Nanotechnol 2016;11:23–36. CrossrefPubMedGoogle Scholar

[6]

Lalanne P, Chavel P. Metalenses at visible wavelengths: past, present, perspectives. Laser Photon Rev 2017;11:1600295. CrossrefGoogle Scholar

[7]

Staude I, Schilling J. Metamaterial-inspired silicon nanophotonics. Nat Photon 2017;11:274–84. CrossrefGoogle Scholar

[8]

Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 2017;4:139–52. CrossrefGoogle Scholar

[9]

Hsiao H-H, Chu CH, Tsai DP. Fundamentals and applications of metasurfaces. Small Methods 2017;1:1600064. CrossrefGoogle Scholar

[10]

Qiao P, Yang W, Chang-Hasnain CJ. Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals. Adv Opt Photonics 2018;10:180–245. CrossrefGoogle Scholar

[11]

Wong ZJ, Wang Y, O’Brien K, et al. Optical and acoustic metamaterials: superlens, negative refractive index and invisibility cloak. J Opt 2017;19:084007. CrossrefGoogle Scholar

[12]

Kruk S, Kivshar Y. Functional meta-optics and nanophotonics governed by mie resonances. ACS Photonics 2017;4:2638–49. CrossrefGoogle Scholar

[13]

Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 2015;10:937–43. CrossrefPubMedGoogle Scholar

[14]

Kamali SM, Arbabi E, Arbabi A, Horie Y, Faraji-Dana MS, Faraon A. Angle-multiplexed metasurfaces: Encoding independent wavefronts in a single metasurface under different illumination angles. Phys Rev X 2017;7:041056. Google Scholar

[15]

Huang J, Encinar JA. Reflectarray Antennas. Hoboken, New Jersey, USA, John Wiley & Sons, Inc., 2007. Google Scholar

[16]

Pozar DM, Metzler TA. Analysis of a reflectarray antenna using microstrip patches of variable size. Electron Lett 1993;29:657–8. CrossrefGoogle Scholar

[17]

Yu N, Genevet P, Kats MA, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011;334:333–7. CrossrefPubMedGoogle Scholar

[18]

Malagisi CS. Microstrip disc element reflect array. In EASCON ’78; Electronics and Aerospace Systems Convention, IEEE, 1978, 186–92. Google Scholar

[19]

Huang J, Pogorzelski RJ. A ka-band microstrip reflectarray with elements having variable rotation angles. IEEE Trans Antennas Propag 1998;46:650–6. CrossrefGoogle Scholar

[20]

Fairchild RC, Fienup JR. Computer-originated aspheric holographic optical elements. Opt Eng 1982;21:211133–40. CrossrefGoogle Scholar

[21]

Lesem LB, Hirsch PM, Jordan JA. The kinoform: a new wavefront reconstruction device. IBM J Res Dev 1969;13:150–5. CrossrefGoogle Scholar

[22]

O’Shea DC, Suleski TJ, Kathman AD, Prather DW. Diffractive optics: design, fabrication, and test. Bellingham, Washington, USA, SPIE Press, 2004. Google Scholar

[23]

Stork W, Streibl N, Haidner H, Kipfer P. Artificial distributed-index media fabricated by zero-order gratings. Opt Lett 1991;16:1921–3. PubMedCrossrefGoogle Scholar

[24]

Farn MW. Binary gratings with increased efficiency. Appl Opt 1992;31:4453–8. PubMedCrossrefGoogle Scholar

[25]

Swanson GJ. Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements. Tech Rep, DTIC Document, 1991. Google Scholar

[26]

Swanson GJ. Binary optics technology: the theory and design of multi-level diffractive optical elements. Tech Rep, DTIC Document, 1989. Google Scholar

[27]

Welford WT. Aplanatic hologram lenses on spherical surfaces. Opt Commun 1973;9:268–9. CrossrefGoogle Scholar

[28]

Buralli DA, Morris GM. Design of diffractive singlets for monochromatic imaging. Appl Opt 1991;30:2151–8. PubMedCrossrefGoogle Scholar

[29]

Buralli DA, Morris GM. Design of a wide field diffractive landscape lens. Appl Opt 1989;28:3950–9. CrossrefPubMedGoogle Scholar

[30]

https://www.rpcphotonics.com/ (access date: 12/11/2017).

[31]

Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraon A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 2016;3:628–33. CrossrefGoogle Scholar

[32]

Fattal D, Li J, Peng Z, Fiorentino M, Beausoleil RG. Flat dielectric grating reflectors with focusing abilities. Nat Photon 2010;4:466–70. CrossrefGoogle Scholar

[33]

Lu F, Sedgwick FG, Karagodsky V, Chase C, Chang-Hasnain CJ. Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. Opt Express 2010;18:12606–14. CrossrefPubMedGoogle Scholar

[34]

Fattal D, Li J, Peng Z, Fiorentino M, Beausoleil RG. A silicon lens for integrated free-space optics. Paper ITuD2, In: Proceedings Advanced Photonics, Toronto, Canada, 2011. Google Scholar

[35]

Zhao Y, Alu A. Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys Rev B 2011;84:205428. CrossrefGoogle Scholar

[36]

Zhao Y, Engheta N, Alu A. Homogenization of plasmonic metasurfaces modeled as transmission-line loads. Metamaterials 2011;5:90–6. CrossrefGoogle Scholar

[37]

Aieta F, Genevet P, Kats MA, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 2012;12:4932–6. PubMedCrossrefGoogle Scholar

[38]

Huang L, Chen X, Mühlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett 2012;12:5750–5. CrossrefPubMedGoogle Scholar

[39]

Lin D, Fan P, Hasman E, Brongersma ML. Dielectric gradient metasurface optical elements. Science 2014;345:298–302. CrossrefPubMedGoogle Scholar

[40]

Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett 2013;110:197401. PubMedCrossrefGoogle Scholar

[41]

Yu YF, Zhu AY, Paniagua-Domínguez R, Fu YH, Luk’yanchuk B, Kuznetsov AI. High-transmission dielectric metasurface with 2*π* phase control at visible wavelengths. Laser Photon Rev 2015;9:412–18. CrossrefGoogle Scholar

[42]

Kamali SM, Arbabi E, Arbabi A, Horie Y, Faraon A. Highly tunable elastic dielectric metasurface lenses. Laser Photon Rev 2016;10:1002–8. CrossrefGoogle Scholar

[43]

Di Falco A, Zhao Y, Alu A. Optical metasurfaces with robust angular response on flexible substrates. Appl Phys Lett 2011;99:163110. CrossrefGoogle Scholar

[44]

Yu N, Aieta F, Genevet P, Kats MA, Gaburro Z, Capasso F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett 2012;12:6328–33. PubMedCrossrefGoogle Scholar

[45]

Li G, Kang M, Chen S, et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Lett 2013;13:4148–51. PubMedCrossrefGoogle Scholar

[46]

Ni X, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun 2013;4:2807. CrossrefGoogle Scholar

[47]

Pors A, Bozhevolnyi SI. Plasmonic metasurfaces for efficient phase control in reflection. Opt Express 2013;21:27438–51. PubMedCrossrefGoogle Scholar

[48]

Pors A, Nielsen MG, Eriksen RL, Bozhevolnyi SI. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett 2013;13:829–34. CrossrefPubMedGoogle Scholar

[49]

Datthanasombat S, Prata A, Arnaro LR, Harrell JA, Spitz S, Perret J. Layered lens antennas. In Antenn. Propag. Soc. Symp., vol. 2, IEEE, 2001, 777–80. Google Scholar

[50]

Monticone F, Estakhri NM, Alu A. Full control of nanoscale optical transmission with a composite metascreen. Phys Rev Lett 2013;110:203903. PubMedCrossrefGoogle Scholar

[51]

Arbabi A, Faraon A. Fundamental limits of ultrathin metasurfaces. Sci Rep 2017;7:43722. CrossrefPubMedGoogle Scholar

[52]

Hasman E, Kleiner V, Biener G, Niv A. Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics. Appl Phys Lett 2003;82:328–30. CrossrefGoogle Scholar

[53]

Epstein A, Eleftheriades GV. Floquet-Bloch analysis of refracting Huygens metasurfaces. Phys Rev B 2014;90:235127. CrossrefGoogle Scholar

[54]

Epstein A, Eleftheriades GV. Passive lossless Huygens metasurfaces for conversion of arbitrary source field to directive radiation. IEEE Trans Antennas Propag 2014;62:5680–95. CrossrefGoogle Scholar

[55]

Kim M, Wong AMH, Eleftheriades GV. Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients. Phys Rev X 2014;4:041042. Google Scholar

[56]

Jia SL, Wan X, Fu XJ, Zhao YJ, Cui TJ. Low-reflection beam refractions by ultrathin Huygens’ metasurface. AIP Adv 2015;5:067102. CrossrefGoogle Scholar

[57]

Epstein A, Wong JPS, Eleftheriades GV. Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures. Nat Commun 2016;7:10360. CrossrefPubMedGoogle Scholar

[58]

Epstein A, Eleftheriades GV. Huygens’ metasurfaces via the equivalence principle: design and applications. J Opt Soc Am B 2016;33:A31–50. CrossrefGoogle Scholar

[59]

Staude I, Miroshnichenko AE, Decker M, et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 2013;7:7824–32. PubMedCrossrefGoogle Scholar

[60]

Campione S, Basilio LI, Warne LK, Sinclair MB. Tailoring dielectric resonator geometries for directional scattering and Huygens’ metasurfaces. Opt Express 2015;23:2293–307. PubMedCrossrefGoogle Scholar

[61]

Decker M, Staude I, Falkner M, et al. High-efficiency dielectric Huygens’ surfaces. Adv Opt Mater 2015;3:813–20. CrossrefGoogle Scholar

[62]

Asadchy V, Albooyeh M, Tretyakov S. Optical metamirror: all-dielectric frequency-selective mirror with fully controllable reflection phase. J Opt Soc Am B 2016;33:A16–20. CrossrefGoogle Scholar

[63]

Zhao W, Jiang H, Liu B, et al. Dielectric Huygens’ metasurface for high-efficiency hologram operating in transmission mode. Sci Rep 2016;6:30613. PubMedCrossrefGoogle Scholar

[64]

Forouzmand A, Mosallaei H. All-dielectric c-shaped nanoantennas for light manipulation: tailoring both magnetic and electric resonances to the desire. Adv Opt Mater 2017;5:1700147. CrossrefGoogle Scholar

[65]

Arbabi A, Bagheri M, Ball AJ, Horie Y, Fattal D, Faraon A. Controlling the phase front of optical fiber beams using high contrast metastructures. In Conference on Lasers and Electro-Optics (CLEO), STu3M.4, 2014. Google Scholar

[66]

Vo S, Fattal D, Sorin WV, et al. Sub-wavelength grating lenses with a twist. IEEE Photon Technol Lett 2014;26:1375–8. CrossrefGoogle Scholar

[67]

Arbabi A, Horie Y, Ball AJ, Bagheri M, Faraon A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun 2015;6:7069. PubMedCrossrefGoogle Scholar

[68]

Arbabi A, Briggs RM, Horie Y, Bagheri M, Faraon A. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers. Opt Express 2015;23:33310–7. CrossrefPubMedGoogle Scholar

[69]

Zhan A, Colburn S, Trivedi R, Fryett TK, Dodson CM, Majumdar A. Low-contrast dielectric metasurface optics. ACS Photonics 2016;3:209–14. CrossrefGoogle Scholar

[70]

Kruk S, Hopkins B, Kravchenko II, Miroshnichenko A, Neshev DN, Kivshar YS. Invited article: Broadband highly efficient dielectric metadevices for polarization control. APL Photonics 2016;1:030801. CrossrefGoogle Scholar

[71]

Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY, Capasso A. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 2016;352:1190–4. PubMedCrossrefGoogle Scholar

[72]

Paniagua-Dominguez R, Yu YF, Khaidarov E, et al. A metalens with near-unity numerical aperture. Nano Lett Article ASAP 2018;18:2124–32. CrossrefGoogle Scholar

[73]

Chen BH, Wu PC, Su VC, et al. GaN metalens for pixel-level full-color routing at visible light. Nano Lett 2017;17:6345–52. PubMedCrossrefGoogle Scholar

[74]

Wang B, Dong F, Li QT, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett 2016;16:5235–40. PubMedCrossrefGoogle Scholar

[75]

Astilean S, Lalanne P, Chavel P, Cambril E, Launois H. High-efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633 nm. Opt Lett 1998;23:552–4. CrossrefGoogle Scholar

[76]

Lalanne P, Astilean S, Chavel P, Cambril E, Launois H. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt Lett 1998;23:1081–3. PubMedCrossrefGoogle Scholar

[77]

Lalanne P. Waveguiding in blazed-binary diffractive elements. J Opt Soc Am A 1999;16:2517–20. CrossrefGoogle Scholar

[78]

Lalanne P, Astilean S, Chavel P, Cambril E, Launois H. Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J Opt Soc Am A 1999;16:1143–56. CrossrefGoogle Scholar

[79]

Mosallaei H, Sarabandi K. A one-layer ultra-thin meta-surface absorber. In Antenn. Propag. Soc. Symp., vol. 1B, 615–8, IEEE, 2005. Google Scholar

[80]

Martinez I, Panaretos AH, Werner DH, Oliveri G, Massa A. Ultra-thin reconfigurable electromagnetic metasurface absorbers. In 7th European Conference on Antennas and Propagation (EuCAP), 2013, 1843–7. Google Scholar

[81]

Yao Y, Shankar R, Kats MA, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett 2014;14:6526–32. CrossrefPubMedGoogle Scholar

[82]

Jung JY, Lee J, Choi D-G, et al. Wavelength-selective infrared metasurface absorber for multispectral thermal detection. IEEE Photon J 2015;7:1–10. CrossrefGoogle Scholar

[83]

Yang Z, Zhu BO, Feng Y. Free space electromagnetic wave modulation using tunable metasurface absorber. In Asia-Pacific Microwave Conference (APMC), vol. 2015;1:1–3. Google Scholar

[84]

Radi Y, Asadchy VS, Kosulnikov SU, et al. Full light absorption in single arrays of spherical nanoparticles. ACS Photonics 2015;2:653–60. CrossrefGoogle Scholar

[85]

Azad AK, Kort-Kamp WJ, Sykora M, et al. Metasurface broadband solar absorber. Sci Rep 2016;6:20347. CrossrefPubMedGoogle Scholar

[86]

Guo W, Liu Y, Han T. Ultra-broadband infrared metasurface absorber. Opt Express 2016;24:20586–92. PubMedCrossrefGoogle Scholar

[87]

Kim SJ, Park J, Esfandyarpour M, Pecora EF, Kik PG, Brongersma ML. Superabsorbing, artificial metal films constructed from semiconductor nanoantennas. Nano Lett 2016;16:3801–8. PubMedCrossrefGoogle Scholar

[88]

Luo Z, Long J, Chen X, Sievenpiper D. Electrically tunable metasurface absorber based on dissipating behavior of embedded varactors. Appl Phys Lett 2016;109:071107. CrossrefGoogle Scholar

[89]

Wan C, Ho Y, Nunez-Sanchez S, et al. A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications. Nano Energy 2016;26:392–7. CrossrefGoogle Scholar

[90]

Jung J-Y, Song K, Choi JH, et al. Infrared broadband metasurface absorber for reducing the thermal mass of a microbolometer. Sci Rep 2017;7:430. CrossrefPubMedGoogle Scholar

[91]

Li A, Kim S, Luo Y, Li Y, Long J, Sievenpiper DF. High-power transistor-based tunable and switchable metasurface absorber. IEEE Trans Microw Theory Tech 2017;65:2810–8. CrossrefGoogle Scholar

[92]

Sun Z, Zhao J, Zhu B, Jiang T, Feng Y. Selective wave-transmitting electromagnetic absorber through composite metasurface. AIP Adv 2017;7:115017. CrossrefGoogle Scholar

[93]

Tang B, Li Z, Palacios E, Liu Z, Butun S, Aydin K. Chiral-selective plasmonic metasurface absorbers operating at visible frequencies. IEEE Photon Technol Lett 2017;29:295–8. CrossrefGoogle Scholar

[94]

Magnusson R, Wang S. Optical guided-mode resonance filter. US Patent 5,216,680, 1993. Google Scholar

[95]

Shin D, Tibuleac S, Maldonado TA, Magnusson R. Thin-film optical filters with diffractive elements and waveguides. Opt Eng 1998;37:2634–46. CrossrefGoogle Scholar

[96]

Shokooh-Saremi M, Magnusson R. Particle swarm optimization and its application to the design of diffraction grating filters. Opt Lett 2007;32:894–6. CrossrefPubMedGoogle Scholar

[97]

Ortiz JD, Baena JD, Marques R, Medina F. A band-pass/stop filter made of SRRs and C-SRRs. In IEEE International Symposium on Antennas and Propagation (APSURSI), 2011, 2669–72. Google Scholar

[98]

Ellenbogen T, Seo K, Crozier KB. Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett 2012;12:1026–31. CrossrefPubMedGoogle Scholar

[99]

Ortiz JD, Baena JD, Losada V, Medina F, Marqués R, Araque Quijano JL. Self-complementary metasurface for designing narrow band pass/stop filters. IEEE Microw Wirel Compon Lett 2013;23:291–3. CrossrefGoogle Scholar

[100]

Wang Y, Stellinga D, Klemm AB, Reardon CP, Krauss TF. Tunable optical filters based on silicon nitride high contrast gratings. IEEE J Sel Top Quantum Electron 2015;21:108–13. CrossrefGoogle Scholar

[101]

Horie Y, Arbabi A, Han S, Faraon A. High resolution on-chip optical filter array based on double subwavelength grating reflectors. Opt Express 2015;23:29848–54. CrossrefPubMedGoogle Scholar

[102]

Horie Y, Arbabi A, Arbabi E, Kamali SM, Faraon A. Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures. Opt Express 2016;24:11677–82. CrossrefPubMedGoogle Scholar

[103]

Horie Y, Han S, Lee JY, et al. Visible wavelength color filters using dielectric subwavelength gratings for backside-illuminated CMOS image sensor technologies. Nano Lett 2017;17:3159–64. PubMedCrossrefGoogle Scholar

[104]

Yue W, Gao S, Lee S-S, Kim E-S, Choi D-Y. Subtractive color filters based on a silicon-aluminum hybrid-nanodisk metasurface enabling enhanced color purity. Sci Rep 2016;6:29756. CrossrefPubMedGoogle Scholar

[105]

Yamada K, Lee KJ, Ko YH, et al. Flat-top narrowband filters enabled by guided-mode resonance in two-level waveguides. Opt Lett 2017;42:4127–30. PubMedCrossrefGoogle Scholar

[106]

Limonov MF, Rybin MV, Poddubny AN, Kivshar YS. Fano resonances in photonics. Nat Photon 2017;11:543–54. CrossrefGoogle Scholar

[107]

Lee J, Tymchenko M, Argyropoulos C, et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 2014;511:65–9. CrossrefPubMedGoogle Scholar

[108]

Tymchenko M, Gomez-Diaz JS, Lee J, Nookala N, Belkin MA, Alù A. Gradient nonlinear Pancharatnam-Berry metasurfaces. Phys Rev Lett 2015;115:207403. CrossrefPubMedGoogle Scholar

[109]

Wolf O, Campione S, Benz A, et al. Phased-array sources based on nonlinear metamaterial nanocavities. Nat Commun 2015;6:7667. CrossrefPubMedGoogle Scholar

[110]

Camacho-Morales R, Rahmani M, Kruk S, et al. Nonlinear generation of vector beams from AlGaAs nanoantennas. Nano Lett 2016;16:7191–7. CrossrefPubMedGoogle Scholar

[111]

Nookala N, Lee J, Gomez-Diaz JS, et al. Ultrathin gradient nonlinear metasurface with a giant nonlinear response. Optica 2016;3:283–8. CrossrefGoogle Scholar

[112]

Jafar-Zanjani S, Cheng J, Liberman V, Chou JB, Mosallaei H. Large enhancement of third-order nonlinear effects with a resonant all-dielectric metasurface. AIP Adv 2016;6:115213. CrossrefGoogle Scholar

[113]

Liu S, Sinclair MB, Saravi S, et al. Resonantly enhanced second-harmonic generation using III–V semiconductor all-dielectric metasurfaces. Nano Lett 2016;16:5426–32. CrossrefPubMedGoogle Scholar

[114]

Makarov SV, Petrov MI, Zywietz U, et al. Efficient second-harmonic generation in nanocrystalline silicon nanoparticles. Nano Lett 2017;17:3047–53. PubMedCrossrefGoogle Scholar

[115]

Miroshnichenko AE, Evlyukhin AB, Yu YF, et al. Nonradiating anapole modes in dielectric nanoparticles. Nat Commun 2015;6:8069. PubMedCrossrefGoogle Scholar

[116]

Wu PC, Liao CY, Savinov V, et al. Optical anapole metamaterial. ACS Nano 2018;12:1920–7. CrossrefPubMedGoogle Scholar

[117]

West PR, Stewart JL, Kildishev AV, et al. All-dielectric subwavelength metasurface focusing lens. Opt Express 2014;22:26212–21. PubMedCrossrefGoogle Scholar

[118]

Khorasaninejad M, Zhu AY, Roques-Carmes C, et al. Polarization-insensitive metalenses at visible wavelengths. Nano Lett 2016;16:7229–34. PubMedCrossrefGoogle Scholar

[119]

Kamali SM, Arbabi A, Arbabi E, Horie Y, Faraon A. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nat Commun 2016;7:11618. CrossrefPubMedGoogle Scholar

[120]

Klemm AB, Stellinga D, Martins ER, et al. Experimental high numerical aperture focusing with high contrast gratings. Opt Lett 2013;38:3410–3. CrossrefPubMedGoogle Scholar

[121]

Yang Y, Wang W, Moitra P, Kravchenko II, Briggs DP, Valentine J. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 2014;14:1394–9. CrossrefPubMedGoogle Scholar

[122]

Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraon A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 2017;4:625–32. CrossrefGoogle Scholar

[123]

Arbabi A, Arbabi E, Horie Y, Kamali SM, Faraon A. Planar metasurface retroreflector. Nat Photon 2017;11:415–20. CrossrefGoogle Scholar

[124]

Arbabi A, Horie Y, Faraon A. Planar retroreflector. In Conference on Lasers and Electro-Optics (CLEO), 2014, 1–2. Google Scholar

[125]

Hong C, Colburn S, Majumdar A. Flat metaform near-eye visor. Appl Opt 2017;56:8822–7. CrossrefPubMedGoogle Scholar

[126]

Chong KE, Staude I, James A, et al. Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett 2015;15:536974. Google Scholar

[127]

Shalaev MI, Sun J, Tsukernik A, Pandey A, Nikolskiy K, Litchinitser NM. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett 2015;15:6261–6. PubMedCrossrefGoogle Scholar

[128]

Zhou Z, Li J, Su R, et al. Efficient silicon metasurfaces for visible light. ACS Photonics 2017;4:544–51. CrossrefGoogle Scholar

[129]

Byrnes SJ, Lenef A, Aieta F, Capasso F. Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt Express 2016;24:5110–24. CrossrefPubMedGoogle Scholar

[130]

Arbabi A, Arbabi E, Kamali SM, Horie Y, Han S, Faraon A. Increasing efficiency of high-NA metasurface lenses. In SPIE Photon. West, vol. 10113, 101130K–1, SPIE, 2017. Google Scholar

[131]

Sell D, Yang J, Doshay S, Yang R, Fan JA. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett 2017;17:3752–7. PubMedCrossrefGoogle Scholar

[132]

Nikolova L, Todorov T. Diffraction efficiency and selectivity of polarization holographic recording. Optica Acta 1984;31:579–88. CrossrefGoogle Scholar

[133]

Tervo J, Turunen J. Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings. Opt Lett 2000;25:785–6. CrossrefPubMedGoogle Scholar

[134]

Oh C, Escuti MJ. Achromatic diffraction from polarization gratings with high efficiency. Opt Lett 2008;33:2287–9. CrossrefPubMedGoogle Scholar

[135]

Bomzon Z, Kleiner V, Hasman E. Computer-generated space-variant polarization elements with subwavelength metal stripes. Opt Lett 2001;26:33–5. PubMedCrossrefGoogle Scholar

[136]

Bomzon Z, Kleiner V, Hasman E. Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt Lett 2001;26:1424–6. PubMedCrossrefGoogle Scholar

[137]

Hasman E, Bomzon Z, Niv A, Biener G, Kleiner V. Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures. Opt Commun 2002;209:45–54. CrossrefGoogle Scholar

[138]

Biener G, Niv A, Kleiner V, Hasman E. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Opt Lett 2002;27:1875–7. PubMedCrossrefGoogle Scholar

[139]

Bomzon Z, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Opt Lett 2002;27:1141–3. PubMedCrossrefGoogle Scholar

[140]

Tsai C-H, Levy U, Pang L, Fainman S. Fabrication and characterization of GaAs-based space-variant inhomogeneous media for polarization control at 10.6 μm. In SPIE Optical Science and Technology, vol. 5515, SPIE, 2004, 8. Google Scholar

[141]

Levy U, Tsai C-H, Pang L, Fainman Y. Engineering space-variant inhomogeneous media for polarization control. Opt Lett 2004;29:1718–20. CrossrefPubMedGoogle Scholar

[142]

Mutlu M, Akosman AE, Kurt G, Gokkavas M, Ozbay E. Experimental realization of a high-contrast grating based broadband quarter-wave plate. Opt Express 2012;20:27966–73. PubMedCrossrefGoogle Scholar

[143]

Cheng Y, Nie Y, Wang X, Gong R. An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator. Appl Phys A 2013;111:209–15. CrossrefGoogle Scholar

[144]

Pfeiffer C, Grbic A. Cascaded metasurfaces for complete phase and polarization control. Appl Phys Lett 2013;102:231116. CrossrefGoogle Scholar

[145]

Huang L, Chen X, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 2013;4:2808. CrossrefGoogle Scholar

[146]

Chen H, Wang J, Ma H, et al. Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances. J Appl Phys 2014;115:154504. CrossrefGoogle Scholar

[147]

Ma HF, Wang GZ, Kong GS, Cui TJ. Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces. Opt Mat Express 2014;4:1717–24. CrossrefGoogle Scholar

[148]

Liu W, Li Z, Cheng H, Yu P, Li J, Tian J. Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface. Opt Lett 2015;40:3185–8. PubMedCrossrefGoogle Scholar

[149]

Zhang L, Zhou P, Lu H, Chen H, Xie J, Deng L. Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances. IEEE Antennas Propag Lett 2015;14:1157–60. CrossrefGoogle Scholar

[150]

Gao X, Han X, Cao WP, Li HO, Ma HF, Cui TJ. Ultrawideband and high-efficiency linear polarization converter based on double v-shaped metasurface. IEEE Trans Antennas Propag 2015;63:3522–30. CrossrefGoogle Scholar

[151]

Shi H, Li J, Zhang A, et al. Gradient metasurface with both polarization-controlled directional surface wave coupling and anomalous reflection. IEEE Antennas Propag Lett 2015;14:104–7. CrossrefGoogle Scholar

[152]

Arbabi A, Horie Y, Bagheri M, Faraon A. Highly efficient polarization control using subwavelength high contrast transmitarrays. In SPIE Photon. West, vol. 9372, 93720H, SPIE, 2015. Google Scholar

[153]

Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 2015;10:308–12. PubMedCrossrefGoogle Scholar

[154]

Backlund MP, Arbabi A, Petrov PN, et al. Removing orientation-induced localization biases in single-molecule microscopy using a broadband metasurface mask. Nat Photon 2016;10:459–62. CrossrefGoogle Scholar

[155]

Chen WT, Török P, Foreman MR, et al. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology 2016;27:224002. PubMedCrossrefGoogle Scholar

[156]

Wu PC, Tsai WY, Chen WT, et al. Versatile polarization generation with an aluminum plasmonic metasurface. Nano Lett 2017;17:445–52. PubMedCrossrefGoogle Scholar

[157]

Farmahini-Farahani M, Mosallaei H. Birefringent reflectarray metasurface for beam engineering in infrared. Opt Lett 2013;38:462–4. CrossrefPubMedGoogle Scholar

[158]

Pors A, Albrektsen O, Radko IP, Bozhevolnyi SI. Gap plasmon-based metasurfaces for total control of reflected light. Sci Rep 2013;3:2155. CrossrefPubMedGoogle Scholar

[159]

Chen WT, Yang KY, Wang CM, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 2014;14:225–30. CrossrefPubMedGoogle Scholar

[160]

Ma HF, Wang GZ, Kong GS, Cui TJ. Independent controls of differently-polarized reflected waves by anisotropic metasurfaces. Sci Rep 2015;5:9605. CrossrefPubMedGoogle Scholar

[161]

Emani NK, Khaidarov E, Paniagua-Domínguez R, et al. High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths. Appl Phys Lett 2017;111:221101. CrossrefGoogle Scholar

[162]

Balthasar Mueller JP, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 2017;118:113901. PubMedCrossrefGoogle Scholar

[163]

Kruk S, Ferreira F, Mac-Suibhne N, et al. Transparent dielectric metasurfaces for mode modulation and spatial multiplexing. https://arxiv.org/abs/1711.07160v1. 2017.

[164]

Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge, UK, Cambridge University Press, 1999. Google Scholar

[165]

Miyamoto K. The phase fresnel lens. J Opt Soc Am 1961;51: 17–20. CrossrefGoogle Scholar

[166]

Faklis D, Morris GM. Spectral properties of multiorder diffractive lenses. Appl Opt 1995;34:2462–8. CrossrefPubMedGoogle Scholar

[167]

Jun Y, Ge Y, Wei J, Wenhui W, Yungui M. Design of mechanically robust metasurface lenses for rgb colors. J Opt 2017;19:105002. CrossrefGoogle Scholar

[168]

Zhao Z, Pu M, Gao H, et al. Multispectral optical metasurfaces enabled by achromatic phase transition. Sci Rep 2015;5:15781. CrossrefPubMedGoogle Scholar

[169]

Avayu O, Almeida E, Prior Y, Ellenbogen T. Composite functional metasurfaces for multispectral achromatic optics. Nat Commun 2017;8:14992. CrossrefPubMedGoogle Scholar

[170]

Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraon A. High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms. Opt Express 2016;24:18468–77. PubMedCrossrefGoogle Scholar

[171]

Aieta F, Kats MA, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 2015;347:1342–5. PubMedCrossrefGoogle Scholar

[172]

Wang S, Wu PC, Su VC, et al. Broadband achromatic optical metasurface devices. Nat Commun 2017;8:187. CrossrefPubMedGoogle Scholar

[173]

Eisenbach O, Avayu O, Ditcovski R, Ellenbogen T. Metasurfaces based dual wavelength diffractive lenses. Opt Express 2015;23:3928–36. CrossrefPubMedGoogle Scholar

[174]

Cheng J, Mosallaei H. Truly achromatic optical metasurfaces: a filter circuit theory-based design. J Opt Soc Am B 2015;32:2115–21. CrossrefGoogle Scholar

[175]

Khorasaninejad M, Aieta F, Kanhaiya P, et al. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett 2015;15:5358–62. PubMedCrossrefGoogle Scholar

[176]

Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraon A. Multiwavelength metasurfaces through spatial multiplexing. Sci Rep 2016;6:32803. PubMedCrossrefGoogle Scholar

[177]

Hu J, Liu C-H, Ren X, Lauhon LJ, Odom TW. Plasmonic lattice lenses for multiwavelength achromatic focusing. ACS Nano 2016;10:10275–82. CrossrefPubMedGoogle Scholar

[178]

Wang P, Mohammad N, Menon R. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci Rep 2016;6:21545. CrossrefPubMedGoogle Scholar

[179]

Sell D, Yang J, Doshay S, Fan JA. Periodic dielectric metasurfaces with high-efficiency, multiwavelength functionalities. Adv Opt Mater 2017;5:1700645. CrossrefGoogle Scholar

[180]

Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraon A. Dispersionless metasurfaces using dispersive meta-atoms. In Conference on Lasers and Electro-Optics (CLEO), FM2D.4, 2016. Google Scholar

[181]

Khorasaninejad M, Aieta F, Kanhaiya P, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett 2017;17:1819–24. CrossrefPubMedGoogle Scholar

[182]

Zhao W, Liu B, Jiang H, Song J, Pei Y, Jiang Y. Full-color hologram using spatial multiplexing of dielectric metasurface. Opt Lett 2016;41:147–50. CrossrefPubMedGoogle Scholar

[183]

Lin D, Holsteen AL, Maguid E, et al. Photonic multitasking interleaved Si nanoantenna phased array. Nano Lett 2016;16:7671–6. CrossrefPubMedGoogle Scholar

[184]

Huang J. Microstrip reflectarray. In Antenn. Propag. Soc. Symp. vol. 2, IEEE, 1991, 612–5. Google Scholar

[185]

Wang B, Dong F, Yang D, et al. Polarization-controlled color-tunable holograms with dielectric metasurfaces. Optica 2017;4:1368–71. CrossrefGoogle Scholar

[186]

Chen WT, Zhu AY, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol 2018;13:220–6. PubMedCrossrefGoogle Scholar

[187]

Wang S, Wu PC, Su VC, et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 2018;13:227–32. CrossrefPubMedGoogle Scholar

[188]

Arbabi A, Arbabi E, Kamali SM, Horie Y, Han S, Faraon A. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat Commun 2016;7:13682. CrossrefPubMedGoogle Scholar

[189]

Engelberg J, Levy U. Optimizing the spectral range of diffractive metalenses for polychromatic imaging applications. Opt Express 2017;25:21637–51. PubMedCrossrefGoogle Scholar

[190]

Colburn S, Zhan A, Majumdar A. Metasurface optics for full-color computational imaging. Sci Adv 2018;4. Article: eaar2114. Google Scholar

[191]

Feng S, Kane C, Lee PA, Stone AD. Correlations and fluctuations of coherent wave transmission through disordered media. Phys Rev Lett 1988;61:834–7. CrossrefPubMedGoogle Scholar

[192]

Jang M, Horie Y, Shibukawa A, et al. Wavefront shaping with disorder-engineered metasurfaces. Nat Photon 2018;12:84–90. CrossrefGoogle Scholar

[193]

Asadchy VS, Díaz-Rubio A, Tcvetkova SN, et al. Flat engineered multichannel reflectors. Phys Rev X 2017;7:031046. Google Scholar

[194]

Cheng J, Inampudi S, Mosallaei H. Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection. Sci Rep 2017;7:12228. PubMedCrossrefGoogle Scholar

[195]

Kamali SM, Arbabi E, Arbabi A, Horie Y, Faraon A. Metasurfaces with controlled angular phase dispersion. In SPIE Photon. West, 101130Q, SPIE, 2017. Google Scholar

[196]

Kato M, Maeda S, Yamagishi F, Ikeda H, Inagaki T. Wavelength independent grating lens system. Appl Opt 1989;28:682–6. CrossrefPubMedGoogle Scholar

[197]

Markovich H, Filonov D, Shishkin I, Ginzburg P. Bifocal fresnel lens based on the polarization-sensitive metasurface. IEEE Trans Antennas Propag 2018;66. DOI: 10.1109/TAP.2018.2811717. Google Scholar

[198]

Ni X, Ishii S, Kildishev AV, Shalaev VM. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light: Sci Appl 2013;2:e72. CrossrefGoogle Scholar

[199]

Yi H, Qu SW, Chen BJ, Bai X, Ng KB, Chan CH. Flat terahertz reflective focusing metasurface with scanning ability. Sci Rep 2017;7:3478. CrossrefPubMedGoogle Scholar

[200]

Yu N, Capasso F. Wavefront engineering for mid-infrared and terahertz quantum cascade lasers. J Opt Soc Am B 2010;27:B18–35. CrossrefGoogle Scholar

[201]

Bonod N, Neauport J. Diffraction gratings: from principles to applications in high-intensity lasers. Adv Opt Photonics 2016;8:156–99. CrossrefGoogle Scholar

[202]

Li X, Memarian M, Dhwaj K, Itoh T. Blazed metasurface grating: The planar equivalent of a sawtooth grating. In IEEE MTT-S International, IEEE, 2016, 1–3. Google Scholar

[203]

Huang Y, Zhao Q, Kalyoncu SK, et al. Phase-gradient gap-plasmon metasurface based blazed grating for real time dispersive imaging. Appl Phys Lett 2014;104:161106. CrossrefGoogle Scholar

[204]

Liu Y, Zhang X. Metasurfaces for manipulating surface plasmons. Appl Phys Lett 2013;103:141101. CrossrefGoogle Scholar

[205]

Pfeiffer C, Grbic A. Controlling vector bessel beams with metasurfaces. Phys Rev Appl 2014;2:044012. CrossrefGoogle Scholar

[206]

Yi X, Ling X, Zhang Z, et al. Generation of cylindrical vector vortex beams by two cascaded metasurfaces. Opt Express 2014;22:17207–15. CrossrefPubMedGoogle Scholar

[207]

Li Y, Liu Y, Ling X, et al. Observation of photonic spin hall effect with phase singularity at dielectric metasurfaces. Opt Express 2015;23:1767–74. PubMedCrossrefGoogle Scholar

[208]

Ren Y, Li L, Wang Z, et al. Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications. Sci Rep 2016;6:33306. CrossrefPubMedGoogle Scholar

[209]

Lin J, Genevet P, Kats MA, Antoniou N, Capasso F. Nanostructured holograms for broadband manipulation of vector beams. Nano Lett 2013;13:4269–74. PubMedCrossrefGoogle Scholar

[210]

Wang P-H, Singh VR, Wong J-M, Sung K-B, Luo Y. Non-axial-scanning multifocal confocal microscopy with multiplexed volume holographic gratings. Opt Lett 2017;42:346–9. PubMedCrossrefGoogle Scholar

[211]

Karimi E, Schulz SA, De Leon I, Qassim H, Upham J, Boyd RW. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light: Sci Appl 2014;3:e167. CrossrefGoogle Scholar

[212]

Zhao H, Quan B, Wang X, Gu C, Li J, Zhang Y. Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band. ACS Photonics Article ASAP 2017. DOI: 10.1021/acsphotonics.7b01149. Google Scholar

[213]

Chen C-F, Ku CT, Tai YH, Wei PK, Lin HN, Huang CB. Creating optical near-field orbital angular momentum in a gold metasurface. Nano Lett 2015;15:2746–50. CrossrefGoogle Scholar

[214]

Wang L, Kruk S, Tang H, et al. Grayscale transparent metasurface holograms. Optica 2016;3:1504–5. CrossrefGoogle Scholar

[215]

Li Z, Kim I, Zhang L, et al. Dielectric meta-holograms enabled with dual magnetic resonances in visible light. ACS Nano 2017;11:9382–9. CrossrefPubMedGoogle Scholar

[216]

Li L, Jun Cui T, Ji W, et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun 2017;8:197. PubMedCrossrefGoogle Scholar

[217]

Zhang X, Jin J, Wang Y, et al. Metasurface-based broadband hologram with high tolerance to fabrication errors. Sci Rep 2016;6:19856. CrossrefPubMedGoogle Scholar

[218]

Wang Q, Xu Q, Zhang X, et al. All-dielectric meta-holograms with holographic images transforming longitudinally. ACS Photonics 2018;5:599–606. CrossrefGoogle Scholar

[219]

Maguid E, Yulevich I, Veksler D, Kleiner V, Brongersma ML, Hasman E. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 2016;352:1202–6. CrossrefPubMedGoogle Scholar

[220]

Deng Z-L, Zhang S, Wang GP. Wide-angled off-axis achromatic metasurfaces for visible light. Opt Express 2016;24:23118–28. PubMedCrossrefGoogle Scholar

[221]

Nordin GP, Deguzman PC. Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region. Opt Express 1999;5:163–8. CrossrefPubMedGoogle Scholar

[222]

Zhang S, Kim MH, Aieta F, et al. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays. Opt Express 2016;24:18024–34. PubMedCrossrefGoogle Scholar

[223]

Faraon A, Arbabi A, Horie Y, Arbabi E, Kamali SM. Flat free-space optical elements based on dielectric metasurfaces. SPIE Newsroom 2015;6375. Google Scholar

[224]

Sell D, Yang J, Doshay S, Zhang K, Fan JA. Visible light metasurfaces based on single-crystal silicon. ACS Photonics 2016;3:1919–25. CrossrefGoogle Scholar

[225]

Zeitner UD, Oliva M, Fuchs F, et al. High performance diffraction gratings made by e-beam lithography. Appl Phys A 2012;109:789–96. CrossrefGoogle Scholar

[226]

McGrew S Full-color hologram.US Patent 4,421,380, 1983. Google Scholar

[227]

Bayer B. Color imaging array. US Patent 3,971,065, 1976. Google Scholar

[228]

Huang Y-W, Chen WT, Tsai W-Y, et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett 2015;15:3122–7. PubMedCrossrefGoogle Scholar

[229]

Zhang X, Pu M, Jin J, et al. Helicity multiplexed spin-orbit interaction in metasurface for colorized and encrypted holographic display. Ann Phys 2017;529:1700248. CrossrefGoogle Scholar

[230]

Arbabi E, Kamali SM, Arbabi A, Faraon A. Full Stokes imaging polarimetry using dielectric metasurfaces. https://arxiv.org/abs/1803.03384. 2018.

[231]

Schonbrun E, Seo K, Crozier KB. Reconfigurable imaging systems using elliptical nanowires. Nano Lett 2011;11:4299–303. CrossrefPubMedGoogle Scholar

[232]

Cheng J, Jafar-Zanjani S, Mosallaei H. All-dielectric ultrathin conformal metasurfaces: lensing and cloaking applications at 532 nm wavelength. Sci Rep 2016;6:38440. PubMedCrossrefGoogle Scholar

[233]

Germain D, Seetharamdoo D, Nawaz Burokur S, De Lustrac A. Phase-compensated metasurface for a conformal microwave antenna. Appl Phys Lett 2013;103:124102. CrossrefGoogle Scholar

[234]

Jiang ZH, Kang L, Werner DH. Conformal metasurface-coated dielectric waveguides for highly confined broadband optical activity with simultaneous low-visibility and reduced crosstalk. Nat Commun 2017;8:356. PubMedCrossrefGoogle Scholar

[235]

Burch J, Di Falco A. Surface topology specific metasurface holograms. ACS Photonics Article ASAP 2018. DOI: 10.1021/acsphotonics.7b01449. Google Scholar

[236]

Chen P-Y, Argyropoulos C, Alu A. Broadening the cloaking bandwidth with non-foster metasurfaces. Phys Rev Lett 2013;111:233001. CrossrefPubMedGoogle Scholar

[237]

Orazbayev B, Mohammadi Estakhri N, Alu A, Beruete M. Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves. Adv Opt Mater 2017;5:1600606. CrossrefGoogle Scholar

[238]

Pryce IM, Aydin K, Kelaita YA, Briggs RM, Atwater HA. Highly strained compliant optical metamaterials with large frequency tunability. Nano Lett 2010;10:4222–7. PubMedCrossrefGoogle Scholar

[239]

Xu X, Peng B, Li D, et al. Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing. Nano Lett 2011;11:3232–8. CrossrefPubMedGoogle Scholar

[240]

Walia S, Shah CM, Gutruf P, et al. Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro-and nano-scales. Appl Phys Rev 2015;2:011303. CrossrefGoogle Scholar

[241]

Gutruf P, Zou C, Withayachumnankul W, Bhaskaran M, Sriram S, Fumeaux C. Mechanically tunable dielectric resonator metasurfaces at visible frequencies. ACS Nano 2016;10:133–41. PubMedCrossrefGoogle Scholar

[242]

Zhu L, Kapraun J, Ferrara J, Chang-Hasnain CJ. Flexible photonic metastructures for tunable coloration. Optica 2015;2:255–8. CrossrefGoogle Scholar

[243]

Srivastava YK, Cong L, Singh R. Dual-surface flexible thz fano metasensor. Appl Phys Lett 2017;111:201101. CrossrefGoogle Scholar

[244]

Cong L, Xu N, Gu J, Singh R, Han J, Zhang W. Highly flexible broadband terahertz metamaterial quarter-wave plate. Laser Photon Rev 2014;8:626–32. CrossrefGoogle Scholar

[245]

Burch J, Wen D, Chen X, Di Falco A. Conformable holographic metasurfaces. Sci Rep 2017;7:4520. CrossrefPubMedGoogle Scholar

[246]

Ee H-S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett 2016;16:2818–23. CrossrefPubMedGoogle Scholar

[247]

She A, Zhang S, Shian S, Clarke DR, Capasso F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci Adv 2018;4:eaap9957. CrossrefPubMedGoogle Scholar

[248]

Zhan A, Colburn S, Dodson CM, Majumdar A. Metasurface freeform nanophotonics. Sci Rep 2017;7:1673. PubMedCrossrefGoogle Scholar

[249]

Tseng ML, Yang J, Semmlinger M, Zhang C, Nordlander P, Halas NJ. Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response. Nano Lett 2017;17:6034–9. PubMedCrossrefGoogle Scholar

[250]

Sherrott MC, Hon PWC, Fountaine KT, et al. Experimental demonstration of >230° phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces. Nano Lett 2017;17:3027–34. CrossrefPubMedGoogle Scholar

[251]

Ou J-Y, Plum E, Zhang J, Zheludev NI. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nat Nanotechnol 2013;8:252–5. CrossrefPubMedGoogle Scholar

[252]

Huang Y-W, Howard Lee HW, Sokhoyan R, et al. Gate-tunable conducting oxide metasurfaces. Nano Lett 2016;16:5319–25. CrossrefPubMedGoogle Scholar

[253]

Iyer PP, Pendharkar M, Schuller JA. Electrically reconfigurable metasurfaces using heterojunction resonators. Adv Opt Mater 2016;4:1582–8. CrossrefGoogle Scholar

[254]

Colburn S, Zhan A, Majumdar A. Tunable metasurfaces via subwavelength phase shifters with uniform amplitude. Sci Rep 2017;7:40174. PubMedCrossrefGoogle Scholar

[255]

Fallahi A, Perruisseau-Carrier J. Design of tunable biperiodic graphene metasurfaces. Phys Rev B 2012;86:195408. CrossrefGoogle Scholar

[256]

Kim SJ, Brongersma ML. Active flat optics using a guided mode resonance. Opt Lett 2017;42:5–8. PubMedCrossrefGoogle Scholar

[257]

Komar A, Fang Z, Bohn J, et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals. Appl Phys Lett 2017;110:071109. CrossrefGoogle Scholar

[258]

Sautter J, Staude I, Decker M, et al. Active tuning of all-dielectric metasurfaces. ACS Nano 2015;9:4308–15. PubMedCrossrefGoogle Scholar

[259]

Bar-David J, Stern L, Levy U. Dynamic control over the optical transmission of nanoscale dielectric metasurface by alkali vapors. Nano Lett 2017;17:1127–31. CrossrefPubMedGoogle Scholar

[260]

Horie Y, Arbabi A, Arbabi E, Kamali SM, Faraon A. High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas. ACS Photonics Article ASAP 2017. DOI: 10.1021/acsphotonics.7b01073. Google Scholar

[261]

Ou JY, Plum E, Jiang L, Zheludev NI. Reconfigurable photonic metamaterials. Nano Lett 2011;11:2142–4. PubMedCrossrefGoogle Scholar

[262]

Raeis-Hosseini N, Rho J. Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices. Materials 2017;10:1046. CrossrefGoogle Scholar

[263]

Michel A-KU, Chigrin DN, Maß TWW, et al. Using low-loss phase-change materials for mid-infrared antenna resonance tuning. Nano Lett 2013;13:3470–5. CrossrefPubMedGoogle Scholar

[264]

Wuttig M, Bhaskaran H, Taubner T. Phase-change materials for non-volatile photonic applications. Nat Photon 2017;11:465–76. CrossrefGoogle Scholar

[265]

Park J, Kang J-H, Kim SJ, Liu X, Brongersma ML. Dynamic reflection phase and polarization control in metasurfaces. Nano Lett 2017;17:407–13. PubMedCrossrefGoogle Scholar

[266]

Burokur SN, Daniel J-P, Ratajczak P, de Lustrac A. Tunable bilayered metasurface for frequency reconfigurable directive emissions. Appl Phys Lett 2010;97:064101. CrossrefGoogle Scholar

[267]

Donner JS, Morales-Dalmau J, Alda I, Marty R, Quidant R. Fast and transparent adaptive lens based on plasmonic heating. ACS Photonics 2015;2:355–60. CrossrefGoogle Scholar

[268]

Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraji-Dana MS, Faraon A. Mems-tunable dielectric metasurface lens. Nat Commun 2018;9:812. CrossrefPubMedGoogle Scholar

[269]

Yoo B-W, Megens M, Sun T, et al. A 32×32 optical phased array using polysilicon sub-wavelength high-contrast-grating mirrors. Opt Express 2014;22:19029–39. CrossrefGoogle Scholar

[270]

Chu CH, Tseng Ml, Chen J, et al. Active dielectric metasurface based on phase-change medium. Laser Photon Rev 2016;10:986–94. CrossrefGoogle Scholar

[271]

Thyagarajan K, Sokhoyan R, Zornberg L, Atwater HA. Millivolt modulation of plasmonic metasurface optical response via ionic conductance. Adv Mater 2017;29:1701044. CrossrefGoogle Scholar

[272]

Groever B, Chen WT, Capasso F. Meta-lens doublet in the visible region. Nano Lett 2017;17:4902–7. CrossrefPubMedGoogle Scholar

[273]

Lin Z, Groever B, Capasso F, Rodriguez AW, Loncar M. Topology optimized multi-layered meta-optics. https://arxiv.org/abs/1706.06715. 2017.

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.