[1]

Peruzzo A, Laing A, Politi A, Rudolph T, O’Brien JL. Multimode quantum interference of photons in multiport integrated devices. Nat Commun 2011;2:224. PubMedCrossrefGoogle Scholar

[2]

Metcalf BJ, Thomas-Peter N, Spring JB, et al. Multiphoton quantum interference in a multiport integrated photonic device. Nat Commun 2013;4:1356. CrossrefGoogle Scholar

[3]

Miller DAB. Self-aligning universal beam coupler. Opt Express 2013;21:6360–70. CrossrefPubMedGoogle Scholar

[4]

Miller DAB. Self-configuring universal linear optical component. Photon Res 2013;1:1–15. CrossrefGoogle Scholar

[5]

Carolan J, Harrold C, Sparrow C, et al. Universal linear optics. Science 2015;349:711. CrossrefPubMedGoogle Scholar

[6]

Miller DAB. Perfect optics with imperfect components. Optica 2015;2:747–50. CrossrefGoogle Scholar

[7]

Harris NC, Steinbrecher GR, Prabhu M, et al. Quantum transport simulations in a programmable nanophotonic processor. Nat Photon 2017;11:447–52. CrossrefGoogle Scholar

[8]

Graydon O. Birth of the programmable optical chip. Nat Photon 2016;10:1. CrossrefGoogle Scholar

[9]

Zhuang L, Roeloffzen CGH, Hoekman M, Boller KJ, Lowery AJ. Programmable photonic signal processor chip for radiofrequency applications. Optica 2015;2:854–9. CrossrefGoogle Scholar

[10]

Pérez D, Gasulla I, Capmany J, Soref RA. Reconfigurable lattice mesh designs for programmable photonic processors. Opt Express 2016;24:12093–106. PubMedCrossrefGoogle Scholar

[11]

Capmany J, Gasulla I, Pérez, D. Microwave photonics: the programmable processor. Nat Photon 2016;10:6–8. CrossrefGoogle Scholar

[12]

Pérez D, Gasulla I, Crudgington L, et al. Multipurpose silicon photonics signal processor core. Nat Commun 2017;8:636. PubMedCrossrefGoogle Scholar

[13]

Reck M, Zeilinger A, Bernstein HJ, Bertani P. Experimental realization of any discrete unitary operator. Phys Rev Lett 1994;73:58–61. CrossrefPubMedGoogle Scholar

[14]

Clements WR, Humphreys PC, Metcalf BJ, Steven Kolthammer W, Walmsley IA. Optimal design for universal multiport interferometers. Optica 2016;3:1460–5. CrossrefGoogle Scholar

[15]

Pérez D, Gasulla I, Fraile FJ, et al. Silicon photonics rectangular universal interferometer. Lasers Photon Rev 2017;11:1700219. CrossrefGoogle Scholar

[16]

Shen Y, Harris NC, Skirlo S, et al. Deep learning with coherent nanophotonic circuits. Nat Photon 2017;11:441–6. CrossrefGoogle Scholar

[17]

Ribeiro A, Ruocco A, Vanacker L, Bogaerts W. Demonstration of a 4×4-port universal linear circuit. Optica 2016;3:1348–57. CrossrefGoogle Scholar

[18]

Anoni A, Guglielmi E, Carminati M, et al. Unscrambling light – automatically undoing strong mixing between modes. Light Sci Appl 2017;6:e17110. CrossrefGoogle Scholar

[19]

Capmany J, Gasulla I, Pérez D. Towards programmable microwave photonics processors. IEEE J Lightwave Tech 2018;26:519–32. Google Scholar

[20]

Chen L-N, Hall E, Theogarajan L, Bowers J. Photonic switching for data center applications. IEEE Photon J 2011;3:834–44. CrossrefGoogle Scholar

[21]

Miller DAB. Silicon photonics: meshing optics with applications. Nat Photon 2017;11:403–4. CrossrefGoogle Scholar

[22]

Thomas-Peter N, Langford NK, Datta A, et al. Integrated photonic sensing. New J Phys 2011;13:055024. CrossrefGoogle Scholar

[23]

Pérez D. Integrated Microwave Photonic Processors using Waveguide Mesh Cores, PhD Thesis. Universitat Politècnica de València, 2017. Google Scholar

[24]

Pérez D, Sánchez E, Capmany J. Programmable True-Time Delay Lines using integrated waveguide meshes. IEEE J Lightwave Tech 2018, in press. Google Scholar

[25]

Mower J, Harris NC, Steinbrecher GR, Lahini Y, Englund D. High-fidelity quantum state evolution in imperfect photonic integrated circuits. Phys Rev. A 2015;92:032322. CrossrefGoogle Scholar

[26]

Corbett B, Loi R, Zhou W, Liu D, Ma Z. Transfer print techniques for heterogeneous integration of photonic components. Prog Quantum Electron 2017;52:1–17. CrossrefGoogle Scholar

[27]

Van der Tol JGM, Jiao Y, Shen L, et al. Indium Phosphide Integrated Photonics in Membranes. IEEE J Sel T Quantum Electron 2018;24:6100809. Google Scholar

[28]

Harris N, Steinbrecher GR, Prabhu M, et al. Quantum transport simulations in a programmable nanophotonic processor. Nat Photon 2017;11:447–53. CrossrefGoogle Scholar

[29]

Micó G, Bru L, Pastor D, et al. C-band linear propagation properties for a 300 nm film height Silicon Nitride photonics platform. European Conference on integrated optics 2017: Eindhoven, Netherlands, 2017. Google Scholar

[30]

Celo D, Goodwill DJ, Jiang J, et al. 32×32 silicon photonic switch. OptoElectronics and communications conference & IEEE Photonics in Switching, Niigata, Japan, 2016. Google Scholar

[31]

Sheng Z, Wang Z, Qiu C, et al. A compact and low-loss MMI coupler fabricated with CMOS Technology. IEEE Photon J 2012;4:22272–7. Google Scholar

[32]

Cong GW, Suzuki K, Kim SH, Tanizawa K, Namiki S, Kawashima H. Demonstration of a 3-dB directional coupler with enhanced robustness to gap variations for silicon wire waveguide. Opt Express 2014;22:2051–9. PubMedCrossrefGoogle Scholar

[33]

Harris NC, Ma Y, Mower J, et al. Efficient, compact and low loss thermos-optic phase shifter in silicon. Opt Express 2014;22:10487–93. PubMedCrossrefGoogle Scholar

[34]

Madsen CK, Zhao JH. Optical filter design and analysis: a signal processing approach. New York, USA, John Wiley & Sons Inc., 1999. Google Scholar

[35]

Zhuang L, Marpaung D, Burla M, Beeker W, Leinse A, Roeloffzen C. Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing. Opt Express 2011;19:23162–70. CrossrefGoogle Scholar

[36]

Burla M, Marpaung D, Zhuang L, et al. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt Express 2011;19:21475–84. CrossrefPubMedGoogle Scholar

[37]

Zhuang L, Hoekman M, Beeker W, et al. Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors. Laser Photon Rev 2013;7:994–1002. CrossrefGoogle Scholar

[38]

Choudhary A, Aryanfar I, Shahnia S, et al. Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters. Opt Lett 2016;41:436–9. PubMedCrossrefGoogle Scholar

[39]

Tu KY, Rasras MS, Gill DM, et al. Silicon RF-photonic filter and down-converter. J Lightwave Technol 2010;28:3019–28. CrossrefGoogle Scholar

[40]

Fandiño JS, Muñoz P, Doménech D, Capmany J. A monolithic integrated photonic microwave filter. Nat Photon 2017;11:124–9. CrossrefGoogle Scholar

[41]

Rasras MS, Tu KY, Gill DM, et al. Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators. J Lightwave Technol 2009;27:2105–10. CrossrefGoogle Scholar

[42]

Sancho J, Bourderionnet J, Lloret J, et al. Integrable microwave filter based on a photonic crystal delay line. Nat Commun 2012;3:1075. PubMedCrossrefGoogle Scholar

[43]

Orlandi P, Morichetti F, Strain MJ, Sorel M, Bassi P, Melloni A. Photonic integrated filter with widely tunable bandwidth. J Lightwave Technol 2014;32:897–907. CrossrefGoogle Scholar

[44]

Norberg EJ, Guzzon RS, Nicholes SC, Parker JS, Coldren LA. Programmable photonic lattice filters in InGaAsP-InP. IEEE Photon Technol Lett 2010;22:109–11. CrossrefGoogle Scholar

[45]

Guzzon RS, Norberg EJ, Parker JS, Johansson LA, Coldren LA. Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss. Opt Express 2011;19:7816–26. CrossrefPubMedGoogle Scholar

[46]

Liu W, Li M, Guzzon RS, et al. A fully reconfigurable photonic integrated signal processor. Nat Photon 2016;10:190–5. CrossrefGoogle Scholar

[47]

Roeloffzen C, Oldenbeuving R, Timens RB, et al. Integrated optical beamformers. Optical Fiber Communication Conference 2015: Los Angeles, CA, USA, ThA2, 2015. Google Scholar

[48]

Zhuang L, Roeloffzen CGH, Heideman RG, Borreman A, Meijerink A, Etten WV. Single-chip ring resonator-based 1×8 optical beam forming network in CMOS-compatible waveguide technology. IEEE Photon Technol Lett 2007;19:1130–2. CrossrefGoogle Scholar

[49]

Zhuang L, Hoekman M, Taddei C, et al. On-chip microwave photonic beamformer circuits operating with phase modulation and direct detection. Opt Express 2014;22:17079–91. CrossrefPubMedGoogle Scholar

[50]

Burla M, Marpaung DAI, Zhuang L, et al. Multiwavelengthintegrated optical beamformer based on wavelength división multiplexing for 2-D phased array antennas. J Lightwave Technol 2014;32:3509–20. CrossrefGoogle Scholar

[51]

Zhuang L, Burla M, Taddei C, et al. Integrated microwave photonic splitter with reconfigurable amplitude, phase, and delay offsets. Opt Lett 2015;40:5618–21. PubMedCrossrefGoogle Scholar

[52]

Wang J, Shen H, Fan L, et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat Commun 2015;6:5957. CrossrefGoogle Scholar

[53]

Agarwal A, Toliver P, Menendez R, et al. Fully programmable ring-resonator-based integrated photonic circuit for phase coherent applications. IEEE J Lightwave Tech 2006;24:77–87. CrossrefGoogle Scholar

[54]

Sethi P, Roy S. Ultrafast all-optical flip-flops, simultaneous comparator-decoder and reconfigurable logic unit with silicon microring resonator switches. IEEE J Sel Top Quantum Electron 2014;20:5900308. Google Scholar

[55]

Sethi P, Roy S. All-optical ultrafast switching in 2×2 silicon microring resonators and its application to reconfigurable DEMUX/MUX and reversible logic gates. IEEE J Lightwave Tech 2014;32:2173–80. CrossrefGoogle Scholar

[56]

Bergman K. Silicon Photonics For High Performance Interconnection Networks. in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, (2018), Tu3F.1. Google Scholar

[57]

Soref R. Integrated-photonic switching structures. Appl Phys Lett Photon 2018;3:021101. Google Scholar

[58]

Knill E, Laflamme R, Milburn GJ. A scheme for efficient quantum computation with linear optics. Nature 2001;409:46–52. PubMedCrossrefGoogle Scholar

[59]

Kok P, Munro WJ, Nemoto K, Ralph TC, Dowling JP, Milburn GJ. Linear optical quantum computing with photonic qubits. Rev Mod Phys 2007;79:135–74. CrossrefGoogle Scholar

[60]

O’Brien JL, Furusawa A, Vučković J. Photonic quantum technologies. Nat Photon 2009;3:687–95. CrossrefGoogle Scholar

[61]

Thompson MG, Politi A, Matthews JC, O’Brien JL. Integrated waveguide circuits for optical quantum computing. IET Circuits Devices Syst 2011;5:94–102. CrossrefGoogle Scholar

[62]

Politi A, Matthews J, Thompson M, O’Brien J. Integrated quantum photonics. IEEE J Select Top Quantum Electron 2009;15:1673–84. CrossrefGoogle Scholar

[63]

Politi A, Cryan MJ, Rarity JG, Yu S, O’Brien JL. Silica-on-silicon waveguide quantum circuits. Science 2008;320:646–9. CrossrefPubMedGoogle Scholar

[64]

Kieling K, O’Brien JL, Eisert J. On photonic controlled phase gates. New J Phys 2010;12:013003. CrossrefGoogle Scholar

[65]

Spring JB. Metcalf BJ, Humphreys PC, et al. Boson sampling on a photonic chip. Science 2013;339:798–801. PubMedCrossrefGoogle Scholar

[66]

Broome MA, Fedrizzi A, Rahimi-Keshari S, et al. Photonic boson sampling in a tunable circuit. Science 2013;339:794–8. CrossrefGoogle Scholar

[67]

Crespi A, Osellame R, Ramponi R, et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat Photon 2013;7:545–9. CrossrefGoogle Scholar

[68]

Lanyon BP, Whitfield JD, Gillett GG, et al. Towards quantum chemistry on a quantum computer. Nat Chem 2010;2:106–11. PubMedCrossrefGoogle Scholar

[69]

Harris N, Bunandar D, Pant M, et al. Large-scale quantum photonic circuits in silicon. Nanophotonics 2016;5:456–68. Google Scholar

[70]

Shen Y, Hattink MHN, Samadi P, et al. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks. Opt Express 2018;26:10914–29. PubMedCrossrefGoogle Scholar

[71]

Sun C, Wade MT, Lee Y, et al. Single-chip microprocessor that communicates directly using light. Nature 2015;528:534–8. CrossrefPubMedGoogle Scholar

[72]

De Chatellus HG, Cortés LR, Azaña J. Optical real-time Fourier transformation with kilohertz resolutions. Optica 2016;3:1–8. CrossrefGoogle Scholar

[73]

Zhuang L, Khan MR, Beeker W, Leinse A, Heideman R, Roeloffzen C. Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter. Opt Express 2012;20:26499–510. PubMedCrossrefGoogle Scholar

[74]

Taddei C, Yen NTH, Zhuang L, et al. Waveguide filter-based on-chip differentiator for microwave photonic signal processing. IEEE International Topical Meeting on Microwave Photonics 2013: Alexandria, VA, USA, 2013:28–31. Google Scholar

[75]

Ferrera M, Park Y, Razzari L, et al. On-chip CMOS-compatible all-optical integrator. Nat Commun 2010;1:29. PubMedGoogle Scholar

[76]

Shen Y, Harris NC, Skirlo S, et al. Deep learning with coherent nanophotonic circuits, Nat Photon 2017;11:441–7. CrossrefGoogle Scholar

[77]

Pengy HT, Nahmiasy MA, Ferreira de Lima T, Tait AN, Shastri BJ, Prucnal PR. Neuromorphic Photonic Integrated Circuits. IEEE J Sel Topics Quant Electron. In press. Google Scholar

[78]

Estevez MC, Alvarez M, Lechuga L. Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photon Rev 2012;6:463–87. CrossrefGoogle Scholar

[79]

Heideman R, Hoekman M, Schreuder E. TriPleX-based integrated optical ring resonators for lab-on-a-chip and environmental detection. IEEE J Sel Topics Quant Electro 2012;18:1583–96. CrossrefGoogle Scholar

[80]

Ozawa T, Price HM, Goldman N, Zilberberg O, Carusotto I. Synthetic dimensions in integrated photonics: From optical isolation to four-dimensional quantum Hall physics. Phys Rev A 2016;93:043827. CrossrefGoogle Scholar

[81]

Harari G, Bandres MA, Lumer Y, et al. Topological insulator laser: theory. Science 2018;359. DOI: 10.1126/science.aar4003. Google Scholar

[82]

Bandres MA, Wittek S, Harari G, et al. Topological insulator laser: experiments. Science 2018;359. DOI: 10.1126/science.aar400. Google Scholar

[83]

Soref R, Bennett B. Electrooptical effects in silicon. IEEE J of Quant Electron 1987;23:123–9. CrossrefGoogle Scholar

[84]

Hosseini N, Dekker R, Hoekman M, et al. Stress-optic modulator in TriPleX platform using a piezoelectric lead zirconate titanate (PZT) thin film. Opt Express 2015;23:14018–26. PubMedCrossrefGoogle Scholar

[85]

Grillanda S, Carminati M, Morichetti F, et al. Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica 2014;1:129–36. CrossrefGoogle Scholar

[86]

Zibar D, Piels M, Jones R, Schäeffer CG. Machine learning techniques in optical communication. J Lightwave Technol 2016;34:1442–52. CrossrefGoogle Scholar

[87]

Fang Q, Song JF, Liow T-Y, et al. Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photon Technol Lett 2011;23:525–7. CrossrefGoogle Scholar

[88]

Wesley D, Mikkelsen JC, Dumais P, et al. Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions. Opt Express 2017;25:30862–75. PubMedCrossrefGoogle Scholar

[89]

Flamini F, Spagnolo N, Viggianiello N, Crespi A, Osellame R, Sciarrino F. Benchmarking integrated linear optical architectures for quantum information processing. Sci Rep 2017;7:715133. Google Scholar

[90]

Annoni A, Guglielmi E, Carminati M, et al. Automated routing and control of silicon photonic switch fabrics. IEEE Journal of Sel Topics in Quantum Electron 2016;22:169–76. CrossrefGoogle Scholar

[91]

Atabaki AH. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 2018;556:349–54. CrossrefPubMedGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.