[1]

Nye JF, Berry MV. Dislocations in wave trains. Proc R Soc A 1974;336:165–90. Google Scholar

[2]

Verbeeck J, Tian H, Schattschneider P. Production and application of electron vortex beams. Nature 2010;467:301–4. Google Scholar

[3]

Yang Y, Thirunavukarasu, Babiker M, Yuan J. Orbital angular momentum modes seletion by rotationally symmetric superposition of chiral states with application to electron vortex beams. Phys Rev Lett 2017;119:094802. Google Scholar

[4]

Clark CW, Barankov R, Huber MG, Arif M, Cory DG, Pushin DA. Controlling neutron orbital angular momentum. Nature 2015;525:504–6. Google Scholar

[5]

Baranova NB, Mamaev AV, Pilipetsky NF, Shkunov VV, Zeldovich BY. Wavefront dislocations: topological limitations for adaptive systems with phase conjugation. J Opt Soc Am 1983;73:525–8. Google Scholar

[6]

Masajada J, Boguslawa D. Optical vortex generation by three plane wave interference. Opt Comm 2001;198:21–7. Google Scholar

[7]

O’Holleran K, Padgett MJ, Dennis MR. Topology of optical vortex lines formed by the interference of three, four, and five plane waves. Opt Express 2006;14:3039–44. Google Scholar

[8]

O’Holleran K, Dennis MR, Padgett MJ. Topology of light’s darkness. Phys Rev Lett 2009;102:143092–4. Google Scholar

[9]

Dennis MR, King RP, Jack B, O’Holleran K, Padgett MJ. Isolated optical vortex knots. Nat Phys 2010; 6:118–21. Google Scholar

[10]

Indebetouw G. Optical vortices and their propagation. J Mod Opt 1993;40:73–87. Google Scholar

[11]

Basistiy IV, Bazhenov VY, Soskin MS, Vasnetsov MV. Optics of light beams with screw dislocations. Opt Comm 1993;103:422–8. Google Scholar

[12]

Basistiy IV, Soskin MS, Vasnetsov MV. Optical wavefront dislocations and their properties. Opt Comm 1995;119:604–12. Google Scholar

[13]

Soskin MS, Gorshkov VN, Vasnetsov MV, Malos JT, Heckneberg NR. Topological charge and angular momentum of light beams carrying optical vortices. Phys Rev A 1997;56:4064–75. Google Scholar

[14]

Rozas D, Law CT, Swartzlander GA. Propagation dynamics of optical vortices. J Opt Soc Am B 1997;14:3054–65. Google Scholar

[15]

Bouchal Z. Resistance of nondiffracting vortex beam against amplitude and phase pertubations. Opt Comm 2002;210:155–64. Google Scholar

[16]

Gbur G, Tyson RK. Vortex beam propagation through atmospheric turbulence and topological charge conservation. J Opt Soc Am A 2008;25:225–30. Google Scholar

[17]

Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 1992;45:8185–90. Google Scholar

[18]

Coullet P, Gil L, Rocca F. Optical vortices. Opt Comm 1989; 73:403–8. Google Scholar

[19]

Beijersbergen MW, Spreeuw RJC, van der Veen H, Woerdman JP. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt Comm 1993;96:123–32. Google Scholar

[20]

Beijersbergen MW, Coewinkel RPC, Kristensen M, Woerdman JP. Helical wavefront laser beams produced with a spiral phaseplate. Opt Comm 1994;112:321–7. Google Scholar

[21]

Leach J, Padgett MJ, Barnett SM, Franke-Arnold S, Courtial J. Measuring the orbital angular momentum of a single photon. Phys Rev Lett 2002;88:2579011–14. Google Scholar

[22]

O’Neil AT, MacVicar I, Allen L, Padgett MJ. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys Rev Lett 2002;88:536001–14. Google Scholar

[23]

Curtis JE, Grier DG. Structure of optical vortices. Phys Rev Lett 2003;90:1339011–4. Google Scholar

[24]

He H, Friese MEJ, Heckenberg NR, Rubinsztein-Dunlop H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys Rev Lett 1995;75:826–9. Google Scholar

[25]

Simpson NB, Dholakia K, Allen L, Padgett MJ. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt Lett 1997;22:52–4. Google Scholar

[26]

Paterson L, MacDonald MP, Arlt J, Sibbett W, Bryant PE, Dholakia K. Controlled rotation of optically trapped microscopic particles. Science 2001;292:912–4. Google Scholar

[27]

Padgett M, Bowman R. Tweezers with a twist. Nat Photon 2011;5:343–8. Google Scholar

[28]

Padgett MJ. Orbital angular momentum 25 years on. Opt Express 2011;25:11265–74. Google Scholar

[29]

Franke-Arnold S, Allen L, Padgett MJ. Advances in optical angular momentum. Laser Photon Rev 2008;2:299–313. Google Scholar

[30]

Dholakia K, Čižmár T. Shaping the future of manipulation. Nat Photon 2011;5:355–42. Google Scholar

[31]

Gibson G, Courtial J, Padgett MJ, et al. Free-space information transfer using beams carrying orbital angular momentum. Opt Express 2004;12:5448–56. Google Scholar

[32]

Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys Rev Lett 2005;94:1539011–4. Google Scholar

[33]

Wang J, Yang JY, Fazal IM, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photon 2012;6:488–96. Google Scholar

[34]

Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013;340:1545–8. Google Scholar

[35]

Yin JY, Ren J, Zhang L, Li H, Cui TJ. Microwave vortex beam emitter based on spoof surface plasmon polaritons. Laser Photon Rev 2018;12:1600316. Google Scholar

[36]

Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature 2001;412:313–6. Google Scholar

[37]

Molina-Terriza G, Torres JP, Torner L. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys Rev Lett 2002;88:136011–4. Google Scholar

[38]

Fickler R, Lapkiewicz R, Plick WN, et al. Quantum entanglement of high angular momenta. Science 2012;338:640–3. Google Scholar

[39]

Nagali E, Sciarrino F, De Martini F, et al. Quantum information transfer from spin to orbital angular momentum of photons. Phys Rev Lett 2009;103:136011–4. Google Scholar

[40]

Fürhapter S, Jesacher A, Barnet S, Ritsch-Marte M. Spiral phase contrast imaging in microscopy. Opt Express 2005;13:689–94. Google Scholar

[41]

Jack B, Leach J, Romero J, et al. Holographic ghost imaging and the violation of a bell inequality. Phys Rev Lett 2009;103:0836021–4. Google Scholar

[42]

Li L, Li F. Beating the Rayleigh limit: orbital angular moment based super-resolution diffraction tomography. Phys Rev E 2013;88:332051–6. Google Scholar

[43]

Toyoda K, Takahashi F, Takizawa S, et al. Transfer of light helicity to nanostructures. Phys Rev Lett 2013;110:1436031–5. Google Scholar

[44]

Hamazaki J, Morita R, Chujo K, Kobayashi Y, Tanda S, Omatsu T. Optical vortex laser ablation. Opt Express 2010;18:2144–51. Google Scholar

[45]

Hnatovsky C, Shvedov VG, Krolikowski W, Rode AV. Materials processing with a tightly focused femtosecond laser vortex pulse. Opt Lett 2010;35:3417–9. Google Scholar

[46]

Courtial J, Dholakia K, Robertson DA, Allen L, Padgett MJ. Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum. Phys Rev Lett 1998;80:3217–9. Google Scholar

[47]

Lavery MPJ, Speirits FC, Barnett SM, Padgett MJ. Detection of a spinning object using light’s orbital angular momentum. Science 2013;341:537–40. Google Scholar

[48]

Litchinitser NM. Structured light meets structured matter. Science 2012;337:1054–5. Google Scholar

[49]

Korech O, Steinitz U, Gordon RJ, Averbukh IS, Prior Y. Observing molecular spinning via the rotational Doppler effect. Nat Photo 2013;7:711–4. Google Scholar

[50]

Swartzlander GA, Ford EL, Abdul-Malik RS, et al. Astronomical demonstration of an optical vortex coronagraph. Opt Express 2008;16:10200–7. Google Scholar

[51]

Tamburini F, Thidé B, Molina-Terriza G, Anzolin G. Twisting of light around rotating black holes. Nat Phys 2011;7:195–7. Google Scholar

[52]

Qiu CW, Yang Y. Vortex generation reaches a new plateau. Science 2017;357:645. Google Scholar

[53]

Wang XW, Kuchmizhak AA, Li X, et al. Laser-induced translative hydrodynamic mass snapshots: noninvasive characterization and predictive modelling via mapping at nanoscale. Phys Rev Appl 2017;8:440161–7. Google Scholar

[54]

Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014;13:139–50. Google Scholar

[55]

Kildishev AV, Boltasseva A, Shalaev V. Planar photonics with metasurfaces. Science 2013;339:1232009. Google Scholar

[56]

Yao AM, Padgett MJ. Orbital angular momentum: origins, behaviour and applications. Adv Opt Photon 2011;3:161–204. Google Scholar

[57]

Franke-Arnold S, Radwell N. Light served with a twist. Opt Photon News 2017;28:28–35. Google Scholar

[58]

Willner AE, Ren Y, Xie G, et al. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing. Phil Trans R Soc A 2017;375:20150439. Google Scholar

[59]

Wang J. Advances in communications using optical vortices. Photon Res 2016;4:B14–28. Google Scholar

[60]

Manuel E, Fickler R, Krenn M, Zeilinger A. Twisted photons: new quantum perspective in high dimensions. Light Sci Appl 2018;7:17146. Google Scholar

[61]

Ohtomo T, Chu SC, Otsuka K. Generation of vortex beams from lasers with controlled Hermite- and Ince-Gaussian modes. Opt Express 2008;16:5082–94. Google Scholar

[62]

Chu SC, Chen YT, Tsai KF, Otsuka K. Generation of high-order Hermite-Gaussian modes in end-pumped solid state lasers for square vortex array laser beam generation. Opt Express 2012;20:7128–41. Google Scholar

[63]

Kotlyar VV, Kovalev AA, Porfirev AP. Astigmatic laser beams with a large orbital angular momentum. Opt Express 2018;26:141–56. Google Scholar

[64]

Heckenberg NR, McDuff R, Smith CP, White AG. Generation of optical phase singularities by computer-generated holograms. Opt Lett 1992;17:221–3. Google Scholar

[65]

Biener G, Niv A, Kleniner V, Hasman E. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Opt Lett 2002;27:1875–7. Google Scholar

[66]

Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys Rev Lett 2006;96:1639051–4. Google Scholar

[67]

Naidoo D, Roux FS, Dudley A, et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat Photon 2016;10:327–32. Google Scholar

[68]

Yi XN, Ling XH, Zhang ZY, et al. Generation of cylindrical vector vortex beams by two cascaded metasurfaces. Opt Express 2014;22:17207–15. Google Scholar

[69]

Yue FY, Wen DD, Xin JT, Gerardot BD, Li JS, Chen XZ. Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics 2016;3:1558–63. Google Scholar

[70]

Liu YC, Ke YG, Zhou JX, et al. Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements. Sci Rep 2017;7:44096. Google Scholar

[71]

Zhang Y, Liu W, Gao J, Yang X. Generating focused 3D perfect vortex beams by plasmonic metasurfaces. Adv Opt Mater 2018;6:1701228. Google Scholar

[72]

Ostrovsky AS, Rickenstorff-Parrao C, Arrizón V. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator. Opt Lett 2013;38:534–6. Google Scholar

[73]

Vaity P, Rusch L. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt Lett 2015;40:597–600. Google Scholar

[74]

Deng D, Li Y, Han YH, et al. Perfect vortex in three-dimensional multifocal array. Opt Express 2016;24:28270–8. Google Scholar

[75]

Forbes A. Controlling light’s helicity at the source: orbital angular momentum states from lasers. Phil Trans R Soc A 2017;375:20150436. Google Scholar

[76]

Rubinsztein-Dunlop H, Forbes A, Berry MV, et al. Roadmap on structured light. J Opt 2016;19:013001. Google Scholar

[77]

Alfano RR, Milione G, Galvez EJ, Shi L. Optical sources: a laser for complex spatial modes. Nat Photon 2016;10:286–8. Google Scholar

[78]

Berry MV. Optical vortices evolving from helicoidal integer and fractional phase steps. J Opt A: Pure Appl Opt 2004;6:259. Google Scholar

[79]

Seniutinas G, Balčytis A, Reklaitis I, et al. Tipping solutions: emergering 3D nano-fabrication/-imaging technologies. Nanophotonics 2017;6:923–41. Google Scholar

[80]

Malinauskas M, Farsari M, Piskarskas A, Juodkzis S. Ultrafast laser nanostructruing of photopolymers: a decade of advances. Phys Rep 2013;533:1–31. Google Scholar

[81]

Wang X, Kuchmizhak A, Storozhenko D, Makarov SV, Juodkazis S. Single-step laser plasmonic coloration of metal films. ACS Appl Mater Interfaces 2018;10:1422–7. Google Scholar

[82]

Zhang YL, Chen QD, Xia H, Sun HB. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today 2010;5:435–48. Google Scholar

[83]

Sugioka K. Progress in ultrafast laser processing and future prospects. Nanophotonics 2017;6:393–413. Google Scholar

[84]

Wang L, Chen QD, Cao XW, et al. Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing. Light Sci Appl 2017;6:e17112. Google Scholar

[85]

Wang XW, Seniutinas G, Balcytis A, et al. Laser structuring for control of coupling between THz light and phonon modes. J Laser Micro Nanoen 2016;11:377–80. Google Scholar

[86]

Brasselet E, Malinauskas M, Žukauskas A, Juodkazis S. Photopolymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum. Appl Phys Lett 2010;97:211108. Google Scholar

[87]

Sun J, Wang X, Xu T, Kudyshev ZA, Cartwright AN, Lichinitser NM. Spinning light on the nanoscale. Nano Lett 2014;14:2726–9. Google Scholar

[88]

Chong KE, Staude I, James A, et al. Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett 2015;15:5369–74. Google Scholar

[89]

Weber K, Hütt F, Thiele S, Gissibl T, Herkommer A, Giessen H. Single mode fiber based delivery of OAM light by 3D laser direct writing. Opt Express 2017;25:19672–79. Google Scholar

[90]

Yu N, Genevet P, Kats MA, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011;334:333–7. Google Scholar

[91]

Chen HT, Taylor AJ, Yu N. A review of metasurfaces: physics and appplications. Rep Prog Phys 2016;79:76401. Google Scholar

[92]

Glybovski SB, Tretyakov SA, Belov PA, Kivshar YS, Simovski CR. Metasurfaces: from microwaves to visible. Phys Rep 2016;634:1–72. Google Scholar

[93]

Ding F, Pors A, Bozhevolnyi SI. Gradient metasurfaces: a review of fundamentals and applications. Rep Prog Phys 2018;81:26401. Google Scholar

[94]

Bharadwaj P, Deutsch B, Novotny L. Optical Antennas. Adv Opt Photon 2009;1:438–83. Google Scholar

[95]

Novotny L, Hulst NV. Antennas for light. Nat Photon 2011;5:83–90. Google Scholar

[96]

Arbabi A, Faraon A. Fundamental limits of ultrathin metasurfaces. Sci Rep 2017;7:43722. Google Scholar

[97]

Kim M, Wong AMH, Eleftheriades GV. Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients. Phys Rev X 2014;4:41042. Google Scholar

[98]

Monticone F, Estakhri NM, Alù A. Full control of nanoscale optical transmission with a composite metascreen. Phys Rev Lett 2013;110:203903. Google Scholar

[99]

Decker M, Staude I, Falkner M, et al. High-efficiency dielectric Huygens’ surface. Adv Opt Mater 2015;3:813–20. Google Scholar

[100]

Zhao Q, Zhou J, Zhang F, Lippens D. Mie resonance-based dielectric metamaterials. Mater Today 2009;12:60–9. Google Scholar

[101]

Zhou L, Withayachumnankul W, Shah CM, et al. Dielectric resonator nanoantennas at visible frequencies. Opt Express 2013;21:1344–52. Google Scholar

[102]

Arbabi A, Horie Y, Ball AJ, Bagheri M, Faraon A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmit arrays. Nat Commun 2015;6:7069. Google Scholar

[103]

Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R. Recent advances in planar optics: from plasmonic to dielectric metasrfaces. Optica 2017;4:139–52. Google Scholar

[104]

Yu YF, Zhu AY, Paniagua-Domínguez R, Fu YH, Luk’yanchuk B, Kuznetsov AI. High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photo Rev 2015;9:412–8. Google Scholar

[105]

Shalaev MI, Sun J, Tsukernik A, Pandey A, Nikolskiy K, Litchinitser NM. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett 2015;15:6261–6. Google Scholar

[106]

Kuznetsov AI, Miroshnichenko AE, Brongersma ML, Kivshar Y, Luk’yanchuk B. Optically resonant dielectric nanostructures. Science 2016;354:AAG2472. Google Scholar

[107]

Huang L, Chen X, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 2013;4:2808. Google Scholar

[108]

Genevet P, Capasso F. Holographic optical metasurfaces: a review of current progress. Rep Prog Phys 2015;78:24401. Google Scholar

[109]

Ni X, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun 2013;4:2807. Google Scholar

[110]

Huang K, Liu H, Restuccia S, et al. Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum. Light Sci Appl 2018;7:17156. Google Scholar

[111]

Zhan A, Colburn S, Trivedi R, Freyett TK, Dodson CM, Majumdar A. Low-contrast dielectric metasurface optics. ACS Photonics 2016;3:209–14. Google Scholar

[112]

Min C, Liu J, Lei T, et al. Plasmonic nano-slits assisted polarization selective detour phase meta-hologram. Laser Photon Rev 2016;10:978–95. Google Scholar

[113]

Wen D Yue F, Li G, et al. Helicity multiplexed broadband metasurface holograms. Nat Commun 2015;6:8241. Google Scholar

[114]

Ye W, Zeuner F, Li X, et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat Commun 2016;7:11930. Google Scholar

[115]

Li Y, Li X, Chen L, et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface. Adv Opt Mater 2017;5:1600502. Google Scholar

[116]

Pancharatnam S. Generalized theory of interference and its applications: part I. coherent pencils. Proc India Acad Sci Sect A 1956;44:247–62. Google Scholar

[117]

Berry MV. Quantal phase factors accompanying adiabatic changes. Proc R Soc London 1984;392:45–57. Google Scholar

[118]

Berry MV. The adiabatic phase and Pancharatnam’s phase for polarized light. J Mod Opt 1987;34:1401–7. Google Scholar

[119]

Labrunie G, Robert J. Transient behaviour of the electrically controlled birefringence in a nematic liquid crystals. J Appl Phys 1973;44:4869. Google Scholar

[120]

Yang L, Fan F, Chen M, Zhang X, Bai J, Chang S. Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field. Opt Mater Express 2016;6:2803–11. Google Scholar

[121]

Primak W, Post D. Phtoelastic constants of vitreous silica and its elastic coefficient of refractive index. J Appl Phys 1959;30:779–88. Google Scholar

[122]

Zhu Z, Brown TG. Stress-induced birefringence in microstructured optical fibers. Opt Lett 2003;28:2306–8. Google Scholar

[123]

Grann EB, Moharam MG, Pommet DA. Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings. J Opt Soc Am A 1994;11:2695–703. Google Scholar

[124]

Elser J, Wangberg R, Podolskiy VA. Nanowire metamaterials with extreme optical anisotropy. Appl Phys Lett 2006;89:261102. Google Scholar

[125]

Hao J, Yuan Y, Ran L, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys Rev Lett 2007;99:63908. Google Scholar

[126]

Thomhrattanasiri S, Podolskiy VA. Hypergratings: nanophotonics in planar anisotropic metamaterials. Opt Lett 2009;34:890–2. Google Scholar

[127]

Hasman E, Kleiner V, Biener G, Niv A. Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics. Appl Phys Lett 2003;82:328. Google Scholar

[128]

Lin D, Fan P, Hasman E, Brongersma ML. Dielectric gradient metasurface optical elements. Science 2014;345:298–302. Google Scholar

[129]

Maguid E, Yulevich I, Veksler D, Kleiner V, Brongersma ML, Hasman E. Photonics spin-controlled multifunctional shared-aperture antenna array. Science 2016;352:1202–6. Google Scholar

[130]

Bliokh KY. Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect. Phys Rev Lett 2006;97:43901. Google Scholar

[131]

Xiao S, Wang J, Liu F, Zhang S, Yin X, Li J. Spin-dependent optics with metasurfaces. Nanophotonics 2017;6:215–34. Google Scholar

[132]

Ling X, Zhou X, Huang K, et al. Recent advances in the spin Hall effect of light. Rep Prog Phys 2017;80:664011–7. Google Scholar

[133]

Cardano F, Marrucci L. Spin-orbit photonics. Nat Photon 2015;9:776–8. Google Scholar

[134]

Bliokh KY, Rodríguez-Fortuño FJ, Zayats AV. Spin-orbit interactions of light. Nat Photon 2015;9:796–808. Google Scholar

[135]

Shitrit N, Yulevich I, Maguid E, et al. Spin-optical metamaterial route to spin-controlled photonics. Science 2013;340:724–6. Google Scholar

[136]

Chen H, Chen Z, Li Q, Lv H, Yu Q, Yi X. Generation of vector beams based on dielectric metasurfaces. J Mod Opt 2015;62:638–43. Google Scholar

[137]

Karimi E, Schulz SA, Leon ID, Qassim H, Upham J, Boyd RW. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci Appl 2014;3:e167. Google Scholar

[138]

Pu M, Li X, Ma X, et al. Cantenary optics for achromatic generation of perfecr optical angular momentum. Sci Adv 2015;1:E1500396. Google Scholar

[139]

Hakobyan D, Magallanes H, Seniutinas G, Juodkazis S, Brasselet E. Tailoring orbital angular momentum of light in the visible domain with metallic metasurfaces. Adv Opt Mater 2016;4:306–12. Google Scholar

[140]

Devlin RC, Ambrosio A, Wintz D, et al. Spin-to-orbital angular momentum conversion in dielectric metasurfaces. Opt Express 2017;25:377–93. Google Scholar

[141]

Wang X, Kuchmizhak AA, Brasselet E, Juodkazis S. Dielectric geometric phase optical elements fabricated by femtosecond direct laser writing in photoresists. Appl Phys Lett 2017;110:1–4. Google Scholar

[142]

Yang Y, Wang W, Moitra P, Kravchenko II, Briggs DP, Valentine J. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 2014;14:1394–9. Google Scholar

[143]

Huang L, Chen X, Mühlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett 212;12:5750–5. Google Scholar

[144]

Wang S, Wu PC, Su VC, et al. Broadband achromatic optical metasurface devices. Nat Commun 2017;8:187. Google Scholar

[145]

Wang S, Wu PC, Su VC, Tsai DP, et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 2018;13:227–32. Google Scholar

[146]

Chen WT, Zhu AY, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol 2018;13:220–6. Google Scholar

[147]

Shi Z, Khorasaninejad M, Huang YW, et al. Single-layer metasurface with controlloable multiwavelength functions. Nano Lett 2018;18:2420–7. Google Scholar

[148]

Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 2015;10:937–44. Google Scholar

[149]

Zhou J, Liu Y, Ke Y, Luo H, Wen S. Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phase. Opt Lett 2015;40:3193–6. Google Scholar

[150]

Chen S, Cai Y, Li G, Zhang S, Cheah KW. Geometric metasurface fork gratings for vortex-beam generation and manipulation. Laser Photon Rev 2016;10:322–6. Google Scholar

[151]

Fan Q, Wang D, Huo P, Zhang Z, Liang Y, Xu T. Autofocusing Airy beams generated by all-dielectric metasurface for visible light. Opt Express 2017;25:9285–94. Google Scholar

[152]

Zhang L, Liu S, Li L, Cui TJ. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by Pancharatnam-Berry coding metasurfaces. ACS Appl Mater Interfaces 2017;9:36447–55. Google Scholar

[153]

Yue F, Wen D, Zhang C, et al. Multichannel polarization controllable superpositions of orbital angular momentum states. Adv Mater 2017;29:1603838. Google Scholar

[154]

Ling X, Zhou X, Yi X, et al. Giant photonics spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence. Light Sci Appl 2015;4:e290. Google Scholar

[155]

Niv A, Gordodetski Y, Kleiner V, Hasman E. Topological spin-orbit interaction of light in anisotropic inhomogeneous subwavelength structures. Opt Lett 2008;33:2910–2. Google Scholar

[156]

Devlin RC, Ambrosio A, Rubin NA, Mueller JPB, Capasso F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 2017;358:896–901. Google Scholar

[157]

Wang X, Kuchmizhak A, Hu D, Li X. Multiple orbital angular momentum generated by dielectric hybrid phase element. AIP Conf Proc 2017;1874:30039. Google Scholar

[158]

Mueller JPB, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 2017;118:113901. Google Scholar

[159]

Ma Q, Shi CB, Bai GD, Chen TY, Noor A, Cui TJ. Beam-editing coding metasurfaces based on polarization bit and orbital angular momentum mode bit. Adv Opt Mater 2017;5:1700548. Google Scholar

[160]

Oron R, Davidson N, Friesem AA, Hasman E. Efficient formation of pure helical laser beams. Opt Commun 2000;182:205–8. Google Scholar

[161]

Ngcobo S, Litvin IA, Burger L, Forbes A. A digital laser for on-demand laser modes. Nat Commun 2013;4:2289. Google Scholar

[162]

Lin D, Daniel J, Clarkson W. Controlling the handedness of directly excited Laguerre–Gaussian modes in a solid-state laser. Opt Lett 2014;39:3903–6. Google Scholar

[163]

Kim D, Kim J. Direct generation of an optical vortex beam in a single-frequency Nd: YVO 4 laser. Opt Lett 2015;40:399–402. Google Scholar

[164]

Leger JR, Chen D, Dai K. High modal discrimination in a Nd: YAG laser resonator with internal phase gratings. Opt Lett 1994;19:1976–8. Google Scholar

[165]

Caley AJ, Thomson MJ, Liu J, Waddie AJ, Taghizadeh MR. Diffractive optical elements for high gain lasers with arbitrary output beam profiles. Opt Express 2007;15:10699–704. Google Scholar

[166]

Naidoo D, Aït-Ameur K, Brunel M, Forbes A. Intra-cavity generation of superpositions of Laguerre–Gaussian beams. Appl Phys B 2012;106:683–90. Google Scholar

[167]

Litvin IA, Burger L, Forbes A. Petal-like modes in Porro prism resonators. Opt Express 2007;15:14065–77. Google Scholar

[168]

Bourderionnet J, Brignon A, Huignard JP, Delboulbe A, Loiseaux B. Spatial mode control of a diode-pumped Nd: YAG laser by an intracavity liquid-crystal light valve. Opt Lett 2001;26:1958–60. Google Scholar

[169]

Ito A, Kozawa Y, Sato S. Generation of hollow scalar and vector beams using a spot-defect mirror. JOSA A 2010;27:2072–7. Google Scholar

[170]

Thirugnanasambandam M, Senatsky Y, Ueda K. Generation of very – high order Laguerre-Gaussian modes in Yb: YAG ceramic laser. Laser Phys Lett 2010;7:637–43. Google Scholar

[171]

Bisson J, Senatsky Y, Ueda K. Generation of Laguerre-Gaussian modes in Nd: YAG laser using diffractive optical pumping. Laser Phys Lett 2005;2:327–33. Google Scholar

[172]

Tovar AA. Production and propogation of cylindrically polarized Laguerre-Gaussian laser beams. JOSA 1998;15:2705–11. Google Scholar

[173]

Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photon 2009;1:1–57. Google Scholar

[174]

Chen J, Wan C, Zhan Q. Vectorial optical fields: recent advances and future prospects. Sci Bull 2018;63:54–74. Google Scholar

[175]

Milione G, Sztul H, Nolan D, Alfano R. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys Rev Lett 2011;107:053601. Google Scholar

[176]

Padgett MJ, Courtial J. Poincaré-sphere equivalent for light beams containing orbital angular momentum. Optics Lett 1999;24:430–2. Google Scholar

[177]

Marrucci L, Karimi E, lussarenko S, et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J Opt 2011;13:064001. Google Scholar

[178]

Zhao Y, Edgar JS, Jeffries GD, McGloin D, Chiu DT. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys Rev Lett 2007;99:073901. Google Scholar

[179]

Liang Y, Wu HW, Huang BJ, Huang XG. Light beams with selective angular momentum generated by hybrid plasmonic waveguides. Nanoscale 2014;6:12360–5. Google Scholar

[180]

Liang Y, Zhang F, Gu J, Huang XG, Liu S. Integratable quarter-wave plates enable one-way angular momentum conversion. Sci Rep 2016;6:24959. Google Scholar

[181]

Liang Y, Huang X. Generation of two beams of light carrying spin and orbital angular momenta of opposite handedness, Opt Lett 2014;39:5074–7. Google Scholar

[182]

Zhang F, Liang Y, Zhang H, et al. Optical gears in a nanophotonic directional coupler. Opt Express 2017;25:10972–83. Google Scholar

[183]

Kim D, Kim J, Clarkson W. Q-switched Nd: YAG optical vortex lasers. Opt Express 2013;21:29449–54. Google Scholar

[184]

Zhang Y, Yu H, Zhang H, Xu X, Xu J, Wang J. Self-mode-locked Laguerre-Gaussian beam with staged topological charge by thermal-optical field coupling. Opt Express 2016;24:5514–22. Google Scholar

[185]

Li H, Phillips DB, Wang X, et al. Orbital angular momentum vertical-cavity surface-emitting lasers. Optica 2015;2:547–52. Google Scholar

[186]

Cai X, Wang J, Strain MJ, et al. Integrated compact optical vortex beam emitters. Science 2012;338:363–6. Google Scholar

[187]

Xie Z, Lei T, Li F, et al. Ultra-broadband on-chip twisted light emitter for optical communications. Light Sci Appl 2018;7:18001. Google Scholar

[188]

Maltese G, Halioua Y, Lemaître A, et al. Towards an integrated AlGaAs waveguide platform for phase and polarisation shaping. J Opt 2018;20:05LT01. Google Scholar

[189]

Miao P, Zhang Z, Sun J, et al. Orbital angular momentum microlaser. Science 2016;353:464–7. Google Scholar

[190]

Guo J, Liang Y, Huang XG, Guo B, Li J. Pure dielectric waveguides enable compact, ultrabroadband wave plates. IEEE Photonics J 2016;8:1–9. Google Scholar

[191]

Zhang F, Liang Y, Zhang H, et al. On chip chirality-distinguishing beamsplitter. Opt Express 2017;25:24861–71. Google Scholar

[192]

Chong A, Buckley J, Renninger W, Wise F. All-normal-dispersion femtosecond fiber laser. Opt Express 2006;14:10095–100. Google Scholar

[193]

Jeong Y, Sahu J, Payne D, Nilsson J. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Opt Express 2004;12:6088–92. Google Scholar

[194]

Lira H, Yu Z, Fan S, Lipson M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys Rev Lett 2012;109:033901. Google Scholar

[195]

Yu Z, Veronis G, Wang Z, Fan S. One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal. Phys Rev Lett 2008;100:023902. Google Scholar

[196]

Rüter CE, Makris KG, El-Ganainy R, Christodoulides DN, Segev M, Kip D. Observation of parity–time symmetry in optics. Nat Phys 2010;6:192–5. Google Scholar

[197]

Feng L, El-Ganainy R, Ge L. Non-Hermitian photonics based on parity–time symmetry. Nat Photon 2017;11:752–62. Google Scholar

[198]

Leach J, Yao E, Padgett MJ. Observation of the vortex structure of a non-integer vortex beam. New J Phys 2004;6:71. Google Scholar

[199]

Oemrawsingh SSR, Ma X, Voigt D, et al. Experimental demonstration of fractional orbital angular momentum entanglement of two photons. Phys Rev Lett 2005;95:240501. Google Scholar

[200]

Yang Z, Zhang X, Bai C. Nondiffracting light beams carrying fractional orbital angular momentum. JOSA A 2018;35:452–61. Google Scholar

[201]

Basistiy IV, Pas’Ko VA, Slyusar VV, Soskin MS, Vasnetsov MV. Synthesis and analysis of optical vortices with fractional topological charges. J Opt A: Pure Appl Opt 2004;6:S166. Google Scholar

[202]

Tao SH, Yuan XC, Lin J, Peng X, Niu HB. Fractional optical vortex beam induced rotation of particles. Opt Express 2005;13:7726–31. Google Scholar

[203]

Götte JB, Franke-Arnold S, Zambrini R, Barnett SM. Quantum formulation of fractional orbital angular momentum. J Mod Opt 2007;54:1723–38. Google Scholar

[204]

Götte JB, O’Holleran K, Preece D, et al. Light beams with fractional orbital angular momentum and their vortex structure. Opt Express 2008;16:993–1006. Google Scholar

[205]

O’Dwyer DP, Phelan CF, Rakovich YP, Eastham PR, Lunney JG, Donegan JF. Generation of continuously tunable fractional optical orbital angular momentum using internal conical diffraction. Opt Express 2010;18:16480–5. Google Scholar

[206]

Turpin A, Rego L, Picón A, Román JS, Hernández-García C. Extreme ultraviolet fractional orbital angular momentum beams from high harmonic generation. Sci Rep 2017;7: 43888. Google Scholar

[207]

Wang Y, Zhao P, Feng X, et al. Dynamically sculpturing plasmonic vortices: from integer to fractional orbital angular momentum. Sci Rep 2016;6:36269. Google Scholar

[208]

Martinez-Castellanos I, Gutiérrez-Vega JC. Shaping optical beams with non-integer orbital-angular momentum: a generalized differential operator approach. Opt Lett 2015;40:1764–7. Google Scholar

[209]

Berkhout GCG, Lavery MPJ, Padgett MJ, Beijersbergen MW. Measuring orbital angular momentum superpositions of light by mode transformation. Optics Lett 2011;36:1863–5. Google Scholar

[210]

Fickler R, Lapkiewicz R, Huber M, Lavery MPJ, Padgett MJ, Zeilinger A. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information. Nat Commun 2014;5:4502. Google Scholar

[211]

Zhou J, Zhang WH, Chen LX. Experimental detection of high-order or fractional orbital angular momentum of light based on a robust mode converter. Appl Phys Lett 2016;108:111108. Google Scholar

[212]

Abramochkin EG, Volostnikov VG. Generalized Gaussian beams. J Opt A: Pure Appl Opt 2004;6:S157. Google Scholar

[213]

Tung JC, Omatsu T, Liang HC, Huang KF, Chen YF. Exploring the self-mode locking and vortex structures of nonplanar elliptical modes in selectively end-pumped Nd: YVO 4 lasers: manifestation of large fractional orbital angular momentum. Opt Express 2017;25:22769–79. Google Scholar

[214]

Vyas S, Senthilkumaran P. Interferometric optical vortex array generator. Appl Opt 2007;46:2893–8. Google Scholar

[215]

Ladavac K, Grier DG. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt Express 2004;12:1144–9. Google Scholar

[216]

Becker J, Rose P, Boguslawski M, Denz C. Systematic approach to complex periodic vortex and helix lattices. Opt Express 2011;19:9848–62. Google Scholar

[217]

Zhang N, Yuan XC, Burge RE. Extending the detection range of optical vortices by Dammann vortex gratings. Opt Lett 2010;35:3495–7. Google Scholar

[218]

Lei T, Zhang M, Li YR, et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci Appl 2015;4:e257. Google Scholar

[219]

Berkhout GCG, Lavery MPJ, Courtial J, Beijersbergen MW, Padgett MJ. Efficient sorting of orbital angular momentum states of light. Phys Rev Lett 2010;105:153601. Google Scholar

[220]

Mirhosseini M, Malik M, Shi Z, Boyd RW. Efficient separation of the orbital angular momentum eigenstates of light. Nat Commun 2013;4:2781. Google Scholar

[221]

Ren HR, Li XP, Zhang QM, Gu M. On-chip noninterference angular momentum multiplexing of broadband light. Science 2016;352:805–9. Google Scholar

[222]

Yan Y, Xie GD, Lavery MPJ, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat Commun 2014;5:4876. Google Scholar

[223]

Yan Y, Yue Y, Huang H, et al. Multicasting in a spatial division multiplexing system based on optical orbital angular momentum. Opt Lett 2013;38:3930–3. Google Scholar

[224]

Zhu L, Wang J. Simultaneous generation of multiple orbital angular momentum (OAM) modes using a single phase-only element. Opt Express 2015;23:26221–33. Google Scholar

[225]

Du J, Wang J. Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array. Sci Rep 2015;5:9662. Google Scholar

[226]

Pozar DM, Targonski SD. A shared-aperture dual-band dual-polarized microstrip array. IEEE Trans Antennas Propag 2001;49:150–7. Google Scholar

[227]

Lager IE, Trampuz C, Simeoni M, Ligthart LP. Interleaved array antennas for FMCW radar applications. IEEE Trans Antennas Propag 2009;57:2486–90. Google Scholar

[228]

Maguid E, Yulevich, I, Yannai M, Kleiner V, Brongersma ML, Hasman E. Multifunctional interleaved geometric-phase dielectric metasurfaces. Light Sci Appl 2017;6:e17027. Google Scholar

[229]

Li S, Wang J. Adaptive power-controllable orbital angular momentum (OAM) multicasting. Sci Rep 2015;5:9677. Google Scholar

[230]

Zhu L, Wang J. Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators. Sci Rep 2014;4:7441. Google Scholar

[231]

Li S, Wang J. Compensation of a distorted N-fold orbital angular momentum multicasting link using adaptive optics. Opt Lett 2016;41:1482–5. Google Scholar

[232]

Zhu L, Wang J. Demonstration of obstruction-free data-carrying N-fold Bessel modes multicasting from a single Gaussian mode. Opt Lett 2015;40:5463–6. Google Scholar

[233]

Zhao Y, Xu J, Wang A, et al. Demonstration of data-carrying orbital angular momentum-based underwater wireless optical multicasting link. Opt Express 2017;25:28743–51. Google Scholar

[234]

Lin YC, Lu TH, Huang KF, Chen YF. Generation of optical vortex array with transformation of standing-wave Laguerre-Gaussian mode. Opt Express 2011;19:10293–303. Google Scholar

[235]

Son B, Kim S, Kim YH, et al. Optical vortex arrays from sematic liquid crystals. Opt Express 2014;22:4699–704. Google Scholar

[236]

Du J, Wang J. Chip-scale optical vortex lattice generator on silicon platform. Opt Lett 2017;42:5054–7. Google Scholar

[237]

Huang LL, Song X, Reineke B, et al. Volumetric generation of optical vortices with metasurfaces. ACS Photon 2017;4:338–6. Google Scholar

[238]

Mehmood MQ, Mei ST, Hussain S, et al. Visible-frequency metasurface for Structuring and spatially multiplexing Optical Vortices. Adv Mater 2016;28:2533–9. Google Scholar

[239]

Yue FY, Wen DD, Zhang C, et al. Multichannel polarization-controllable superpositions of orbital angular momentum states. Adv Mater 2017;29:1603838. Google Scholar

[240]

Jin JJ, Pu MB, Wang YQ, et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial. Adv Mater Technol 2017;2:1600201. Google Scholar

[241]

Gao H, Li Y, Chen LW, et al. Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design. Nanoscale 2018;10:666–71. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.