[1]

Gaponenko SV. Introduction to nanophotonics, 1st ed., Cambridge University Press, Cambridge, 2010. Google Scholar

[2]

Brûlé S, Javelaud EH, Enoch S, Guenneau S. Experiments on seismic metamaterials: molding surface waves. Phys Rev Lett 2014;112:133901. CrossrefPubMedGoogle Scholar

[3]

Brûlé S, Javelaud EH, Enoch S, Guenneau S. Flat lens for seismic waves. Sci Rep 2017;7:18066. CrossrefPubMedGoogle Scholar

[4]

Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 1987;58:2059–62. CrossrefPubMedGoogle Scholar

[5]

John S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 1987;58:2486–9. PubMedCrossrefGoogle Scholar

[6]

Veselago VG. The electrodnamics of substances with simultaneously negative values of ε and μ. Sov Phys Usp 1968;10:509–14. CrossrefGoogle Scholar

[7]

Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett 2000;85:3966–9. PubMedCrossrefGoogle Scholar

[8]

Srinivasan K, Painter O. Momentum space design of high-q photonic crystal optical cavities. Opt Express 2002;10:670–84. PubMedCrossrefGoogle Scholar

[9]

Zengerle R. Light propagation in singly and doubly periodic waveguides. J Mod Opt 1987;34:1589–617. CrossrefGoogle Scholar

[10]

Notomi M. Theory of light propagation in strongly modulated photonic crystals: refractionlike behaviour in the vicinity of the photonic band gap. Phys Rev B 2000;62:10696–705. CrossrefGoogle Scholar

[11]

Gralak B, Enoch S, Tayeb G. Anomalous refractive properties of photonic crystals. J Opt Soc Am A 2000;17:1012–20. CrossrefGoogle Scholar

[12]

Luo C, Johnson SG, Joannopoulos JD, Pendry JB. All angle negative refraction without negative effective index. Phys Rev B 2002;65:201104. CrossrefGoogle Scholar

[13]

Pendry JB, Holden AJ, Robbins DJ, Stewart WJ. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech 1999;47:2075–84. CrossrefGoogle Scholar

[14]

Smith DR, Padilla WJ, Vier VC, Nemat Nasser SC, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 2000;84:4184. PubMedCrossrefGoogle Scholar

[15]

Dolling G, Enkrich C, Wegener M, Soukoulis CM, Linden S. Observation of simultaneous negative phase and group velocity of light. Science 2006;312:892–4. CrossrefGoogle Scholar

[16]

Schurig D, Mock JJ, Justice BJ, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006;314:977–80. CrossrefPubMedGoogle Scholar

[17]

Alù A, Silveirinha M, Salandrino A, Engheta EN. Epsilon near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys Rev B 2007;75:155410. CrossrefGoogle Scholar

[18]

Enoch S, Tayeb G, Sabouroux P, Guérin N, Vincent P. A metamaterial for directive emission. Phys Rev Lett 2002;89:213902. CrossrefPubMedGoogle Scholar

[19]

Antonakakis T, Craster RV. High frequency asymptotics for microstructured thin elastic plates and platonics. Proc R Soc Lond A 2012;468:1408–27. CrossrefGoogle Scholar

[20]

Dubois M, Bossy E, Enoch S, Guenneau S, Lerosey G, Sebbah P. Time drive super oscillations with negative refraction. Phys Rev Lett 2015;114:013902. CrossrefGoogle Scholar

[21]

Sukhovich A, Merheb B, Muralidharan K, et al. Experimental and theoretical evidence for subwavelength imaging in phononic crystals. Phys Rev Lett 2009;102:154301. PubMedCrossrefGoogle Scholar

[22]

Meseguer F, Holgado M, Caballero D, et al. Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal. Phys Rev B 1999;59:12169. CrossrefGoogle Scholar

[23]

Martinez-Sala R, Sancho J, Sanchez JV, Gomez V, Llinares J, Meseguer F. Sound attenuation by sculpture. Nature 1995;378:241. CrossrefGoogle Scholar

[24]

Colombi A, Roux P, Guenneau S, Guéguen P, Craster RV. Forests as a natural seismic metamaterial: rayleigh wave bandgaps induced by local resonances. Sci Rep 2016;6:19238. CrossrefPubMedGoogle Scholar

[25]

Tsakmakidis KL, Boardman AD, Hess O. Trapped rainbow storage of light in metamaterials. Nature 2007;450:397. CrossrefPubMedGoogle Scholar

[26]

Liu Z, Zhang X, Mao Y, et al. Locally resonant sonic materials. Science 2000;289:1734–6. PubMedCrossrefGoogle Scholar

[27]

Fang N, Xi D, Xu J, et al. Ultrasonic metamaterials with negative modulus. Nat Mater 2006;5:452–6. CrossrefPubMedGoogle Scholar

[28]

Christensen J, Garcia De Abajo FJ. Anisotropic metamaterials for full control of acoustic waves. Phys Rev Lett 2012;108:124301. CrossrefPubMedGoogle Scholar

[29]

Craster R, Guenneau S. Acoustic metamaterials: negative refraction, imaging, lensing and cloaking. In: Craster R, Guenneau S, eds. Vol. 166, Springer Verlag, 2013. Google Scholar

[30]

Milton GW, Briane M, Willis JR. On cloaking for elasticity and physical equations with a transformation invariant form. New J Phys 2006;8:248. CrossrefGoogle Scholar

[31]

Brun M, Guenneau S, Movchan AB. Achieving control of in-plane elastic waves. Appl Phys Lett 2009;94:061903. CrossrefGoogle Scholar

[32]

Norris A, Shuvalov AL. Elastic cloaking theory. Wave Motion 2011;48:525–38. CrossrefGoogle Scholar

[33]

Farhat M, Guenneau S, Enoch S. Ultrabroadband elastic cloaking in thin plates. Phys Rev Lett 2009;103:024301. PubMedCrossrefGoogle Scholar

[34]

Farhat M, Guenneau S, Enoch S. Broadband cloaking of bending waves via homogenization of multiply perforated radially symmetric and isotropic thin elastic plates. Phys Rev B 2012;85:020301 R. CrossrefGoogle Scholar

[35]

Stenger N, Wilhelm M, Wegener M. Experiments on elastic cloaking in thin plates. Phys Rev Lett 2012;108:014301. CrossrefPubMedGoogle Scholar

[36]

Woods RD. Screening of surface waves in soils, Technical Report No. IP-804. University of Michigan, 1968. Google Scholar

[37]

Banerjee PK, Ahmad S, Chen K. Advanced application of BEM to wave barriers in multi-layered three-dimensional soil media. Earthq Eng Struct Dynam 1988;16:1041–1060. CrossrefGoogle Scholar

[38]

Brûlé S, Enoch S, Guenneau S. Emergence of seismic metamaterials: current state and future perspectives. arXiv:1712.09115, 2017. Google Scholar

[39]

Brûlé S, Javelaud E, Guenneau S, Enoch S, Komatitsch D. Seismic metamaterials. Proceedings of the 9th International Conference of the Association for Electrical, Transport and Optical Properties of Inhomogeneous Media in Marseille, France, 2012. Google Scholar

[40]

Achaoui Y, Antonakakis T, Brûlé S, Craster RV, Enoch S, Guenneau S. Clamped seismic metamaterials: ultra-low broad frequency stop-bands. New J Phys 2017;19:063022. CrossrefGoogle Scholar

[41]

Aznavourian R, Puvirajesinghe T, Brûlé S, Enoch S, Guenneau S. Spanning the scales of mechanical metamaterials using time domain simulations in transformed crystals, graphene flakes and structured soils. J Phys: Condens Matter 2017;29:433004. PubMedGoogle Scholar

[42]

Krödel S, Thome N, Daraio C. Wide band-gap seismic metastructures. Ex Mech Lett 2015;4:111–7. CrossrefGoogle Scholar

[43]

Achaoui Y, Ungureanu B, Enoch S, Brûlé S, Guenneau S. Seismic waves damping with arrays of inertial resonators. Ex Mech Lett 2016;8:30–8. CrossrefGoogle Scholar

[44]

Finocchio G, Casablanca O, Ricciardi G, et al. Seismic metamaterials based on isochronous mechanical oscillators. Appl Phys Lett 2014;104:191903. CrossrefGoogle Scholar

[45]

Brûlé S, Cuira F. Practice of soil-structure interaction under seismic loading. AFNOR Edition, 2018. Google Scholar

[46]

Colombi A, Colquitt D, Roux P, Guenneau S, Craster RV. A seismic metamaterial: the resonant metawedge. Sci Rep 2016;6:27717. PubMedCrossrefGoogle Scholar

[47]

Maurel A, Marigo JJ, Pham K, Guenneau S. Conversion of Love waves in a forest of trees. Phys Rev B 2018;98:134311. CrossrefGoogle Scholar

[48]

Brûlé S, Ungureanu B, Achaoui Y, et al. Metamaterial-like transformed Urbanism. Innov Infrastruct Solut 2017;2:20. CrossrefGoogle Scholar

[49]

Kadic M, Bückmann T, Schittny R, Wegener M. Metamaterials beyond electromagnetism. Rep Prog Phys 2013;76:126501. PubMedCrossrefGoogle Scholar

[50]

Housner GW. Effect of foundation compliance on earthquake stresses in multistory buildings. Bull Seismol Soc Am 1954;44:551–69. Google Scholar

[51]

Housner GW. Interaction of building and ground during an earthquake. Bull Seismol Soc Am 1957;47:179–86. Google Scholar

[52]

Wirgin A, Bard P-Y. Effects of buildings on the duration and amplitude of ground motion in Mexico City. Bull Seismol Soc Am 1996;86:914–20. Google Scholar

[53]

Boutin C, Roussillon P. Assessment of the urbanization effect on seismic response. Bull Seismol Soc Am 2004;94:251–68. CrossrefGoogle Scholar

[54]

Guéguen P, Bard P-Y, Chavez-Garcia FJ. Site-city seismic interaction in Mexico City-like environments: an analytical study. Bull Seismol Soc Am 2002;92:794–811. CrossrefGoogle Scholar

[55]

Clouteau D, Aubry D. Modification of the ground motion in dense urban areas. J Comput Acoust 2011;9:1659–75. Google Scholar

[56]

Guéguen P, Bard P-Y, Semblat J-F. From soil-structure interaction to site-city interaction. In: 12th World Conference on Earthquake Engineering. Auckland, New Zealand, 2000. Google Scholar

[57]

Trifunac MD. Interaction of a shear wall with the soil for incident plane SH waves. Bull Seismol Soc Am 1972;62: 63–83. Google Scholar

[58]

Wong HL, Trifunac MD, Westermo B. Effects of surface and subsurface irregularities on the amplitude of monochromatic waves. Bull Seismol Soc Am 1977;67:353–68. Google Scholar

[59]

Auriault JL, Boutin C, Geindreau C. Homogénéisation de phénomènes couplés en milieux hétérogènes, Mécanique et Ingéniérie des Matériaux, Hermes, Lavoisier, 2009. Google Scholar

[60]

Boutin C, Roussillon P. Wave propagation in presence of oscillators on the free surface. Int J Eng Sci 2006;4:180–204. Google Scholar

[61]

Ghergu M, Ionescu IR. Structure–soil–structure coupling in seismic excitation and city effect. Int J Eng Sci 2009;47:342–54. CrossrefGoogle Scholar

[62]

Spiliopoulos KV, Anagnospoulos SA. Earthquake induced pounding in adjacent building. In: Earthquake engineering, 10th World Conference, Balkema, Rotterdam, 1992. Google Scholar

[63]

Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science 2006;312:1780–2. PubMedCrossrefGoogle Scholar

[64]

Kadic M, Diatta A, Frenzel T, Guenneau S, Wegener M. Static chiral Willis continuum mechanics for three-dimensional chiral mechanical metamaterials. Phys Rev B 2019;99:214101. CrossrefGoogle Scholar

[65]

Liu Y, Gralak B, McPhedran RC, Guenneau S. Finite frequency external cloaking with complementary bianisotropic media. Opt Express 2014;22:17387–402. CrossrefPubMedGoogle Scholar

[66]

Abdeddaim R, Enoch S, Guenneau S, McPhedran RC. Experiments on external cloaking: electromagnetic space (in submission). Google Scholar

[67]

Milton GW, Nicorovici NA. On the cloaking effects associated with anomalous localized resonance. Proc R Soc A 2006;462:3027–59. CrossrefGoogle Scholar

[68]

Nicorovici NA, McPhedran RC, Milton GW. Optical and dielectric properties of partially resonant composites. Phys Rev B 1994;49:8479–82. CrossrefGoogle Scholar

[69]

AFPS, Report of the post-seismic mission on the Mexico earthquake of september 19th, 2017. AFPS, 2018. Google Scholar

[70]

Sánchez-Sesma FJ. Site effects on strong ground motion. Soil Dyn Earthq Eng 1987;6:124–32. CrossrefGoogle Scholar

[71]

Aki K. Local site effects on strong ground motion, in Earthquake Engineering and Soil Dynamics I –Recent Advances in Ground Motion Evaluation, In: Von Thun JL, ed. Geotech. Special Pub. No. 20, ASCE, New York, NY, 1988, 103–55. Google Scholar

[72]

Cadet H, Bard P-Y, Rodriguez-Marek A. Defining a standard rock site: propositions based on the KiK-net database. Bull Seism Soc Am 2010;100:172–95. CrossrefGoogle Scholar

[73]

Nakamura Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q Rep Railw Tech Res Inst 1989;30:25–30. Google Scholar

[74]

Bonnefoy-Claudet S, Cornou C, Bard P-Y, et al. H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophys J Int 2006;167:827–37. CrossrefGoogle Scholar

[75]

Bard P-Y. The H/V technique: capabilities and limitations based on the results of the SESAME project. Foreword. Bull Earthq Eng 2008;6:1–2. Google Scholar

[76]

Pilz M, Parolai S, Leyton F, Campos J, Zschau J. A comparison of site response techniques using earthquake data and ambient seismic noise analysis in the large urban areas of Santiago de Chile. Geophys J Int 2009;178:713–28. CrossrefGoogle Scholar

[77]

Lunedei E, Albarello D. Theoretical HVSR curves from full wavefield modelling of ambient vibrations in a weakly dissipative layered Earth. Geophys J Int 2010;181:1093–108. Google Scholar

[78]

Brûlé S, Javelaud EH, Ohmachi T, Nakamura Y, Inoue S. H/V method used to qualify the modification of dynamic soil characteristics due to ground improvement work by means of heavy compaction process. A case study: the former Givors’s glass factory area”, 7th International Conference on Urban Earthquake Engineering and 5th International Conference on Earthquake Engineering, Tokyo, Japan, 02-26, 2010, 451–5. Google Scholar

[79]

Brûlé S, Javelaud E. Méthode H/V en géotechnique. Application à un modèle bicouche. Rev Fr Géotech N 2014;142:3–15. Google Scholar

[80]

Harutoonian P, Leo CJ, Doanh T, et al. Microtremor measurements of rolling compacted ground. Soil Dyn Earthq Eng 2012;4:23–31. Google Scholar

[81]

Auvinet G, Méndez E, Juárez M. The subsoil of Mexico City. Vol. III. Three volumes edition celebrating the 60th Anniversary of The Institute of Engineering, UNAM, 2017. Google Scholar

[82]

Zeevaert L. Foundation design and behaviour of Tower Latino American in Mexico City. Géotechnique 1957;7:115–33. CrossrefGoogle Scholar

[83]

Boorman R, Tomlinson MJ. Foundation design and construction. Published by Longman Group United Kingdom, 2001. Google Scholar

[84]

SESAME, Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations – measurements, processing and interpretations. SESAME European research project. deliverable D23.12, 2005. Google Scholar

[85]

Xu J, Jiang X, Fang N, et al. Molding acoustic, electromagnetic and water waves with a single cloak. Sci Rep 2015;5:10678. PubMedCrossrefGoogle Scholar

[86]

Bossuet G, Louis A, Ferreira F, Labaune Y, Laplaige C. Le sanctuaire suburbain de la Genetoye à Autun/Augustodunum (Saône-et-Loire). Apport de l’approche combinée de données spatialisées à la restitution du théâtre antique du Haut du Verger, Gallia, 72-2, 2015, 205–23. Google Scholar

[87]

SolscopeMag, Quelles fondations pour le théâtre antique de la Plaine de l’Arroux, à Autun ? 2016;6:81–4. Google Scholar

[88]

Alix S, Barral P, Ducreux F, et al. Projet collectif de recherche, Approches diachroniques et pluridisciplinaires de la confluence Arroux / Ternin de la préhistoire au Moyen-âge. Le complexe monumental de la Genetoye (Autun, Saône-et-Loire) dans son environnement, rapport PCR, 2018, 84. Google Scholar

[89]

Movchan AB, Movchan NV, Guenneau S, McPhedran RC. Asymptotic estimates for localized electromagnetic modes in doubly periodic structures with defects. Proc Roy Soc Lond. A 2007;463:1045–67. Google Scholar

[90]

Hess O, Pendry JB, Maier SA, Oulton RF, Hamm JM, Tsakmakidis KL. Active nanoplasmonic metamaterials. Nat Mater 2012;11:573–84. PubMedCrossrefGoogle Scholar

[91]

Williams CR, Andrews SR, Maier SA, Fernandez-Domínguez AI, Martín-Moreno L, García-Vidal FJ. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat Photonics 2008;2:175–9. CrossrefGoogle Scholar

[92]

Miri MA, Alù A. Nonlinearity-induced PT-symmetry without material gain. New J Phys 2016;18:065001. CrossrefGoogle Scholar

[93]

Khanikaev AB, Shvets G. Two-dimensional topological photonics. Nat Photonics 2017;11:763–73. CrossrefGoogle Scholar

[94]

Makwana MP, Craster RV. Designing multidirectional energy splitters and topological valley supernetworks. Phys Rev B 2018;98:235125. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.