[1]

Noh C, Angelakis DG. Quantum simulations and many-body physics with light. Rep Prog Phys 2017;80:016401. CrossrefPubMedGoogle Scholar

[2]

Kimble HJ. The quantum internet. Nature 2008;453:1023–30. CrossrefPubMedGoogle Scholar

[3]

Ritter S, Nölleke C, Hahn C, et al. An elementary quantum network of single atoms in optical cavities. Nature 2012;484: 195–200. CrossrefPubMedGoogle Scholar

[4]

Lodahl P. Quantum-dot based photonic quantum networks. Quant Sci Tech 2018;3:013001. CrossrefGoogle Scholar

[5]

DiVincenzo DP, Bacon D, Kempe J, Burkard G, Whaley KB. Universal quantum computation with the exchange interaction. Nature 2000;408:339–42. CrossrefPubMedGoogle Scholar

[6]

Paulisch V, Kimble HJ, González-Tudela A. Universal quantum computation in waveguide QED using decoherence free subspaces. New J Phys 2016;18:043041. CrossrefGoogle Scholar

[7]

Chang DE, Sørensen AS, Hemmer PR, Lukin MD. Quantum optics with surface plasmons. Phys Rev Lett 2006;97: 053002. PubMedCrossrefGoogle Scholar

[8]

Friedler I, Sauvan C, Hugonin JP, Lalanne P, Claudon J, Gèrard JM. Solid-state single photon sources: the nanowire antenna. Opt Express 2009;17:2095–110. PubMedCrossrefGoogle Scholar

[9]

Lodahl P, Mahmoodian S, Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev Mod Phys 2015;87:347–400. CrossrefGoogle Scholar

[10]

Wang Q, Stobbe S, Lodahl P. Mapping the local density of optical states of a photonic crystal with single quantum dots. Phys Rev Lett 2011;107:167404. PubMedCrossrefGoogle Scholar

[11]

Arcari M, Söllner I, Javadi A, et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys Rev Lett 2014;113:093603. PubMedCrossrefGoogle Scholar

[12]

Kiršanskė G, Thyrrestrup H, Daveau RS, et al. Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide. Phys Rev B 2017;96:165306. CrossrefGoogle Scholar

[13]

Carolan J, Harrold C, Sparrow C, et al. Universal linear optics. Science 2015;349:711–6. PubMedCrossrefGoogle Scholar

[14]

Wang J, Paesani S, Ding Y, et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 2018;360:285–91. PubMedCrossrefGoogle Scholar

[15]

Luxmoore IJ, Wasley NA, Ramsay AJ, et al. Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys Rev Lett 2013;110:037402. CrossrefGoogle Scholar

[16]

Petersen J, Volz J, Rauschenbeutel A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science 2014;346:67–71. CrossrefPubMedGoogle Scholar

[17]

le Feber B, Rotenberg N, Kuipers L. Nanophotonic control of circular dipole emission. Nat Commun 2015;6:6695. CrossrefPubMedGoogle Scholar

[18]

Söllner I, Mahmoodian S, Hansen SL, et al. Nanophotonic control of circular dipole emission. Nat Nanotech 2015;10:775–8. Google Scholar

[19]

Coles RJ, Price DM, Dixon JE, et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nat Commun 2016;7:11183. CrossrefPubMedGoogle Scholar

[20]

Gonzalez-Ballestero C, Moreno E, Garcia-Vidal FJ, Gonzalez-Tudela A. Nonreciprocal few-photon routing schemes based on chiral waveguide-emitter couplings. Phys Rev A 2016;94:063817. CrossrefGoogle Scholar

[21]

Lodahl P, Mahmoodian S, Stobbe S, et al. Chiral quantum optics. Nature 2017;541:473–80. PubMedCrossrefGoogle Scholar

[22]

Faez S, Türschmann P, Haakh HR, Götzinger S, Sandoghdar V. Coherent interaction of light and single molecules in a dielectric nanoguide. Phys Rev Lett 2014;113:213601. CrossrefGoogle Scholar

[23]

Türschmann P, Rotenberg N, Renger J, et al. Chip-based all-optical control of single molecules coherently coupled to a nanoguide. Nano Lett 2017;17:4941. PubMedCrossrefGoogle Scholar

[24]

Lombardi P, Ovvyan AP, Pazzagli S, et al. Photostable molecules on chip: integrated sources of nonclassical light. ACS Photon 2017;5:126. Google Scholar

[25]

Skoff SM, Papencordt D, Schauffert H, Bayer BC, Rauschenbeutel A. Optical-nanofiber-based interface for single molecules. Phys Rev A 2018;97:043839. CrossrefGoogle Scholar

[26]

Sipahigil A, Evans RE, Sukachev DD, et al. An integrated diamond nanophotonics platform for quantum optical networks. Science 2016;354:847–50. CrossrefPubMedGoogle Scholar

[27]

Schukraft M, Zheng J, Schröder T, et al. Invited article: precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides. APL Photon 2016;1:020801. CrossrefGoogle Scholar

[28]

Bhaskar MK, Sukachev D, Sipahigil A, et al. Quantum nonlinear optics with a Germanium-vacancy color center in a nanoscale diamond waveguide. Phys Rev Lett 2017;118:223603. CrossrefGoogle Scholar

[29]

Burek MJ, Meuwly C, Evans RE, et al. Fiber-coupled diamond quantum nanophotonic interface. Phys Rev Appl 2017;8:024026. CrossrefGoogle Scholar

[30]

Vetsch E, Reitz D, Saguè G, Schmidt R, Dawkins ST, Rauschenbeutel A. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys Rev Lett 2010;104:203603. PubMedCrossrefGoogle Scholar

[31]

Goban A, Choi KS, Alton DJ, et al. Demonstration of a state-insensitive, compensated nanofiber trap. Phys Rev Lett 2012;109:033603. CrossrefPubMedGoogle Scholar

[32]

Mitsch R, Sayrin C, Albrecht B, Schneeweiss P, Rauschenbeutel A. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nat Commun 2014;5:5713. PubMedCrossrefGoogle Scholar

[33]

Hood JD, Goban A, Asenjo-Garcia A, et al. Atom–atom interactions around the band edge of a photonic crystal waveguide. Proc Nat Acad Sci 2016;113:10507–12. CrossrefGoogle Scholar

[34]

Roy D, Wilson CM, Firstenberg O. Colloquium: strongly interacting photons in one-dimensional continuum. Rev Mod Phys 2017;89:021001. CrossrefGoogle Scholar

[35]

Ambrose WP, Moerner WE. Fluorescence spectroscopy and spectral diffusion of single impurity molecules in a crystal. Nature 1991;349:225–7. CrossrefGoogle Scholar

[36]

Tamarat P, Maali A, Lounis B, Orrit M. Ten years of single-molecule spectroscopy. J Phys Chem A 2000;104:1–16. CrossrefGoogle Scholar

[37]

Batalov A, Jacques V, Kaiser F, et al. Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond. Phys Rev Lett 2009;102:195506. CrossrefPubMedGoogle Scholar

[38]

Ramsay AJ, Gopal AV, Gauger EM, et al. Damping of exciton rabi rotations by acoustic phonons in optically excited InGaAs/GaAs quantum dots. Phys Rev Lett 2010;104:017402. CrossrefPubMedGoogle Scholar

[39]

Acosta VM, Santori C, Faraon A, et al. Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond. Phys Rev Lett 2012;108:206401. CrossrefPubMedGoogle Scholar

[40]

Kuhlmann AV, Houel J, Ludwig A, et al. Charge noise and spin noise in a semiconductor quantum device. Nat Phys 2013;9:570–5. CrossrefGoogle Scholar

[41]

Yamamoto T, Umeda T, Watanabe K, et al. Extending spin coherence times of diamond qubits by high-temperature annealing. Phys Rev B 2013;88:075206. CrossrefGoogle Scholar

[42]

Chu Y, de Leon N, Shields B, et al. Coherent optical transitions in implanted nitrogen vacancy centers. Nano Lett 2014;14:1982–6. CrossrefPubMedGoogle Scholar

[43]

Thoma A, Schnauber P, Gschrey M, et al. Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent hong-ou-mandel experiments. Phys Rev Lett 2016;116:033601. CrossrefPubMedGoogle Scholar

[44]

Grandi S, Major KD, Polisseni C, Boissier S, Clark AS, Hinds EA. Quantum dynamics of a driven two-level molecule with variable dephasing. Phys Rev A 2016;94:063839. CrossrefGoogle Scholar

[45]

Gmeiner B, Maser A, Utikal T, Götzinger S, Sandoghdar V. Spectroscopy and microscopy of single molecules in nanoscopic channels: spectral behavior vs. confinement depth. Phys Chem Chem Phys 2016;18:19588–94. CrossrefPubMedGoogle Scholar

[46]

Tighineanu P, Dreeßen CL, Flindt C, Lodahl P, Sørensen AS. Phonon decoherence of quantum dots in photonic structures: broadening of the zero-phonon line and the role of dimensionality. Phys Rev Lett 2018;120:257401. CrossrefPubMedGoogle Scholar

[47]

Somaschi N, Giesz V, De Santis L, et al. Near-optimal single-photon sources in the solid state. Nat Photon 2016;10:340–5. CrossrefGoogle Scholar

[48]

Löbl MC, Söllner I, Javadi A, et al. Narrow optical linewidths and spin pumping on charge-tunable close-to-surface self-assembled quantum dots in an ultrathin diode. Phys Rev B 2017;96:165440. CrossrefGoogle Scholar

[49]

Ding X, He Y, Duan Z-C, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys Rev Lett 2016;116:020401. CrossrefGoogle Scholar

[50]

Rattenbacher D, Shkarin A, Renger J, Utikal T, Götzinger S, Sandoghdar V. Coherent coupling of single molecules to on-chip ring resonators. New J Phys 2019;21:062002. CrossrefGoogle Scholar

[51]

Rose BC, Huang D, Zhang Z-H, et al. Observation of an environmentally insensitive solid-state spin defect in diamond. Science 2018;361:60–3. PubMedCrossrefGoogle Scholar

[52]

Liao Z, Zeng X, Nha H, Zubairy MS. Photon transport in a one-dimensional nanophotonic waveguide QED system. Phys Scr 2016;91:063004. CrossrefGoogle Scholar

[53]

Vogel W, Welsch D-G. Quantum optics. 3rd ed, Berlin, Wiley-VCH, 2006. Google Scholar

[54]

Meystre P, Sargent M. Elements of quantum optics. Berlin, Springer, 2007. Google Scholar

[55]

Dung HT, Knöll L, Welsch D-G. Resonant dipole-dipole interaction in the presence of dispersing and absorbing surroundings. Phys Rev A 2002;66:063810. CrossrefGoogle Scholar

[56]

Ficek Z, Tanas R. Entangled states and collective nonclassical effects in two-atom systems. Phys Rep 2002;372:369–443. CrossrefGoogle Scholar

[57]

Gruner T, Welsch D-G. Green-function approach to the radiation-field quantization for homogeneous and inhomogeneous Kramers-Kronig dielectrics. Phys Rev A 1996;53:1818–29. PubMedCrossrefGoogle Scholar

[58]

Buhmann SY. Dispersion forces I. Berlin, Springer, 2012. Google Scholar

[59]

Haakh HR, Faez S, Sandoghdar V. Polaritonic normal-mode splitting and light localization in a one-dimensional nanoguide. Phys Rev A 2016;94:053840. CrossrefGoogle Scholar

[60]

Asenjo-Garcia A, Hood JD, Chang DE, Kimble HJ. Atom-light interactions in quasi-one-dimensional nanostructures: a Green’s-function perspective. Phys Rev A 2017;95:033818. CrossrefGoogle Scholar

[61]

Ramos T, García-Ripoll JJ. Correlated dephasing noise in single-photon scattering. New J Phys 2018;20:105007. CrossrefGoogle Scholar

[62]

Gerhardt I, Wrigge G, Bushev P, et al. Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent hong-ou-mandel experiments. Phys Rev Lett 2007;98:033601. Google Scholar

[63]

Zumofen G, Mojarad NM, Sandoghdar V, Agio M. Perfect reflection of light by an oscillating dipole. Phys Rev Lett 2008;101:180404. CrossrefPubMedGoogle Scholar

[64]

Thyrrestrup H, Kiršanske˙ G, Le Jeannic H, et al. Quantum optics with near-lifetime-limited quantum-dot transitions in a nanophotonic waveguide. Nano Lett 2018;18:1801–6. CrossrefGoogle Scholar

[65]

Corzo NV, Raskp J, Chandra A, Sheremet AS, Gouraud B, Laurat J. Waveguide-coupled single collective excitation of atomic arrays. Nature 2019;566:359–62. PubMedCrossrefGoogle Scholar

[66]

Solano P, Barberis-Blostein P, Fatemi FK, Orozco LA, Rolston SL. Super-radiance reveals infinite-range dipole interactions through a nanofiber. Nat Commun 2017;8:1857. CrossrefPubMedGoogle Scholar

[67]

Tiecke TG, Thompson JD, de Leon NP, Liu LR, Vuletić V, Lukin MD. Nanophotonic quantum phase switch with a single atom. Nature 2014;508:241–4. CrossrefPubMedGoogle Scholar

[68]

Evans RE, Bhaskar MK, Sukachev DD, et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 2018;362:662–5. CrossrefGoogle Scholar

[69]

Javadi A, Söllner I, Arcari M, et al. Single-photon non-linear optics with a quantum dot in a waveguide. Nat Commun 2015;6:8655. CrossrefGoogle Scholar

[70]

Hallett D, Foster AP, Hurst DL, et al. Electrical control of nonlinear quantum optics in a nano-photonic waveguide. Optica 2018;5:644–50. CrossrefGoogle Scholar

[71]

Le Jeannic H, et al. In preparation. Google Scholar

[72]

Najer D, Söllner I, Sekatski P, et al. A gated quantum dot far in the strong-coupling regime of cavity-QED at optical frequencies. 2018; arXiv:1812.08662v1. Google Scholar

[73]

Snijders H, Frey JA, Norman J, et al. Purification of a single-photon nonlinearity. Nat Commun 2016;7:12578. CrossrefPubMedGoogle Scholar

[74]

Wang D, Kelkar H, Martin-Cano D, et al. Turning a molecule into a coherent two-level quantum system. Nat Phys 2019;15:483–9. CrossrefGoogle Scholar

[75]

Auffèves-Garnier A, Simon C, Gèrard J-M, Poizat J-P. Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime. Phys Rev A 2007;75:053823. CrossrefGoogle Scholar

[76]

Chang D, Sørensen A, Demler E, Lukin M. A single-photon transistor using nanoscale surface plasmons. Nat Phys 2007;3:807–12. CrossrefGoogle Scholar

[77]

Roy D, Bondyopadhaya N. Statistics of scattered photons from a driven three-level emitter in a one-dimensional open space. Phys Rev A 2014;89:043806. CrossrefGoogle Scholar

[78]

Schulte CHH, Hansom J, Jones AE, Matthiesen C, Le Gall C, Atatür M. Quadrature squeezed photons from a two-level system. Nature 2015;525:222–5. PubMedCrossrefGoogle Scholar

[79]

Foster AP, Hallett D, Iorsh IV, et al. Tunable photon statistics exploiting the Fano effect in a waveguide. Phys Rev Lett 2019;122:173603. CrossrefGoogle Scholar

[80]

Rupasov VI, Iudson VI. A rigorous theory of Dicke superradiation – Bethe wave functions in a model with discrete atoms. Eksp Zh. Teor Fiz 1984;86:819–25. Google Scholar

[81]

Shen J-T, Fan S. Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. Phys Rev Lett 2007;98:153003. CrossrefGoogle Scholar

[82]

Shen J-T, Fan S. Strongly correlated multiparticle transport in one dimension through a quantum impurity. Phys Rev A 2007;76:062709. CrossrefGoogle Scholar

[83]

Fan S, Kocabaş SE, Shen J-T. Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit. Phys Rev A 2010;82:063821. CrossrefGoogle Scholar

[84]

Ramos T, García-Ripoll JJ. Multiphoton scattering tomography with coherent states. Phys Rev Lett 2017;119:153601. CrossrefPubMedGoogle Scholar

[85]

Longo P, Schmitteckert P, Busch K. Few-photon transport in low-dimensional systems: interaction-induced radiation trapping. Phys Rev Lett 2010;104:023602. CrossrefPubMedGoogle Scholar

[86]

Longo P, Schmitteckert P, Busch K. Few-photon transport in low-dimensional systems. Phys Rev A 2011;83:063828. CrossrefGoogle Scholar

[87]

Törmä P, Barnes WL. Strong coupling between surface plasmon polaritons and emitters: a review. Rep Prog Phys 2014;78:013901. PubMedGoogle Scholar

[88]

Zheng H, Gauthier DJ, Baranger HU. Waveguide QED: many-body bound-state effects in coherent and fock-state scattering from a two-level system. Phys Rev A 2010;82:063816. CrossrefGoogle Scholar

[89]

Sánchez-Burillo E, Zueco D, Martín-Moreno L, García-Ripoll JJ. Dynamical signatures of bound states in waveguide QED. Phys Rev A 2017;96:023831. CrossrefGoogle Scholar

[90]

Firstenberg O, Peyronel T, Liang Q-Y, Gorshkov AV, Lukin MD, Vuletić V. Attractive photons in a quantum nonlinear medium. Nature 2013;502:71–5. CrossrefGoogle Scholar

[91]

Liang Q-Y, Venkatramani AV, Cantu SH, et al. Attractive photons in a quantum nonlinear medium. Science 2018;359:783. CrossrefGoogle Scholar

[92]

Stiesdal N, Kumlin J, Kleinbeck K, et al. Observation of three-body correlations for photons coupled to a rydberg superatom. Phys Rev Lett 2018;121:103601. CrossrefPubMedGoogle Scholar

[93]

Witthaut D, Lukin MD, Sørensen AS. Photon sorters and QND detectors using single photon emitters. EPL (Europhys Lett) 2012;97:50007. CrossrefGoogle Scholar

[94]

Ralph TC, Söllner I, Mahmoodian S, White A, Lodahl P. Tunable photon statistics exploiting the fano effect in a waveguide. Phys Rev Lett 2015;114:173603. Google Scholar

[95]

Roy D. Few-photon optical diode. Phys Rev B 2010;81:155117. CrossrefGoogle Scholar

[96]

Wu FY, Ezekiel S, Ducloy M, Mollow BR. Observation of amplification in a strongly driven two-level atomic system at optical frequencies. Phys Rev Lett 1977;38:1077–80. CrossrefGoogle Scholar

[97]

Maser A, Gmeiner B, Utikal T, Götzinger S, Sandoghdar V. Few-photon coherent nonlinear optics with a single molecule. Nat Photon 2016;10:450–3. CrossrefGoogle Scholar

[98]

Lezama A, Zhu Y, Kanskar M, Mossberg TW. Radiative emission of driven two-level atoms into the modes of an enclosing optical cavity: the transition from fluorescence to lasing. Phys Rev A 1990;41:1576–81. PubMedCrossrefGoogle Scholar

[99]

Papademetriou S, Chakmakjian S, Stroud CR. Optical subharmonic Rabi resonances. J Opt Soc Am B 1992;9:1182–8. CrossrefGoogle Scholar

[100]

Jelezko F, Lounis B, Orrit M. Pump–probe spectroscopy and photophysical properties of single di-benzanthanthrene molecules in a naphthalene crystal. J Chem Phys 1997;107: 1692–702. CrossrefGoogle Scholar

[101]

Xu X, Sun B, Berman PR, et al. Coherent optical spectroscopy of a strongly driven quantum dot. Science 2007;317: 929–32. PubMedCrossrefGoogle Scholar

[102]

Xu X, Sun B, Kim ED, et al. Single charged quantum dot in a strong optical field: absorption, gain, and the ac-stark effect. Phys Rev Lett 2008;101:227401. CrossrefGoogle Scholar

[103]

Gheeraert N, Zhang XHH, Sèpulcre T, et al. Particle production in ultrastrong-coupling waveguide QED. Phys Rev A 2018;98:043816. CrossrefGoogle Scholar

[104]

Fleischhauer M, Imamoglu A, Marangos JP. Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys 2005;77:633–73. CrossrefGoogle Scholar

[105]

Xu S, Fan S. Generate tensor network state by sequential single-photon scattering in waveguide QED systems. APL Photon 2018;3:116102. CrossrefGoogle Scholar

[106]

Roy D. Two-photon scattering by a driven three-level emitter in a one-dimensional waveguide and electromagnetically induced transparency. Phys Rev Lett 2011;106:053601. CrossrefGoogle Scholar

[107]

Chanelièr T, Matsukevich DN, Jenkins SD, Lan S-Y, Kennedy TAB, Kuzmich A. Storage and retrieval of single photons transmitted between remote quantum memories. Nature 2005;483:833–6. Google Scholar

[108]

Sayrin C, Clausen C, Albrecht B, Schneeweiss P, Rauschenbeutel A. Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms. Optica 2015;2:353–6. CrossrefGoogle Scholar

[109]

Le Kien F, Rauschenbeutel A. Electromagnetically induced transparency for guided light in an atomic array outside an optical nanofiber. Phys Rev A 2015;91:053847. CrossrefGoogle Scholar

[110]

Song G-Z, Munro E, Nie W, Deng F-G, Yang G-J, Kwek L-C. Photon scattering by an atomic ensemble coupled to a one-dimensional nanophotonic waveguide. Phys Rev A 2017;96:043872. CrossrefGoogle Scholar

[111]

Witthaut D, Sørensen AS. Photon scattering by a three-level emitter in a one-dimensional waveguide. New J Phys 2010;12:043052. CrossrefGoogle Scholar

[112]

Bermel P, Rodriguez A, Johnson SG, Joannopoulos JD, Soljačić M. Single-photon all-optical switching using waveguide-cavity quantum electrodynamics. Phys Rev A 2006;74:043818. CrossrefGoogle Scholar

[113]

Hwang J, Pototschnig M, Lettow R, et al. A single-molecule optical transistor. Nature 2009;460:76–80. PubMedCrossrefGoogle Scholar

[114]

Kewes G, Schoengen M, Neitzke O, et al. A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic-dielectric waveguide structures. Sci Rep 2016;6:28877. CrossrefPubMedGoogle Scholar

[115]

Kolchin P, Oulton RF, Zhang X. Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level. Phys Rev Lett 2011;106:113601. CrossrefGoogle Scholar

[116]

Li TY, Huang JF, Law CK. Scattering of two distinguishable photons by a *Ξ*-type three-level atom in a one-dimensional waveguide. Phys Rev A 2015;91:043834. CrossrefGoogle Scholar

[117]

Raussendorf R, Briegel HJ. A one-way quantum computer. Phys Rev Lett 2001;86:5188–91. CrossrefPubMedGoogle Scholar

[118]

Zheng H, Gauthier DJ, Baranger HU. Strongly correlated photons generated by coupling a three- or four-level system to a waveguide. Phys Rev A 2012;85:043832. CrossrefGoogle Scholar

[119]

Machielse B, Bogdanovic S, Meesala S, et al. Quantum interference of electromechanically stabilized emitters in nanophotonic devices. Phys Rev X 2019;9:031022. Google Scholar

[120]

Türschmann P, Rotenberg N, Renger J, et al. On-chip linear and nonlinear control of single molecules coupled to a nanoguide. 2017; arXiv:1702.05923. Google Scholar

[121]

Türschmann P. Coherent coupling of organic dye molecules to optical nanoguides. Boca Raton, FL: FAU University Press, 2018. Google Scholar

[122]

Bajcsy M, Hofferberth S, Balic V, et al. Efficient all-optical switching using slow light within a hollow fiber. Phys Rev Lett 2009;102:203902. CrossrefPubMedGoogle Scholar

[123]

Lodahl P. Scaling up solid-state quantum photonics. Science 2018;362:646. PubMedCrossrefGoogle Scholar

[124]

Dzsotjan D, Sørensen AS, Fleischhauer M. Quantum emitters coupled to surface plasmons of a nanowire: a Green’s function approach. Phys Rev B 2010;82:075427. CrossrefGoogle Scholar

[125]

Gonzalez-Tudela A, Martin-Cano D, Moreno E, Martin-Moreno L, Tejedor C, Garcia-Vidal FJ. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys Rev Lett 2011;106:020501. CrossrefPubMedGoogle Scholar

[126]

Martín-Cano D, González-Tudela A, Martín-Moreno L, García-Vidal FJ, Tejedor C, Moreno E. Dissipation-driven generation of two-qubit entanglement mediated by plasmonic waveguides. Phys Rev B 2011;84:235306. CrossrefGoogle Scholar

[127]

Zhang XHH, Baranger HU. Heralded bell state of dissipative qubits using classical light in a waveguide. Phys Rev Lett 2019;122:140502. CrossrefGoogle Scholar

[128]

Das S, Elfving VE, Faez S, Sørensen AS. Interfacing superconducting qubits and single optical photons using molecules in waveguides. Phys Rev Lett 2017;118:140501. CrossrefPubMedGoogle Scholar

[129]

Elfving VE, Das S, Sørensen AS. Enhancing quantum transduction via long-range waveguide mediated interactions between quantum emitters. 2018; arXiv:1810.01381. Google Scholar

[130]

Zhang XHH, Baranger HU. Quantum interference and complex photon statistics in waveguide QED. Phys Rev A 2018;97:023813. CrossrefGoogle Scholar

[131]

Fang Y-LL, Baranger HU. Waveguide QED: power spectra and correlations of two photons scattered off multiple distant qubits and a mirror. Phys Rev A 2015;91:053845. CrossrefGoogle Scholar

[132]

Mirza IM, Schotland JC. Multiqubit entanglement in bidirectional-chiral-waveguide QED. Phys Rev A 2016;94:012302. CrossrefGoogle Scholar

[133]

Mirza IM, Hoskins JG, Schotland JC. Chirality, band structure, and localization in waveguide quantum electrodynamics. Phys Rev A 2017;96:053804. CrossrefGoogle Scholar

[134]

Mahmoodian S, Čepulkovskis M, Das S, Lodahl P, Hammerer K, Sørensen AS. Strongly correlated photon transport in waveguide quantum electrodynamics with weakly coupled emitters. Phys Rev Lett 2018;121:143601. CrossrefPubMedGoogle Scholar

[135]

Mukhopadhyay D, Agarwal GS. Multiple Fano interferences due to waveguide-mediated phase-coupling between atoms. 2019; arXiv:1902.10855. Google Scholar

[136]

Albrecht A, Henriet L, Asenjo-Garcia A, Dieterle PB, Painter O, Chang DE. Subradiant states of quantum bits coupled to a one-dimensional waveguide. New J Phys 2019;21:025003. CrossrefGoogle Scholar

[137]

Cheng M-T, Xu J, Agarwal GS. Waveguide transport mediated by strong coupling with atoms. Phys Rev A 2017;95:053807. CrossrefGoogle Scholar

[138]

Pivovarov VA, Sheremet AS, Gerasimov LV, et al. Light scattering from an atomic array trapped near a one-dimensional nanoscale waveguide: a microscopic approach. Phys Rev A 2018;97:023827. CrossrefGoogle Scholar

[139]

Das S, Elfving VE, Reiter F, Sørensen AS. Photon scattering from a system of multilevel quantum emitters. II. Application to emitters coupled to a one-dimensional waveguide. Phys Rev A 2018;97:043838. CrossrefGoogle Scholar

[140]

González-Tudela A, Paulisch V, Kimble HJ, Cirac JI. Coherent interaction of light and single molecules in a dielectric nanoguide. Phys Rev Lett 2017;118:213601. Google Scholar

[141]

Mirza IM, Schotland JC. Influence of disorder on electromagnetically induced transparency in chiral waveguide quantum electrodynamics. J Opt Soc Am B 2018;35:1149–58. CrossrefGoogle Scholar

[142]

Schmidt H, Imamoglu A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt Lett 1996;21:1936–8. PubMedCrossrefGoogle Scholar

[143]

Hafezi M, Chang DE, Gritsev V, Demler E, Lukin MD. Quantum transport of strongly interacting photons in a one-dimensional nonlinear waveguide. Phys Rev A 2012;85:013822. CrossrefGoogle Scholar

[144]

Chang DE, Gritsev V, Morigi G, Vuletić V, Lukin MD, Demler EA. Crystallization of strongly interacting photons in a nonlinear optical fibre. Nat Phys 2008;4:884–9. CrossrefGoogle Scholar

[145]

Shahmoon E, Grišins P, Stimming HP, Mazets I, Kurizki G. Highly nonlocal optical nonlinearities in atoms trapped near a waveguide. Optica 2016;3:725–33. CrossrefGoogle Scholar

[146]

Douglas JS, Caneva T, Chang DE. Photon molecules in atomic gases trapped near photonic crystal waveguides. Phys Rev X 2016;6:031017. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.