[1]

Vielma J, Leung PT. Nonlocal optical effects on the fluorescence and decay rates for admolecules at a metallic nanoparticle. J Chem Phys 2007;126:194704–8. CrossrefGoogle Scholar

[2]

Dvoynenko MM, Wang J-K. Revisiting strong coupling between a single molecule and surface plasmons. Opt Lett 2013;38:760–2. PubMedCrossrefGoogle Scholar

[3]

Huck C, Vogt J, Neuman T, et al. Strong coupling between phonon-polaritons and plasmonic nanorods. Opt Express 2016;24:25528–39. CrossrefPubMedGoogle Scholar

[4]

Dvoynenko MM. Fluorescence of molecules placed near a spherical particle: rabi splitting. Semicond Phys, Quantum Electron Optoelectron 2017;20:458–64. CrossrefGoogle Scholar

[5]

Kongsuwan N, Demetriadou A, Chikkaraddy R, et al. Suppressed quenching and strong-coupling of purcell-enhanced single-molecule emission in plasmonic nanocavities. ACS Photonics 2018;5:186–91. CrossrefGoogle Scholar

[6]

Li R-Q, Garca-Vidal FJ, Fernandez-Dominguez AI. Plasmon-exciton coupling in symmetry-broken nanocavities. ACS Photonics 2017;5:177–85. Google Scholar

[7]

Kaminska I, Vietz C, Cuartero-González Á, et al. Strong plasmonic enhancement of single molecule photostability in silver dimer optical antennas. Nanophotonics 2018;7: 643–9. CrossrefGoogle Scholar

[8]

Cuartero-González A, Fernández-Domnguez AI. Light-forbidden transitions in plasmon-emitter interactions beyond the weak coupling regime. ACS Photonics 2018;5:3415–20. CrossrefGoogle Scholar

[9]

Monroe C. Quantum information processing with atoms and photons. Nature 2002;416:238–46. CrossrefPubMedGoogle Scholar

[10]

Chang DE, Sørensen AS, Hemmer PR, Lukin MD. Quantum optics with surface plasmons. Phys Rev Lett 2006;97: 053002–4. PubMedCrossrefGoogle Scholar

[11]

Stuart DA, Haes AJ, Yonzon CR, Hicks EM, Van Duyne RP. Biological applications of localised surface plasmonic phenomenae. IEE Proc: Nanobiotechnol 2005;152:13–20. PubMedGoogle Scholar

[12]

Yin Y, Alivisatos AP. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 2005;437:664–70. PubMedCrossrefGoogle Scholar

[13]

Liu X. Strong light-matter coupling in two-dimensional atomic crystals. Nat Photon 2014;9:30–4. Google Scholar

[14]

Fedutik Y, Temnov VV, Schöps O, Woggon U, Artemyev MV. Exciton-plasmon-photon conversion in plasmonic nanostructures. Phys Rev Lett 2007;99:136802–4. CrossrefPubMedGoogle Scholar

[15]

Savasta S, Saija R, Ridolfo A, Di Stefano O, Denti P, Borghese F. Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna. ACS Nano 2010;4:6369–76. PubMedCrossrefGoogle Scholar

[16]

Novotny L. Strong coupling, energy splitting, and level crossings: a classical perspective. Am J Phys 2010;78:1199–4. CrossrefGoogle Scholar

[17]

Schlather AE, Large N, Urban AS, Nordlander P, Halas NJ. Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. Nano Lett 2013;13:3281–6. PubMedCrossrefGoogle Scholar

[18]

Törmä P, Barnes WL. Strong coupling between surface plasmon polaritons and emitters: a review. Rep Prog Phys 2014;78:013901–35. PubMedGoogle Scholar

[19]

Lalanne P, Yan W, Vynck K, Sauvan C, Hugonin J-P. Light interaction with photonic and plasmonic resonances. Laser Photonics Rev 2018;12:1700113–38. CrossrefGoogle Scholar

[20]

Yoo D, Nguyen N-C, Moreno LM, et al. High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography. Nano Lett 2016;16:2040–6. PubMedCrossrefGoogle Scholar

[21]

Neuman T, Esteban R, Casanova D, Garca-Vidal FJ, Aizpurua J. Coupling of molecular emitters and plasmonic cavities beyond the point-dipole approximation. Nano Lett 2018;18:2358–64. CrossrefPubMedGoogle Scholar

[22]

Roller E-M, Argyropoulos C, Högele A, Liedl T, Pilo-Pais M. Plasmon–exciton coupling using DNA templates. Nano Lett 2016;16:5962–6. CrossrefPubMedGoogle Scholar

[23]

Mertens J, Eiden AL, Sigle DO, Huang F. Controlling subnanometer gaps in plasmonic dimers using graphene. Nano Lett 2013;13:5033–8. PubMedCrossrefGoogle Scholar

[24]

Fernández-Domnguez AI, Bozhevolnyi SI, Mortensen NA. Plasmon-enhanced generation of nonclassical light. ACS Photonics 2018;5:3447–51. CrossrefGoogle Scholar

[25]

Romero I, Aizpurua J, Bryant GW, Garca de Abajo FJ. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt Express 2006;14:9988. PubMedCrossrefGoogle Scholar

[26]

Fernández-Domnguez AI, Maier SA, Pendry JB. Transformation optics description of touching metal nanospheres. Phys Rev B 2012;85:165148. CrossrefGoogle Scholar

[27]

Aubry A, Lei D, Maier SA, Pendry J. Conformal transformation applied to plasmonics beyond the quasistatic limit. Phys Rev B 2010;82:205109. CrossrefGoogle Scholar

[28]

Kern J, Großmann S, Tarakina NV, Häckel T. Atomic-scale confinement of resonant optical fields. Nano Lett 2012;12:5504–9. CrossrefPubMedGoogle Scholar

[29]

Cirac C, Hill RT, Mock JJ, et al. Probing the ultimate limits of plasmonic enhancement. Science 2012;337:1072–4. CrossrefPubMedGoogle Scholar

[30]

Savage KJ, Hawkeye MM, Esteban R, Borisov AG, Aizpurua J, Baumberg JJ. Revealing the quantum regime in tunnelling plasmonics. Nature 2012;491:574–7. CrossrefPubMedGoogle Scholar

[31]

Raza S, Stenger N, Kadkhodazadeh S, et al. Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS. Nanophotonics 2013;2:131–8. Google Scholar

[32]

Scholl JA, Garca-Etxarri A, Koh AL, Dionne JA. Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett 2013;13:564–9. PubMedCrossrefGoogle Scholar

[33]

Ciracì C, Chen X, Mock JJ, et al. Film-coupled nanoparticles by atomic layer deposition: comparison with organic spacing layers. Appl Phys Lett 2014;104:023109. CrossrefGoogle Scholar

[34]

Shen H, Chen L, Ferrari L, et al. Optical observation of plasmonic nonlocal effects in a 2D superlattice of ultrasmall gold nanoparticles. Nano Lett 2017;17:2234–9. CrossrefGoogle Scholar

[35]

Zhu W, Esteban R, Borisov AG, et al. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat Comm 2016;7:11495. CrossrefGoogle Scholar

[36]

Raza S, Bozhevolnyi SI, Wubs M, Asger Mortensen N. Nonlocal optical response in metallic nanostructures. J Phys: Condens Mat 2015;27:183204. Google Scholar

[37]

Raza S, Toscano G, Jauho AP, Wubs M, Asger Mortensen N. Unusual resonances in nanoplasmonic structures due to nonlocal response. Phys Rev B 2011;84:121412. CrossrefGoogle Scholar

[38]

Ullrich C. Time-dependent density-functional theory. Concepts and applications. Oxford, Oxford University Press, 2012. Google Scholar

[39]

Zuloaga J, Prodan E, Nordlander P. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett 2009;9:887–91. PubMedCrossrefGoogle Scholar

[40]

Marinica DC, Kazansky AK, Nordlander P. Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Lett 2012;12:1333–9. PubMedCrossrefGoogle Scholar

[41]

Aguirregabiria G, Marinica D-C, Esteban R, Kazansky AK, Aizpurua J, Borisov AG. Role of electron tunneling in the nonlinear response of plasmonic nanogaps. Phys Rev 2018;97:115430. CrossrefGoogle Scholar

[42]

Barbry M, Koval P, Marchesin F, et al. Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics. Nano Lett 2015;15:3410–9. CrossrefPubMedGoogle Scholar

[43]

Baseggio O, De Vetta M, Fronzoni G, et al. Photoabsorption of icosahedral noble metal clusters: an efficient TDDFT approach to large-scale systems. J Phys Chem C 2016;120:12773–82. CrossrefGoogle Scholar

[44]

Xiang H, Zhang M, Zhang X, Lu G. Understanding quantum plasmonics from time-dependent orbital-free density functional theory. J Phys Chem C 2016;120:14330–6. CrossrefGoogle Scholar

[45]

D’Agostino S, Rinaldi R, Cuniberti G, Della Sala F. Density functional tight binding for quantum plasmonics. J Phys Chem C 2018;122:19756–66. CrossrefGoogle Scholar

[46]

Liu X, Seiffert L, Fennel T, Kühn O. A DFT-based tight-binding approach to the self-consistent description of molecule metal-nanoparticle interactions. J Phys B At Mol Opt Phys 2019;arXiv:1901.0374. in press. https://doi.org/10.1088/1361-6455/ab2b5d.

[47]

Yan W. Hydrodynamic theory for quantum plasmonics: linear-response dynamics of the inhomogeneous electron gas. Phys Rev B 2015;91:115416. CrossrefGoogle Scholar

[48]

Toscano G, Straubel J, Kwiatkowski A, et al. Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics. Nat Comm 2015;6:7132. CrossrefGoogle Scholar

[49]

Ciracì C, Della Sala F. Quantum hydrodynamic theory for plasmonics: impact of the electron density tail. Phys Rev B 2016;93:205405. CrossrefGoogle Scholar

[50]

Ciracì C. Current-dependent potential for nonlocal absorption in quantum hydrodynamic theory. Phys Rev B 2017;95:245434. CrossrefGoogle Scholar

[51]

Khalid M, Ciracì C. Numerical analysis of nonlocal optical response of metallic nanoshells. Photonics 2019;6:39. CrossrefGoogle Scholar

[52]

Khalid M, Della Sala F, Ciracì C. Optical properties of plasmonic core-shell nanomatryoshkas: a quantum hydrodynamic analysis. Opt Express 2018;26:17322–8. PubMedCrossrefGoogle Scholar

[53]

Filter R, Bösel C, Toscano G, Lederer F, Rockstuhl C. Nonlocal effects: relevance for the spontaneous emission rates of quantum emitters coupled to plasmonic structures. Opt Lett 2014;39:6118–21. CrossrefPubMedGoogle Scholar

[54]

Christensen T, Yan W, Raza S, Jauho A-P, Asger Mortensen N, Wubs M. Nonlocal response of metallic nanospheres probed by light, electrons, and atoms. ACS Nano 2014;8:1745–58. PubMedCrossrefGoogle Scholar

[55]

Tserkezis C, Asger Mortensen N, Wubs M. How nonlocal damping reduces plasmon-enhanced fluorescence in ultranarrow gaps. Phys Rev B 2017;96:085413. CrossrefGoogle Scholar

[56]

Tserkezis C, Wubs M, Asger Mortensen N. Robustness of the Rabi splitting under nonlocal corrections in plexcitonics. ACS Photonics 2017;5:133–42. Google Scholar

[57]

Manjavacas A, Garcia de Abajo FJ, Nordlander P. Quantum plexcitonics: strongly interacting plasmons and excitons. Nano Lett 2011;11:2318–23. PubMedCrossrefGoogle Scholar

[58]

Mortensen NA, Raza S, Wubs M, Søndergaard T, Bozhevolnyi SI. A generalized non-local optical response theory for plasmonic nanostructures. Nat Comm 2014;5:3809. CrossrefGoogle Scholar

[59]

de Ceglia D, Scalora M, Vincenti MA, et al. Viscoelastic optical nonlocality of low-loss epsilon-near-zero nanofilms. Sci Rep 2018;8:874. Google Scholar

[60]

Ciracì C, Smith DR, Urzhumov YA. Far-field analysis of axially symmetric three-dimensional directional cloaks. Opt Express 2013;21:9397–406. CrossrefPubMedGoogle Scholar

[61]

Alpeggiani F, D’Agostino S, Claudio Andreani L. Surface plasmons and strong light-matter coupling in metallic nanoshells. Phys Rev B 2012;86:035421. CrossrefGoogle Scholar

[62]

D’Agostino S, Alpeggiani F, Claudio Andreani L. Strong coupling between a dipole emitter and localized plasmons: enhancement by sharp silver tips. Opt Express 2013;21:27602. PubMedCrossrefGoogle Scholar

[63]

Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 2006;96:113002. CrossrefPubMedGoogle Scholar

[64]

Gonçalves PAD, Christensen T, Rivera N, Jauho A-P, Asger Mortensen N, Soljačić M. Plasmon-emitter interactions at the nanoscale. 2019;arXiv:1904.09279. Google Scholar

[65]

Gersten J, Nitzan A. Spectroscopic properties of molecules interacting with small dielectric particles. J Chem Phys 1981;75:1139–52. CrossrefGoogle Scholar

[66]

Ruppin R. Decay of an excited molecule near a small metal sphere. J Chem Phys 1982;76:1681–4. CrossrefGoogle Scholar

[67]

Tserkezis C, Stefanou N, Wubs M, Asger Mortensen N. Molecular fluorescence enhancement in plasmonic environments: exploring the role of nonlocal effects. Nanoscale 2016;8:17532–41. CrossrefPubMedGoogle Scholar

[68]

Moroz A. Non-radiative decay of a dipole emitter close to a metallic nanoparticle: importance of higher-order multipole contributions. Opt Commun 2010;283:2277–87. CrossrefGoogle Scholar

[69]

Delga A, Feist J, Bravo-Abad J, Garca-Vidal FJ. Quantum emitters near a metal nanoparticle: strong coupling and quenching. Phys Rev Lett 2014;112:253601–5. CrossrefGoogle Scholar

[70]

Jurga R, D’Agostino S, Della Sala F, Ciracì C. Plasmonic nonlocal response effects on dipole decay dynamics in the weak- and strong-coupling regimes. J Phys Chem C 2017;121:22361–8. CrossrefGoogle Scholar

[71]

Tserkezis C, Gonçalves PAD, Wolff C, Todisco F, Busch K, Mortensen NA. Mie excitons: understanding strong coupling in dielectric nanoparticles. Phys Rev B 2018;98:1–8. Google Scholar

[72]

Chikkaraddy R, de Nijs B, Benz F, et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 2016;535:127–30. PubMedCrossrefGoogle Scholar

[73]

Stobbe S, Kristensen PT, Mortensen JE, Hvam JM, Mørk J, Lodahl P. Spontaneous emission from large quantum dots in nanostructures: exciton-photon interaction beyond the dipole approximation. Phys Rev B 2012;86:085304. CrossrefGoogle Scholar

[74]

Carnegie C, Griffiths J, de Nijs B, et al. Room-temperature optical picocavities below 1 nm^{3} accessing single-atom geometries. J Phys Chem Lett 2018;9:7146–51. PubMedCrossrefGoogle Scholar

[75]

Ojambati OS, Chikkaraddy R, Deacon WD, et al. Quantum electrodynamics at room temperature coupling a single vibrating molecule with a plasmonic nanocavity. Nat Commun 2019;10:1049. PubMedCrossrefGoogle Scholar

[76]

Ciracì C, Rose A, Argyropoulos C, Smith DR. Numerical studies of the modification of photodynamic processes by film-coupled plasmonic nanoparticles. J Opt Soc Am B 2014;31:2601–7. CrossrefGoogle Scholar

[77]

Dung HT, Knoll L, Welsch DG. Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity. Phys Rev A 2000;62:053801. Google Scholar

[78]

Ekardt W. Size-dependent photoabsorption and photoemission of small metal particles. Phys Rev B 1985;31:6360–70. CrossrefGoogle Scholar

[79]

Brack M. The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Rev Mod Phys 1993;65:677–732. CrossrefGoogle Scholar

[80]

Olmon RL, Slovick B, Johnson TW, et al. Optical dielectric function of gold. Phys Rev B 2012;86:235147. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.