[1]

du Preez L. Ph.D. dissertation. University of Witwatersrand, 1965. Google Scholar

[2]

Goss JP, Jones R, Breuer SJ, Briddon PR, Öberg S. The twelve-line 1.682 eV luminescence center in diamond and the vacancy-silicon complex. Phys Rev Lett 1996;77:3041–4. PubMedCrossrefGoogle Scholar

[3]

Gali A, Fyta M, Kaxiras E. *Ab initio* supercell calculations on nitrogen-vacancy center in diamond: electronic structure and hyperfine tensors. Phys Rev B 2008;77:155206. CrossrefGoogle Scholar

[4]

Larsson JA, Delaney P. Electronic structure of the nitrogen-vacancy center in diamond from first-principles theory. Phys Rev B 2008;77:165201. CrossrefGoogle Scholar

[5]

Davies G, Hamer MF. Optical studies of the 1.945 eV vibronic band in diamond. Proc R Soc Lond Ser A 1976;348:285–98. CrossrefGoogle Scholar

[6]

Loubser JHN, van Wyk JP. Diamond Research (London), Vol. 11–15. London: Industrial Diamond Information Bureau, 1977:4–7. Google Scholar

[7]

Loubser JHN, van Wyk JA. Electron spin resonance in the study of diamond. Rep Prog Phys 1978;41:1201. CrossrefGoogle Scholar

[8]

Felton S, Edmonds AM, Newton ME, et al. Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond. Phys Rev B 2009;79:075203. CrossrefGoogle Scholar

[9]

He X-F, Manson NB, Fisk PTH. Paramagnetic resonance of photoexcited N-V defects in diamond. II. Hyperfine interaction with the ^{14}N nucleus. Phys Rev B 1993;47:8816. CrossrefGoogle Scholar

[10]

Pfender M, Aslam N, Simon P, et al. Protecting a diamond quantum memory by charge state control. Nano Lett 2017;17:5931–7. CrossrefPubMedGoogle Scholar

[11]

Smeltzer B, Childress L, Gali A. ^{13}C hyperfine interactions in the nitrogen-vacancy centre in diamond. N J Phys 2011;13:025021. CrossrefGoogle Scholar

[12]

Ivády V, Gali A, Abrikosov IA. Hybrid-DFT + V_{w} method for band structure calculation of semiconducting transition metal compounds: the case of cerium dioxide. J Phys Condens Matter 2017;29:454002. CrossrefGoogle Scholar

[13]

Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J, von Borczyskowski C. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 1997;276:2012–4. CrossrefGoogle Scholar

[14]

Bourgeois E, Jarmola A, Siyushev P, et al. Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nat Commun 2015;6:8577. CrossrefPubMedGoogle Scholar

[15]

Siyushev P, Nesladek M, Bourgeois E, et al. Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond. Science 2019;363:728–31. CrossrefPubMedGoogle Scholar

[16]

Childress L, Gurudev Dutt MV, Taylor JM, et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 2006;314:281–5. CrossrefPubMedGoogle Scholar

[17]

Mita Y. Change of absorption spectra in type-Ib diamond with heavy neutron irradiation. Phys Rev B 1996;53:11360. CrossrefGoogle Scholar

[18]

Gaebel T, Domhan M, Wittmann C, et al. Photochromism in single nitrogen-vacancy defect in diamond. Appl Phys B 2006;82:243–6. CrossrefGoogle Scholar

[19]

Aslam N, Waldherr G, Neumann P, Jelezko F, Wrachtrup J. Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection. N J Phys 2013;15:013064. CrossrefGoogle Scholar

[20]

Siyushev P, Pinto H, Vörös M, Gali A, Jelezko F, Wrachtrup J. Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures. Phys Rev Lett 2013;110:167402. PubMedCrossrefGoogle Scholar

[21]

Coulson CA, Kearsley MJ. Colour centres in irradiated diamonds. I. Proc R Soc Lond Ser A Math Phys Sci 1957;241:433–54. CrossrefGoogle Scholar

[22]

Lenef A, Rand SC. Electronic structure of the N-V center in diamond: theory. Phys Rev B 1996;53:13441. CrossrefGoogle Scholar

[23]

Manson NB, Harrison JP, Sellars MJ. Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics. Phys Rev B 2006;74:104303. CrossrefGoogle Scholar

[24]

Maze JR, Gali A, Togan E, et al. Properties of nitrogen-vacancy centers in diamond: the group theoretic approach. N J Phys 2011;13:025025. CrossrefGoogle Scholar

[25]

Doherty MW, Manson NB, Delaney P, Hollenberg LCL. The negatively charged nitrogen-vacancy centre in diamond: the electronic solution. N J Phys 2011;13:025019. CrossrefGoogle Scholar

[26]

Jelezko F, Gaebel T, Popa I, Gruber A, Wrachtrup J. Observation of coherent oscillations in a single electron spin. Phys Rev Lett 2004;92:076401. CrossrefGoogle Scholar

[27]

Toyli DM, Christle DJ, Alkauskas A, Buckley BB, Van de Walle CG, Awschalom DD. Measurement and control of single nitrogen-vacancy center spins above 600 K. Phys Rev X 2012;2:031001. Google Scholar

[28]

Liu G-Q, Feng X, Wang N, Li Q, Liu R-B. Coherent quantum control of nitrogen-vacancy center spins near 1000 kelvin. Nat Commun 2019;10:1344. PubMedCrossrefGoogle Scholar

[29]

Maze JR, Stanwix PL, Hodges JS, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 2008;455:644–7. PubMedCrossrefGoogle Scholar

[30]

Balasubramanian G, Neumann P, Twitchen D, et al. Ultralong spin coherence time in isotopically engineered diamond. Nat Mater 2009;8:383–7. PubMedCrossrefGoogle Scholar

[31]

Jelezko F, Gaebel T, Popa I, Dunham M, Gruber A, Wrachtrup J. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys Rev Lett 2004;93:130501. CrossrefPubMedGoogle Scholar

[32]

Neumann P, Beck J, Steiner M, et al. Single-shot readout of a single nuclear spin. Science 2010;329:542–4. CrossrefPubMedGoogle Scholar

[33]

Robledo L, Childress L, Bernien H, Hensen B, Alkemade PFA, Hanson R. High-fidelity projective read-out of a solid-state spin quantum register. Nature 2011;477:574–8. CrossrefPubMedGoogle Scholar

[34]

Togan E, Chu Y, Trifonov AS, et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 2010;466:730–4. CrossrefGoogle Scholar

[35]

Yang S, Wang Y, Rao DDB, et al. High-fidelity transfer and storage of photon states in a single nuclear spin. Nat Photonics 2016;10:507–11. CrossrefGoogle Scholar

[36]

Hensen B, Bernien H, Dréau AE, et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 2015;526:682–6. CrossrefPubMedGoogle Scholar

[37]

DiVincenzo DP. The physical implementation of quantum computation. Fortsch Phys 2000;48:771–83. CrossrefGoogle Scholar

[38]

Tamarat P, Manson NB, Harrison JP, et al. Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond. N J Phys 2008;10:045004. CrossrefGoogle Scholar

[39]

Bassett LC, Heremans FJ, Yale CG, Buckley BB, Awschalom DD. Electrical tuning of single nitrogen-vacancy center optical transitions enhanced by photoinduced fields. Phys Rev Lett 2011;107:266403. PubMedCrossrefGoogle Scholar

[40]

Pfaff W, Hensen BJ, Bernien H, et al. Quantum information. Unconditional quantum teleportation between distant solid-state quantum bits. Science 2014;345:532–5. PubMedCrossrefGoogle Scholar

[41]

Balasubramanian G, Chan IY, Kolesov R, et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 2008;455:648–51. PubMedCrossrefGoogle Scholar

[42]

Degen CL. Scanning magnetic field microscope with a diamond single-spin sensor. Appl Phys Lett 2008;92:243111. CrossrefGoogle Scholar

[43]

Dolde F, Fedder H, Doherty MW, et al. Electric-field sensing using single diamond spins. Nat Phys 2011;7:459. CrossrefGoogle Scholar

[44]

Teissier J, Barfuss A, Appel P, Neu E, Maletinsky P. Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. Phys Rev Lett 2014;113:020503. CrossrefPubMedGoogle Scholar

[45]

Barfuss A, Teissier J, Neu E, Nunnenkamp A, Maletinsky P. Strong mechanical driving of a single electron spin. Nat Phys 2015;11:820–4. CrossrefGoogle Scholar

[46]

Balasubramanian G, Chan IY, Kolesov R, et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 2008;455:648–51. PubMedCrossrefGoogle Scholar

[47]

Degen CL. Scanning magnetic field microscope with a diamond single-spin sensor. Appl Phys Lett 2008;92:243111. CrossrefGoogle Scholar

[48]

Dolde F, Fedder H, Doherty MW, et al. Electric-field sensing using single diamond spins. Nat Phys 2011;7:459. CrossrefGoogle Scholar

[49]

Teissier J, Barfuss A, Appel P, Neu E, Maletinsky P. Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. Phys Rev Lett 2014;113:020503. CrossrefPubMedGoogle Scholar

[50]

Barfuss A, Teissier J, Neu E, Nunnenkamp A, Maletinsky P. Strong mechanical driving of a single electron spin. Nat Phys 2015;11:820–4. CrossrefGoogle Scholar

[51]

MacQuarrie ER, Gosavi TA, Bhave SA, Fuchs GD. Continuous dynamical decoupling of a single diamond nitrogen-vacancy center spin with a mechanical resonator. Phys Rev B 2015;92:224419. CrossrefGoogle Scholar

[52]

Golter DA, Oo T, Amezcua M, Stewart KA, Wang H. Optomechanical quantum control of a nitrogen-vacancy center in diamond. Phys Rev Lett 2016;116:143602. PubMedCrossrefGoogle Scholar

[53]

Kucsko G, Maurer PC, Yao NY, et al. Nanometre-scale thermometry in a living cell. Nature 2013;500:54–8. CrossrefGoogle Scholar

[54]

Toyli DM, de las Casas CF, Christle DJ, Dobrovitski VV, Awschalom DD. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc Natl Acad Sci USA 2013;110:8417–21. CrossrefGoogle Scholar

[55]

Neumann P, Jakobi I, Dolde F, et al. High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett 2013;13:2738–42. CrossrefPubMedGoogle Scholar

[56]

Staudacher T, Shi F, Pezzagna S, et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 Sample volume. Science 2013;339:561–3. PubMedCrossrefGoogle Scholar

[57]

Mamin HJ, Kim M, Sherwood MH, et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 2013;339:557–60. CrossrefPubMedGoogle Scholar

[58]

DeVience SJ, Pham LM, Lovchinsky I, et al. Nanoscale NMR spectroscopy and imaging of multiple nuclear species. Nat Nanotechnol 2015;10:129–34. CrossrefPubMedGoogle Scholar

[59]

Häberle T, Schmid-Lorch D, Reinhard F, Wrachtrup J. Nanoscale nuclear magnetic imaging with chemical contrast. Nat Nanotechnol 2015;10:125–8. CrossrefPubMedGoogle Scholar

[60]

Rugar D, Mamin HJ, Sherwood MH, et al. Proton magnetic resonance imaging using a nitrogen-vacancy spin sensor. Nat Nanotechnol 2015;10:120–4. CrossrefPubMedGoogle Scholar

[61]

Boss JM, Cujia KS, Zopes J, Degen CL. Quantum sensing with arbitrary frequency resolution. Science 2017;356: 837–40. CrossrefPubMedGoogle Scholar

[62]

Schmitt S, Gefen T, Störner FM, et al. Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor. Science 2017;356:832–7. CrossrefPubMedGoogle Scholar

[63]

Aslam N, Pfender M, Neumann P, et al. Nanoscale nuclear magnetic resonance with chemical resolution. Science 2017;357:67–71. PubMedCrossrefGoogle Scholar

[64]

Glenn DR, Bucher DB, Lee J, et al. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature 2018;555:351–4. CrossrefPubMedGoogle Scholar

[65]

Jacques V, Neumann P, Beck J, et al. Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature. Phys Rev Lett 2009;102:057403. CrossrefPubMedGoogle Scholar

[66]

Gali A. Identification of individual ^{13}C isotopes of nitrogen-vacancy center in diamond by combining the polarization studies of nuclear spins and first-principles calculations. Phys Rev B 2009;80:241204. CrossrefGoogle Scholar

[67]

Ivády V, Szász K, Falk AL, et al. Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide. Phys Rev B 2015;92:115206. CrossrefGoogle Scholar

[68]

Chen Q, Schwarz I, Jelezko F, Retzker A, Plenio MB. Optical hyperpolarization of ^{13}C nuclear spins in nanodiamond ensembles. Phys Rev B 2015;92:184420. CrossrefGoogle Scholar

[69]

Álvarez GA, Bretschneider CO, Fischer R, et al. Local and bulk ^{13}C hyperpolarization in nitrogen-vacancy-centred diamonds at variable fields and orientations. Nat Commun 2015;6:8456. CrossrefGoogle Scholar

[70]

King JP, Jeong K, Vassiliou CC, et al. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond. Nat Commun 2015;6:8965. CrossrefPubMedGoogle Scholar

[71]

Scheuer J, Schwartz I, Chen Q, et al. Optically induced dynamic nuclear spin polarisation in diamond. N J Phys 2016;18:013040. CrossrefGoogle Scholar

[72]

Wunderlich R, Kohlrautz J, Abel B, Haase J, Meijer J. Optically induced cross relaxation via nitrogen-related defects for bulk diamond ^{13}C hyperpolarization. Phys Rev B 2017;96:220407. CrossrefGoogle Scholar

[73]

Ajoy A, Liu K, Nazaryan R, et al. Orientation-independent room temperature optical ^{13}C hyperpolarization in powdered diamond. Sci Adv 2018;4:eaar5492. PubMedCrossrefGoogle Scholar

[74]

Schwartz I, Scheuer J, Tratzmiller B, et al. Robust optical polarization of nuclear spin baths using Hamiltonian engineering of nitrogen-vacancy center quantum dynamics. Sci Adv 2018;4:eaat8978. PubMedCrossrefGoogle Scholar

[75]

Abrams D, Trusheim ME, Englund DR, Shattuck MD, Meriles CA. Dynamic nuclear spin polarization of liquids and gases in contact with nanostructured diamond. Nano Lett 2014;14:2471–8. PubMedCrossrefGoogle Scholar

[76]

Fernández-Acebal P, Rosolio O, Scheuer J, et al. Toward hyperpolarization of oil molecules via single nitrogen vacancy centers in diamond. Nano Lett 2018;18:1882–7. PubMedCrossrefGoogle Scholar

[77]

Cai J, Retzker A, Jelezko F, Plenio MB. Towards a large-scale quantum simulator on diamond surface at room temperature. Nat Phys 2013;9:168. CrossrefGoogle Scholar

[78]

Chou J-P, Retzker A, Gali A. Nitrogen-terminated diamond (111) surface for room-temperature quantum sensing and simulation. Nano Lett 2017;17:2294–8. CrossrefPubMedGoogle Scholar

[79]

Meijer J, Burchard B, Domhan M, et al. Generation of single color centers by focused nitrogen implantation. Appl Phys Lett 2005;87:261909. CrossrefGoogle Scholar

[80]

Rabeau JR, Reichart P, Tamanyan G, et al. Implantation of labelled single nitrogen vacancy centers in diamond using ^{15}N. Appl Phys Lett 2006;88:023113. CrossrefGoogle Scholar

[81]

Pezzagna S, Naydenov B, Jelezko F, Wrachtrup J, Meijer J. Creation efficiency of nitrogen-vacancy centres in diamond. N J Phys 2010;12:065017. CrossrefGoogle Scholar

[82]

Ofori-Okai BK, Pezzagna S, Chang K, et al. Spin properties of very shallow nitrogen vacancy defects in diamond. Phys Rev B 2012;86:081406. CrossrefGoogle Scholar

[83]

Van Dam SB, Walsh M, Degen MJ, et al. Optical coherence of diamond nitrogen-vacancy centers formed by ion implantation and annealing. Phys Rev B 2019;99:161203. CrossrefGoogle Scholar

[84]

Smith WV, Sorokin PP, Gelles IL, Lasher GJ. Electron-spin resonance of nitrogen donors in diamond. Phys Rev 1959;115:1546. CrossrefGoogle Scholar

[85]

Loubser JHN, Preez LD. New lines in the electron spin resonance spectrum of substitutional nitrogen donors in diamond. Br J Appl Phys 1965;16:457. CrossrefGoogle Scholar

[86]

Farrer RG. On the substitutional nitrogen donor in diamond. Solid State Commun 1969;7:685–8. CrossrefGoogle Scholar

[87]

Ohno K, Heremans FJ, Bassett LC, et al. Engineering shallow spins in diamond with nitrogen delta-doping. Appl Phys Lett 2012;101:082413. CrossrefGoogle Scholar

[88]

Collins AT, Kiflawi I. The annealing of radiation damage in type Ia diamond. J Phys Condensed Matter 2009;21:364209. CrossrefGoogle Scholar

[89]

Acosta VM, Bauch E, Ledbetter MP, et al. Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys Rev B 2009;80:115202. CrossrefGoogle Scholar

[90]

Waldermann F, Olivero P, Nunn J, et al. Creating diamond color centers for quantum optical applications. Diamond Relat Mater 2007;16:1887–95. CrossrefGoogle Scholar

[91]

Huang Z, Li W-D, Santori C, et al. Diamond nitrogen-vacancy centers created by scanning focused helium ion beam and annealing. Appl Phys Lett 2013;103:081906. CrossrefGoogle Scholar

[92]

Mainwood A. Nitrogen and nitrogen-vacancy complexes and their formation in diamond. Phys Rev B 1994;49:7934–40. CrossrefGoogle Scholar

[93]

Capelli M, Heffernan A, Ohshima T, et al. Increased nitrogen-vacancy centre creation yield in diamond through electron beam irradiation at high temperature. Carbon 2019;143:714–9. CrossrefGoogle Scholar

[94]

Fávaro de Oliveira F, Antonov D, Wang Y, et al. Tailoring spin defects in diamond by lattice charging. Nat Commun 2017;8:15409. PubMedCrossrefGoogle Scholar

[95]

Bourgeois E, Londero E, Buczak K, et al. Enhanced photoelectric detection of NV magnetic resonances in diamond under dual-beam excitation. Phys Rev B 2017;95:041402. CrossrefGoogle Scholar

[96]

Hrubesch FM, Braunbeck G, Stutzmann M, Reinhard F, Brandt MS. Efficient electrical spin readout of NV^{−} centers in diamond. Phys Rev Lett 2017;118:037601. CrossrefPubMedGoogle Scholar

[97]

Gulka M, Bourgeois E, Hruby J, et al. Pulsed photoelectric coherent manipulation and detection of N−*V* center spins in diamond. Phys Rev Appl 2017;7:044032. CrossrefGoogle Scholar

[98]

Fuchs GD, Burkard G, Klimov PV, Awschalom DD. A quantum memory intrinsic to single nitrogen–vacancy centres in diamond. Nat Phys 2011;7:789–93. CrossrefGoogle Scholar

[99]

Maurer PC, Kucsko G, Latta C, et al. Room-temperature quantum bit memory exceeding one second. Science 2012;336:1283–6. CrossrefPubMedGoogle Scholar

[100]

Waldherr G, Wang Y, Zaiser S, et al. Quantum error correction in a solid-state hybrid spin register. Nature 2014;506:204–7. CrossrefGoogle Scholar

[101]

Abobeih MH, Cramer J, Bakker MA, et al. One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment. Nat Commun 2018;9:2552. PubMedCrossrefGoogle Scholar

[102]

Waldherr G, Beck J, Steiner M, et al. Dark states of single nitrogen-vacancy centers in diamond unraveled by single shot NMR. Phys Rev Lett 2011;106:157601. CrossrefPubMedGoogle Scholar

[103]

Batalov A, Jacques V, Kaiser F, et al. Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond. Phys Rev Lett 2009;102:195506. PubMedCrossrefGoogle Scholar

[104]

Goldman ML, Sipahigil A, Doherty MW, et al. Phonon-induced population dynamics and intersystem crossing in nitrogen-vacancy centers. Phys Rev Lett 2015;114:145502. CrossrefPubMedGoogle Scholar

[105]

Thiering G, Gali A. *Ab initio* calculation of spin-orbit coupling for an NV center in diamond exhibiting dynamic Jahn-Teller effect. Phys Rev B 2017;96:081115. CrossrefGoogle Scholar

[106]

Evarestov RA. Use of representative points of the Brillouin zone for the self-consistent calculations of solids in the large unit cell approach. Phys Stat Solidi B 1975;72:569–78. CrossrefGoogle Scholar

[107]

Monkhorst HJ, Pack JK. Special points for Brillouin-zone integrations. Phys Rev B 1976;13:5188. CrossrefGoogle Scholar

[108]

Zyubin AS, Mebel AM, Hayashi M, Chang HC, Lin SH. Quantum chemical modeling of photoadsorption properties of the nitrogen-vacancy point defect in diamond. J Comput Chem 2009;30:119–31. CrossrefPubMedGoogle Scholar

[109]

Delaney P, Greer JC, Larsson JA. Spin-polarization mechanisms of the nitrogen-vacancy center in diamond. Nano Lett 2010;10:610–4. PubMedCrossrefGoogle Scholar

[110]

Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev Lett 1965;140:A1133. Google Scholar

[111]

Parr RG, Yang W. Density-functional theory of atoms and molecules. Cambridge: Oxford University Press, 1989. Google Scholar

[112]

Ceperley DM, Alder BJ. Ground state of the electron gas by a stochastic method. Phys Rev Lett 1980;45:566. CrossrefGoogle Scholar

[113]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77: 3865–8. CrossrefPubMedGoogle Scholar

[114]

Blöchl PE. Projector augmented-wave method. Phys Rev B 1994;50:17953. CrossrefGoogle Scholar

[115]

Blöchl PE. First-principles calculations of defects in oxygen-deficient silica exposed to hydrogen. Phys Rev B 2000;62:6158. CrossrefGoogle Scholar

[116]

Shockley W. On the surface states associated with a periodic potential. Phys Rev 1939;56:317. CrossrefGoogle Scholar

[117]

Cole MW, Cohen MH. Image-potential-induced surface bands in insulators. Phys Rev Lett 1969;23:1238. CrossrefGoogle Scholar

[118]

Mulliken RS. The Rydberg states of molecules.^{1a} Parts I-V^{1b}. J Am Chem Soc 1964;86:3183–97. CrossrefGoogle Scholar

[119]

Vörös M, Gali A. Optical absorption of diamond nanocrystals from *ab initio* density-functional calculations. Phys Rev B 2009;80:161411. CrossrefGoogle Scholar

[120]

Kaviani M, Deák P, Aradi B, Frauenheim T, Chou J-P, Gali A. Proper surface termination for luminescent near-surface NV centers in diamond. Nano Lett 2014;14:4772–7. PubMedCrossrefGoogle Scholar

[121]

Boys SF, Egerton AC. Opening remarks. Proc R Soc Lond Ser A Math Phys Sci 1950;200:542. Google Scholar

[122]

Nizovtsev AP, Kilin SY, Pushkarchuk AL, et al. Non-flipping ^{13}C spins near an NV center in diamond: hyperfine and spatial characteristics by density functional theory simulation of the C_{510}[NV]H_{252} cluster. N J Phys 2018;20:023022. CrossrefGoogle Scholar

[123]

Northrup JE, Felice RD, Neugebauer J. Energetics of H and NH_{2} on GaN(1010) and implications for the origin of nanopipe defects. Phys Rev B 1996;56:R4325. Google Scholar

[124]

Deák P, Aradi B, Kaviani M, Frauenheim T, Gali A. Formation of NV centers in diamond: a theoretical study based on calculated transitions and migration of nitrogen and vacancy related defects. Phys Rev B 2014;89:075203. CrossrefGoogle Scholar

[125]

Makov G, Payne MC. Periodic boundary conditions in ab initio calculations. Phys Rev B 1995;51:4014–22. CrossrefGoogle Scholar

[126]

Lany S, Zunger A. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs. Phys Rev B 2008;78:235104. CrossrefGoogle Scholar

[127]

Freysoldt C, Neugebauer J, Van de Walle CG. Fully ab initio finite-size corrections for charged-defect supercell calculations. Phys Rev Lett 2009;102:016402. CrossrefPubMedGoogle Scholar

[128]

Komsa H-P, Rantala TT, Pasquarello A. Finite-size supercell correction schemes for charged defect calculations. Phys Rev B 2012;86:045112. CrossrefGoogle Scholar

[129]

Deák P, Aradi B, Frauenheim T, Janzén E, Gali A. Accurate defect levels obtained from the HSE06 range-separated hybrid functional. Phys Rev B 2010;81:153203. CrossrefGoogle Scholar

[130]

Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 2006;125:224106. CrossrefPubMedGoogle Scholar

[131]

Weber JR, Koehl WF, Varley JB, et al. Quantum computing with defects. Proc Natl Acad Sci USA 2010;107:8513–8. CrossrefGoogle Scholar

[132]

Dhomkar S, Jayakumar H, Zangara PR, Meriles CA. Charge dynamics in near-surface, variable-density ensembles of nitrogen-vacancy centers in diamond. Nano Lett 2018;18:4046. PubMedCrossrefGoogle Scholar

[133]

Maier F, Ristein J, Ley L. Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces. Phys Rev B 2001;64:165411. CrossrefGoogle Scholar

[134]

Grotz B, Hauf MV, Dankerl M, et al. Charge state manipulation of qubits in diamond. Nat Commun 2012;3:729. PubMedCrossrefGoogle Scholar

[135]

Fu K-MC, Santori C, Barclay PE, Beausoleil RG. Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation. Appl Phys Lett 2010;96:121907. CrossrefGoogle Scholar

[136]

Rondin L, Dantelle G, Slablab A, et al. Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds. Phys Rev B 2010;82:115449. CrossrefGoogle Scholar

[137]

Hauf MV, Grotz B, Naydenov B, et al. Chemical control of the charge state of nitrogen-vacancy centers in diamond. Phys Rev B 2011;83:081304. CrossrefGoogle Scholar

[138]

Chou J-P, Gali A. Nitrogen-vacancy diamond sensor: novel diamond surfaces from ab initio simulations. MRS Commun 2017;7:551–62. CrossrefGoogle Scholar

[139]

Li S, Chou J-P, Wei J, Sun M, Hu A, Gali A. Oxygenated (113) diamond surface for nitrogen-vacancy quantum sensors with preferential alignment and long coherence time from first principles. Carbon 2019;145:273–80. CrossrefGoogle Scholar

[140]

Tiwari AK, Goss JP, Briddon PR, et al. Calculated electron affinity and stability of halogen-terminated diamond. Phys Rev B 2011;84:245305. CrossrefGoogle Scholar

[141]

Stacey A, O’Donnell KM, Chou J-P, et al. Nitrogen terminated diamond. Adv Mater Interfaces 2015;2:1500079. CrossrefGoogle Scholar

[142]

Kawai S, Yamano H, Sonoda T, et al. Nitrogen-terminated diamond surface for nanoscale NMR by shallow nitrogen-vacancy centers. J Phys Chem C 2019;123:3594–604. CrossrefGoogle Scholar

[143]

Edmonds AM, D’Haenens-Johansson UFS, Cruddace RJ, et al. Production of oriented nitrogen-vacancy color centers in synthetic diamond. Phys Rev B 2012;86:035201. CrossrefGoogle Scholar

[144]

Michl J, Teraji T, Zaiser S, et al. Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces. Appl Phys Lett 2014;104:102407. CrossrefGoogle Scholar

[145]

Lesik M, Tetienne J-P, Tallaire A, et al. Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample. Appl Phys Lett 2014;104:113107. CrossrefGoogle Scholar

[146]

Tahara K, Ozawa H, Iwasaki T, Mizuochi N, Hatano M. Quantifying selective alignment of ensemble nitrogen-vacancy centers in (111) diamond. Appl Phys Lett 2015;107:193110. CrossrefGoogle Scholar

[147]

Ozawa H, Tahara K, Ishiwata H, Hatano M, Iwasaki T. Formation of perfectly aligned nitrogen-vacancy-center ensembles in chemical-vapor-deposition-grown diamond (111). Appl Phys Express 2017;10:045501. CrossrefGoogle Scholar

[148]

Osterkamp C, Mangold M, Lang J, et al. Engineering preferentially-aligned nitrogen-vacancy centre ensembles in CVD grown diamond. Sci Rep 2019;9:5786. PubMedCrossrefGoogle Scholar

[149]

Lesik M, Plays T, Tallaire A, et al. Preferential orientation of NV defects in CVD diamond films grown on (113)-oriented substrates. Diamond Relat Mater 2015;56:47–53. CrossrefGoogle Scholar

[150]

Chouaieb S, Martínez LJ, Akhtar W, et al. Optimizing synthetic diamond samples for quantum sensing technologies by tuning the growth temperature. Diamond Relat Mater 2019;96:85–9. CrossrefGoogle Scholar

[151]

Karin T, Dunham S, Fu K-M. Alignment of the diamond nitrogen vacancy center by strain engineering. Appl Phys Lett 2014;105:053106. CrossrefGoogle Scholar

[152]

Atumi MK, Goss JP, Briddon PR, Rayson MJ. Atomistic modeling of the polarization of nitrogen centers in diamond due to growth surface orientation. Phys Rev B 2013;88:245301. CrossrefGoogle Scholar

[153]

Miyazaki T, Miyamoto Y, Makino T, et al. Atomistic mechanism of perfect alignment of nitrogen-vacancy centers in diamond. Appl Phys Lett 2014;105:261601. CrossrefGoogle Scholar

[154]

Stacey A, Dontschuk N, Chou J-P, et al. Evidence for primal sp^{2} defects at the diamond surface. Adv Mater Interfaces 2019;6:1801449. CrossrefGoogle Scholar

[155]

Chou J-P, Bodrog Z, Gali A. First-principles study of charge diffusion between proximate solid-state qubits and its implications on sensor applications. Phys Rev Lett 2018;120:136401. CrossrefPubMedGoogle Scholar

[156]

Choi J, Choi S, Kucsko G, et al. Depolarization dynamics in a strongly interacting solid-state spin ensemble. Phys Rev Lett 2017;118:093601. CrossrefGoogle Scholar

[157]

Bluvstein D, Zhang Z, Jayich ACB. Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers. Phys Rev Lett 2019;122:076101. CrossrefPubMedGoogle Scholar

[158]

Lozovoi AY, Alavi A, Kohanoff J, Lynden-Bell RM. *Ab initio* simulation of charged slabs at constant chemical potential. J Chem Phys 2001;115:1661. CrossrefGoogle Scholar

[159]

Lozovoi AY, Alavi A. Reconstruction of charged surfaces: general trends and a case study of Pt(110) and Au(110). Phys Rev B 2003;68:245416. CrossrefGoogle Scholar

[160]

Scivetti I, Persson M. The electrostatic interaction of an external charged system with a metal surface: a simplified density functional theory approach. J Phys Condensed Matter 2013;25:355006. CrossrefGoogle Scholar

[161]

Wang D, Han D, Li X-B, et al. Determination of formation and ionization energies of charged defects in two-dimensional materials. Phys Rev Lett 2015;114:196801. PubMedCrossrefGoogle Scholar

[162]

Vinichenko D, Sensoy MG, Friend CM, Kaxiras E. Accurate formation energies of charged defects in solids: a systematic approach. Phys Rev B 2017;95:235310. CrossrefGoogle Scholar

[163]

Bal KM, Neyts EC. Modelling molecular adsorption on charged or polarized surfaces: a critical flaw in common approaches. Phys Chem Chem Phys 2018;20:8456. CrossrefPubMedGoogle Scholar

[164]

Freysoldt C, Neugebauer J. First-principles calculations for charged defects at surfaces, interfaces, and two-dimensional materials in the presence of electric fields. Phys Rev B 2018;97:205425. CrossrefGoogle Scholar

[165]

Tahini HA, Tan X, Smith SC. Fermi level determination for charged systems via recursive density of states integration. J Phys Chem Lett 2018;9:4014–9. CrossrefPubMedGoogle Scholar

[166]

Smart TJ, Wu F, Govoni M, Ping Y. Fundamental principles for calculating charged defect ionization energies in ultrathin two-dimensional materials. Phys Rev Mater 2018;2:124002. CrossrefGoogle Scholar

[167]

Pinto H, Jones R, Palmer DW, et al. First-principles studies of the effect of (001) surface terminations on the electronic properties of the negatively charged nitrogen-vacancy defect in diamond. Phys Rev B 2012;86:045313. CrossrefGoogle Scholar

[168]

Löfgren R, Pawar R, Öberg S, Larsson JA. Charged dopants in neutral supercells through substitutional donor (acceptor): nitrogen donor charging of the nitrogen-vacancy center in diamond. N J Phys 2018;20:023002. CrossrefGoogle Scholar

[169]

Manson NB, Hedges M, Barson MSJ, et al. NV^{−}–N^{+} pair centre in 1b diamond. N J Phys 2018;20:113037. CrossrefGoogle Scholar

[170]

Collins AT. The Fermi level in diamond. J Phys Condensed Matter 2002;14:3743. CrossrefGoogle Scholar

[171]

Londero E, Bourgeois E, Nesladek M, Gali A. Identification of nickel-vacancy defects by combining experimental and *ab initio* simulated photocurrent spectra. Phys Rev B 2018;97:241202. CrossrefGoogle Scholar

[172]

Bockstedte M, Schütz F, Garratt T, Ivády V, Gali A. Ab initio description of highly correlated states in defects for realizing quantum bits. npj Quant Mater 2018;3:31. CrossrefGoogle Scholar

[173]

Ranjbar A, Babamoradi M, Heidari Saani M, Vesaghi MA, Esfarjani K, Kawazoe Y. Many-electron states of nitrogen-vacancy centers in diamond and spin density calculations. Phys Rev B 2011;84:165212. CrossrefGoogle Scholar

[174]

Onida G, Reining L, Rubio A. Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 2002;74:601. CrossrefGoogle Scholar

[175]

Ma Y, Rohlfing M, Gali A. Excited states of the negatively charged nitrogen-vacancy color center in diamond. Phys Rev B 2010;81:041204. CrossrefGoogle Scholar

[176]

Choi S, Jain M, Louie SG. Mechanism for optical initialization of spin in NV^{−} center in diamond. Phys Rev B 2012;86:041202. CrossrefGoogle Scholar

[177]

Thiering G, Gali A. Theory of the optical spin-polarization loop of the nitrogen-vacancy center in diamond. Phys Rev B 2018;98:085207. CrossrefGoogle Scholar

[178]

Rogers LJ, Armstrong S, Sellars MJ, Manson NB. Infrared emission of the NV centre in diamond: zeeman and uniaxial stress studies. N J Phys 2008;10:103024. CrossrefGoogle Scholar

[179]

Gali A, Janzén E, Deák P, Kresse G, Kaxiras E. Theory of spin-conserving excitation of the *N*−*V*^{−} center in diamond. Phys Rev Lett 2009;103:186404. CrossrefPubMedGoogle Scholar

[180]

Fu K-MC, Santori C, Barclay PE, Rogers LJ, Manson NB, Beausoleil RG. Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond. Phys Rev Lett 2009;103:256404. PubMedCrossrefGoogle Scholar

[181]

Ulbricht R, Dong S, Chang I-Y, et al. Jahn-Teller-induced femtosecond electronic depolarization dynamics of the nitrogen-vacancy defect in diamond. Nat Commun 2016;7:13510. PubMedCrossrefGoogle Scholar

[182]

Zhang J, Wang C-Z, Zhu ZZ, Dobrovitski VV. Vibrational modes and lattice distortion of a nitrogen-vacancy center in diamond from first-principles calculations. Phys Rev B 2011;84:035211. CrossrefGoogle Scholar

[183]

Abtew TA, Sun YY, Shih B-C, Dev P, Zhang SB, Zhang P. Dynamic Jahn-Teller effect in the NV^{−} center in diamond. Phys Rev Lett 2011;107:146403. CrossrefPubMedGoogle Scholar

[184]

Bersurker I. The Jahn-Teller effect. Cambridge University Press, 2006. Google Scholar

[185]

Thiering G, Gali A. The (*e*_{g}⊗*e*_{u})⊗*E*_{g} product Jahn–Teller effect in the neutral group-IV vacancy quantum bits in diamond. npj Comput Mater 2019;5:1. Google Scholar

[186]

Rogers LJ, Doherty MW, Barson MSJ, Onoda S, Ohshima T, Manson NB. Singlet levels of the NV−centre in diamond. N J Phys 2015;17:013048. CrossrefGoogle Scholar

[187]

Gali A, Simon T, Lowther JE. Singlet levels of the NV−centre in diamond. N J Phys 2011;13:025016. Google Scholar

[188]

Alkauskas A, Buckley BB, Awschalom DD, de Walle CGV. First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres. N J Phys 2014;16:073026. CrossrefGoogle Scholar

[189]

Thiering G, Gali A. Characterization of oxygen defects in diamond by means of density functional theory calculations. Phys Rev B 2016;94:125202. CrossrefGoogle Scholar

[190]

Runge E, Gross EKU. Density-functional theory for time-dependent systems. Phys Rev Lett 1984;52:997. CrossrefGoogle Scholar

[191]

Casida ME. Time-dependent density functional response theory for molecules. Recent Advances in Density Functional Theory. Singapore: World Scientific, 1995:155–92. Google Scholar

[192]

Gali A. Time-dependent density functional study on the excitation spectrum of point defects in semiconductors. Phys Stat Solidi B 2011;248:1337. CrossrefGoogle Scholar

[193]

Perdew JP, Ernzerhof M, Burke K. Rationale for mixing exact exchange with density functional approximations. J Chem Phys 1996;105:9982–85. CrossrefGoogle Scholar

[194]

Vlasov II, Shiryaev AA, Rendler T, et al. Molecular-sized fluorescent nanodiamonds. Nat Nanotechnol 2014;9:54–8. CrossrefPubMedGoogle Scholar

[195]

Ulbricht R, Dong S, Gali A, Meng S, Loh Z-H. Vibrational relaxation dynamics of the nitrogen-vacancy center in diamond. Phys Rev B 2018;97:220302. CrossrefGoogle Scholar

[196]

Kehayias P, Doherty MW, English D, et al. Infrared absorption band and vibronic structure of the nitrogen-vacancy center in diamond. Phys Rev B 2013;88:165202. CrossrefGoogle Scholar

[197]

Acosta VM, Bauch E, Ledbetter MP, Waxman A, Bouchard L-S, Budker D. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys Rev Lett 2010;104:070801. PubMedCrossrefGoogle Scholar

[198]

Bassett LC, Heremans FJ, Christle DJ, Yale CG, Burkard G, Buckley BB, Awschalom DD. Ultrafast optical control of orbital and spin dynamics in a solid-state defect. Science 2014;345:1333–7. CrossrefGoogle Scholar

[199]

Rayson MJ, Briddon PR. First principles method for the calculation of zero-field splitting tensors in periodic systems. Phys Rev B 2008;77:035119. CrossrefGoogle Scholar

[200]

Ivády V, Simon T, Maze JR, Abrikosov IA, Gali A. Pressure and temperature dependence of the zero-field splitting in the ground state of NV centers in diamond: a first-principles study. Phys Rev B 2014;90:235205. CrossrefGoogle Scholar

[201]

Bodrog Z, Gali A. The spin–spin zero-field splitting tensor in the projector-augmented-wave method. J Phys Condensed Matter 2014;26:015305. CrossrefGoogle Scholar

[202]

Seo H, Ma H, Govoni M, Galli G. Designing defect-based qubit candidates in wide-gap binary semiconductors for solid-state quantum technologies. Phys Rev Mater 2017;1:075002. CrossrefGoogle Scholar

[203]

Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condensed Matter 2009;21:395502. CrossrefGoogle Scholar

[204]

Biktagirov T, Schmidt WG, Gerstmann U. Calculation of spin-spin zero-field splitting within periodic boundary conditions: towards all-electron accuracy. Phys Rev B 2018;97:115135. CrossrefGoogle Scholar

[205]

Ghosh K, Ma H, Gavini V, Galli G. All-electron density functional calculations for electron and nuclear spin interactions in molecules and solids. Phys Rev Mater 2019;3:043801. CrossrefGoogle Scholar

[206]

Davidsson J, Ivády V, Armiento R, Son NT, Gali A, Abrikosov IA. First principles predictions of magneto-optical data for semiconductor point defect identification: the case of divacancy defects in 4H–SiC. N J Phys 2018;20:023035. CrossrefGoogle Scholar

[207]

Fuchs GD, Dobrovitski VV, Hanson R, et al. Excited-state spectroscopy using single spin manipulation in diamond. Phys Rev Lett 2008;101:117601. PubMedCrossrefGoogle Scholar

[208]

Ham FS. Dynamical Jahn-Teller effect in paramagnetic resonance spectra: orbital reduction factors and partial quenching of spin-orbit interaction. Phys Rev 1965;138:A1727. CrossrefGoogle Scholar

[209]

Thiering G, Gali A. Ab initio magneto-optical spectrum of group-iv vacancy color centers in diamond. Phys Rev X 2018;8:021063. Google Scholar

[210]

Stone NJ. Table of nuclear magnetic dipole and electric quadrupole moments. Atomic Data Nucl Data Tables 2005;90:75. CrossrefGoogle Scholar

[211]

Szász K, Hornos T, Marsman M, Gali A. Hyperfine coupling of point defects in semiconductors by hybrid density functional calculations: the role of core spin polarization. Phys Rev B 2013;88:075202. CrossrefGoogle Scholar

[212]

Yazyev OV, Tavernelli I, Helm L, Röthlisberger U. Core spin-polarization correction in pseudopotential-based electronic structure calculations. Phys Rev B 2005;71:115110. CrossrefGoogle Scholar

[213]

Blügel S, Akai H, Zeller R, Dederichs PH. Hyperfine fields of 3D and 4D impurities in nickel. Phys Rev B 1987;35:3271–83. CrossrefGoogle Scholar

[214]

Larico R, Justo JF, Machado WVM, Assali LVC. Electronic properties and hyperfine fields of nickel-related complexes in diamond. Phys Rev B 2009;79:115202. CrossrefGoogle Scholar

[215]

Weisskopf V, Wigner E. Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie. Z Phys 1930;63:54–73. CrossrefGoogle Scholar

[216]

Alegre TPM, Santori C, Medeiros-Ribeiro G, Beausoleil RG. Polarization-selective excitation of nitrogen vacancy centers in diamond. Phys Rev B 2007;76:165205. CrossrefGoogle Scholar

[217]

Batalov A, Zierl C, Gaebel T, et al. Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations. Phys Rev Lett 2008;100:077401. PubMedCrossrefGoogle Scholar

[218]

Ulbricht R, Loh Z-H. Excited-state lifetime of the NV− infrared transition in diamond. Phys Rev B 2018;98:094309. CrossrefGoogle Scholar

[219]

Norambuena A, Reyes SA, Mejía-Lopéz J, Gali A, Maze JR. Microscopic modeling of the effect of phonons on the optical properties of solid-state emitters. Phys Rev B 2016;94:134305. CrossrefGoogle Scholar

[220]

Robledo L, Bernien H, van der Sar T, Hanson R. Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond. N J Phys 2011;13:025013. CrossrefGoogle Scholar

[221]

Kalb N, Humphreys PC, Slim JJ, Hanson R. Dephasing mechanisms of diamond-based nuclear-spin memories for quantum networks. Phys Rev A 2018;97:062330. CrossrefGoogle Scholar

[222]

Doherty MW, Manson NB, Delaney P, Jelezko F, Wrachtrup J, Hollenberg LCL. The nitrogen-vacancy colour centre in diamond. Phys Rep 2013;528:1–45. CrossrefGoogle Scholar

[223]

Vörös M, Rocca D, Galli G, Zimanyi GT, Gali A. Increasing impact ionization rates in Si nanoparticles through surface engineering: a density functional study. Phys Rev B 2013;87:155402. CrossrefGoogle Scholar

[224]

Alkauskas A, Yan Q, Van de Walle CG. First-principles theory of nonradiative carrier capture via multiphonon emission. Phys Rev B 2014;90:075202. CrossrefGoogle Scholar

[225]

Mizuochi N, Makino T, Kato H, et al. Electrically driven single-photon source at room temperature in diamond. Nat Photonics 2012;6:299–303. CrossrefGoogle Scholar

[226]

Schreckenbach G, Ziegler T. Calculation of the G-Tensor of electron paramagnetic resonance spectroscopy using gauge-including atomic orbitals and density functional theory. J Phys Chem A 1997;101:3388–99. CrossrefGoogle Scholar

[227]

Pickard CJ, Mauri F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys Rev B 2001;63:245101. CrossrefGoogle Scholar

[228]

Pickard CJ, Mauri F. First-Principles theory of the EPR *g* tensor in solids: defects in quartz. Phys Rev Lett 2002;88:086403. CrossrefGoogle Scholar

[229]

Kadantsev ES, Ziegler T. Implementation of a DFT-based method for the calculation of the zeeman g-Tensor in periodic systems with the use of numerical and Slater-Type atomic orbitals. J Phys Chem A 2009;113:1327–34. PubMedCrossrefGoogle Scholar

[230]

Von Bardeleben HJ, Cantin JL, Rauls E, Gerstmann U. Identification and magneto-optical properties of the NV center in 4*H*−SiC. Phys Rev B 2015;92:064104. CrossrefGoogle Scholar

[231]

Von Bardeleben HJ, Cantin JL, Csóré A, Gali A, Rauls E, Gerstmann U. NV centers in 3*C*, 4*H*, and 6*H* silicon carbide: a variable platform for solid-state qubits and nanosensors. Phys Rev B 2016;94:121202. CrossrefGoogle Scholar

[232]

Gali A. Theory of the neutral nitrogen-vacancy center in diamond and its application to the realization of a qubit. Phys Rev B 2009;79:235210. CrossrefGoogle Scholar

[233]

Doherty MW, Dolde F, Fedder H, et al. Theory of the ground-state spin of the NV^{−} center in diamond. Phys Rev B 2012;85:205203. CrossrefGoogle Scholar

[234]

van Oort E, Glasbeek M. Electric-field-induced modulation of spin echoes of N-V centers in diamond. Chem Phys Lett 1990;168:529–32. CrossrefGoogle Scholar

[235]

Falk AL, Klimov PV, Buckley BB, et al. Electrically and mechanically tunable electron spins in silicon carbide color centers. Phys Rev Lett 2014;112:187601. CrossrefPubMedGoogle Scholar

[236]

Udvarhelyi P, Nagy R, Kaiser F, Lee S-Y, Wrachtrup J, Gali A. Spectrally stable defect qubits with no inversion symmetry for robust spin-to-photon interface. Phys Rev Appl 2019;11:044022. CrossrefGoogle Scholar

[237]

Udvarhelyi P, Shkolnikov VO, Gali A, Burkard G, Pályi A. Spin-strain interaction in nitrogen-vacancy centers in diamond. Phys Rev B 2018;98:075201. CrossrefGoogle Scholar

[238]

Mittiga T, Hsieh S, Zu C, et al. Imaging the local charge environment of nitrogen-vacancy centers in diamond. Phys Rev Lett 2018;121:246402. PubMedCrossrefGoogle Scholar

[239]

King-Smith RD, Vanderbilt D. Theory of polarization of crystalline solids. Phys Rev B 1993;47:1651–4. CrossrefGoogle Scholar

[240]

Vanderbilt D, King-Smith RD. Electric polarization as a bulk quantity and its relation to surface charge. Phys Rev B 1993;48:4442–55. CrossrefGoogle Scholar

[241]

Resta R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev Mod Phys 1994;66:899. CrossrefGoogle Scholar

[242]

Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F. Linear optical properties in the projector-augmented wave methodology. Phys Rev B 2006;73:045112. CrossrefGoogle Scholar

[243]

Tamarat P, Gaebel T, Rabeau JR, et al. Stark shift control of single optical centers in diamond. Phys Rev Lett 2006;97:083002. CrossrefPubMedGoogle Scholar

[244]

Doherty MW, Acosta VM, Jarmola A, et al. Temperature shifts of the resonances of the NV^{−} center in diamond. Phys Rev B 2014;90:041201. CrossrefGoogle Scholar

[245]

Kobayashi M, Nisida Y. High pressure effects on photoluminescence spectra of color centers in diamond. Jpn J Appl Phys 1993;32:279–81. CrossrefGoogle Scholar

[246]

Deng B, Zhang RQ, Shi XQ. New insight into the spin-conserving excitation of the negatively charged nitrogen-vacancy center in diamond. Sci Rep 2014;4:5144. PubMedGoogle Scholar

[247]

Barson MSJ, Peddibhotla P, Ovartchaiyapong P, et al. Nanomechanical sensing using spins in diamond. Nano Lett 2017;17:1496–503. CrossrefPubMedGoogle Scholar

[248]

Udvarhelyi P, Gali A. *Ab Initio* spin-strain coupling parameters of divacancy qubits in silicon carbide. Phys Rev Appl 2018;10:054010. CrossrefGoogle Scholar

[249]

Rogers LJ, McMurtrie RL, Sellars MJ, Manson NB. All-optical thermometry and thermal properties of the optically detected spin resonances of the NV(−) center in nanodiamond. N J Phys 2009;11:063007. Google Scholar

[250]

Plakhotnik T, Doherty MW, Cole JH, Chapman R, Manson NB. All-optical thermometry and thermal properties of the optically detected spin resonances of the NV^{−} center in nanodiamond. Nano Lett 2014;14:4989–96. PubMedCrossrefGoogle Scholar

[251]

Plakhotnik T, Doherty MW, Manson NB. Electron-phonon processes of the nitrogen-vacancy center in diamond. Phys Rev B 2015;92. Google Scholar

[252]

Gugler J, Astner T, Angerer A, Schmiedmayer J, Majer J, Mohn P. *Ab initio* calculation of the spin lattice relaxation time *T*_{1} for nitrogen-vacancy centers in diamond. Phys Rev B 2018;98:214442. CrossrefGoogle Scholar

[253]

Jarmola A, Acosta VM, Jensen K, Chemerisov S, Budker D. Temperature- and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond. Phys Rev Lett 2012;108:197601. CrossrefPubMedGoogle Scholar

[254]

Takahashi S, Hanson R, van Tol J, Sherwin MS, Awschalom DD. Quenching spin decoherence in diamond through spin bath polarization. Phys Rev Lett 2008;101:047601. PubMedCrossrefGoogle Scholar

[255]

Norambuena A, Muñoz E, Dinani HT, et al. Spin-lattice relaxation of individual solid-state spins. Phys Rev B 2018;97:094304. CrossrefGoogle Scholar

[256]

Astner T, Gugler J, Angerer A, et al. Solid-state electron spin lifetime limited by phononic vacuum modes. Nat Mater 2018;17:313–17. CrossrefPubMedGoogle Scholar

[257]

Waller I. Über die Magnetisierung von paramagnetischen Kristallen in Wechselfeldern. Z Phys 1932;79:370–88. CrossrefGoogle Scholar

[258]

Marzari N, Mostofi AA, Yates JR, Souza I, Vanderbilt D. Maximally localized Wannier functions: theory and applications. Rev Mod Phys 2012;84:1419. CrossrefGoogle Scholar

[259]

Marini A. *Ab Initio*finite-temperature excitons. Phys Rev Lett 2008;101:106405. CrossrefPubMedGoogle Scholar

[260]

Cannuccia E, Marini A. Effect of the quantum zero-point atomic motion on the optical and electronic properties of diamond and trans-polyacetylene. Phys Rev Lett 2011;107:255501. PubMedCrossrefGoogle Scholar

[261]

Gali A, Demján T, Vörös M, Thiering G, Cannuccia E, Marini A. Electron-vibration coupling induced renormalization in the photoemission spectrum of diamondoids. Nat Commun 2016;7:11327. PubMedCrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.