[1]

Glenn DR, Fu RR, Kehayias P, et al. Micrometer-scale magnetic imaging of geological samples using a quantum diamond microscope. Geochem Geophys Geosyst 2017;18:3254–67. CrossrefGoogle Scholar

[2]

Schirhagl R, Chang K, Loretz M, Degen CL. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Ann Rev Phys Chem 2014;65:83–105. CrossrefGoogle Scholar

[3]

Weng H, Beetner DG, DuBroff RE. Prediction of radiated emissions using near-field measurements. IEEE Trans Electromagn Compat 2011;53:891–9. CrossrefGoogle Scholar

[4]

Degen CL. Scanning magnetic field microscope with a diamond single-spin sensor. Appl Phys Lett 2008;92:243111. CrossrefGoogle Scholar

[5]

Rondin L, Tetienne J-P, Spinicelli P, et al. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Appl Phys Lett 2012;100:153118. CrossrefGoogle Scholar

[6]

Maletinsky P, Hong S, Grinolds MS, et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat Nanotechnol 2012;7:320–4. PubMedCrossrefGoogle Scholar

[7]

Hartmann U. Magnetic force microscopy. Ann Rev Mater Sci 1999;29:53–87. CrossrefGoogle Scholar

[8]

Fong LE, Holzer JR, McBride KK, Lima EA, Baudenbacher F, Radparvar M. High-resolution room-temperature sample scanning superconducting quantum interference device microscope configurable for geological and biomagnetic applications. Rev Sci Instrum 2005;76:053703. CrossrefGoogle Scholar

[9]

Allwood DA, Xiong G, Cooke MD, Cowburn RP. Magneto-optical kerr effect analysis of magnetic nanostructures. J Phys D: Appl Phys 2003;36:2175–82. CrossrefGoogle Scholar

[10]

Qiu ZQ, Bader SD. Surface magneto-optic kerr effect. Rev Sci Instrum 2000;71:1243–55. CrossrefGoogle Scholar

[11]

Le Sage D, Arai K, Glenn DR, et al. Optical magnetic imaging of living cells. Nature 2013;496:486–9. CrossrefPubMedGoogle Scholar

[12]

Doherty MW, Manson NB, Delaney P, Jelezko F, Wrachtrup J, Hollenberg LCL. The nitrogen-vacancy colour centre in diamond. Phys Rep 2013;528:1–45. CrossrefGoogle Scholar

[13]

Rondin L, Tetienne J-P, Hingant T, Roch J-F, Maletinsky P, Jacques V. Magnetometry with nitrogen-vacancy defects in diamond. Rep Prog Phys 2014;77:056503. PubMedCrossrefGoogle Scholar

[14]

Goldman ML, Doherty MW, Sipahigil A, et al. State-selective intersystem crossing in nitrogen-vacancy centers. Phys Rev B 2015;91:165201. CrossrefGoogle Scholar

[15]

Loubser JHN, van Wyk JA. Electron spin resonance in the study of diamond. Rep Prog Phys 1978;41:1201. CrossrefGoogle Scholar

[16]

Doherty MW, Dolde F, Fedder H, et al. Theory of the groundstate spin of the NV^{−} center in diamond. Phys Rev B 2012;85:205203. CrossrefGoogle Scholar

[17]

Bauch E, Hart CA, Schloss JM, et al. Ultralong dephasing times in solid-state spin ensembles via quantum control. Phys Rev X 2018;8:031025. Google Scholar

[18]

Shin CS, Butler MC, Wang H-J, et al. Optically detected nuclear quadrupolar interaction of ^{14}N in nitrogen-vacancy centers in diamond. Phys Rev B 2014;89:205202. CrossrefGoogle Scholar

[19]

Acosta VM, Bauch E, Ledbetter MP, Waxman A, Bouchard L-S, Budker D. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys Rev Lett 2010;104:070801. PubMedCrossrefGoogle Scholar

[20]

Doherty MW, Acosta VM, Jarmola A, et al. Temperature shifts of the resonances of the nv^{−} center in diamond. Phys Rev B 2014;90:041201. CrossrefGoogle Scholar

[21]

Felton S, Edmonds AM, Newton ME, et al. Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond. Phys Rev B 2009;79:075203. CrossrefGoogle Scholar

[22]

Barson MSJ, Peddibhotla P, Ovartchaiyapong P, et al. Nanomechanical sensing using spins in diamond. Nano Lett 2017;17:1496–503. CrossrefPubMedGoogle Scholar

[23]

Udvarhelyi P, Shkolnikov VO, Gali A, Burkard G, Pályi A. Spin-strain interaction in nitrogen-vacancy centers in diamond. Phys Rev B 2018;98:075201. CrossrefGoogle Scholar

[24]

Barfuss A, Kasperczyk M, Kölbl J, Maletinsky P. Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems. Phys Rev B 2019;88:174102. Google Scholar

[25]

Jamonneau P, Lesik M, Tetienne JP, et al. Competition between electric field and magnetic field noise in the decoherence of a single spin in diamond. Phys Rev B 2016;93:024305. CrossrefGoogle Scholar

[26]

Kehayias P, Turner MJ, Trubko R, et al. Imaging crystal stress in diamond using ensembles of nitrogen-vacancy centers. 2019;arXiv:1908.09904. Google Scholar

[27]

Rogers LJ, McMurtrie RL, Sellars MJ, Manson NB. Time-averaging within the excited state of the nitrogen-vacancy centre in diamond. New J Phys 2009;11:063007. CrossrefGoogle Scholar

[28]

Batalov A, Jacques V, Kaiser F, et al. Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond. Phys Rev Lett 2009;102:195506. PubMedCrossrefGoogle Scholar

[29]

Henderson B, Imbusch GF. Optical spectroscopy of inorganic solids. New York, Oxford University Press, 2006. Google Scholar

[30]

Robledo L, Bernien H, van der Sar T, Hanson R. Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond. New J Phys 2011;13:025013. CrossrefGoogle Scholar

[31]

Tetienne J-P, Rondin L, Spinicelli P, et al. Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging. New J Phys 2012;14:103033. CrossrefGoogle Scholar

[32]

Harrison J, Sellars MJ, Manson NB. Measurement of the optically induced spin polarisation of NV centres in diamond. Diam Relat Mater 2006;15:586–8. CrossrefGoogle Scholar

[33]

Rogers LJ, Armstrong S, Sellars MJ, Manson NB. Infrared emission of the NV centre in diamond: zeeman and uniaxial stress studies. New J Phys 2008;10:103024. CrossrefGoogle Scholar

[34]

Acosta VM, Jarmola A, Bauch E, Budker D. Optical properties of the nitrogen-vacancy singlet levels in diamond. Phys Rev B 2010;82:201202. CrossrefGoogle Scholar

[35]

Wee T-L, Tzeng Y-K, Han C-C, et al. Two-photon excited fluorescence of nitrogen-vacancy centers in proton-irradiated type ib diamond. J Phys Chem A 2007;111:9379–86. CrossrefPubMedGoogle Scholar

[36]

Chapman R, Plakhotnik T. Quantitative luminescence microscopy on nitrogen-vacancy centres in diamond: saturation effects under pulsed excitation. Chem Phys Lett 2011;507:190–4. CrossrefGoogle Scholar

[37]

Peppers J, Martyshkin DV, Mirov SB, et al. Laser spectroscopy of highly doped NV^{−} centers in diamond. Proc. SPIE 10511, Solid State Lasers XXVII: Technology and Devices, 2018. Google Scholar

[38]

Dréau A, Lesik M, Rondin L, et al. Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity. Phys Rev B 2011;84:195204. CrossrefGoogle Scholar

[39]

Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J, von Borczyskowski C. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 1997;276:2012–4. CrossrefGoogle Scholar

[40]

Roth BJ, Sepulveda NG, Wikswo JP. Using a magnetometer to image a two-dimensional current distribution. J Appl Phys 1989;65:361–72. CrossrefGoogle Scholar

[41]

Lima EA, Weiss BP. Ultra-high sensitivity moment magnetometry of geological samples using magnetic microscopy. Geochem Geophys Geosyst 2016;17:3754–74. CrossrefGoogle Scholar

[42]

Baratchart L, Chevillard S, Hardin DP, Leblond J, Lima EA, Marmorat J-P. Magnetic moment estimation and bounded extremal problems. Inverse Probl Imaging 2019;13:29. Google Scholar

[43]

Glenn DR, Bucher DB, Lee J, Lukin MD, Park H, Walsworth RL. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature 2018;555:351–4. CrossrefPubMedGoogle Scholar

[44]

Mittiga T, Hsieh S, Zu C, et al. Imaging the local charge environment of nitrogen-vacancy centers in diamond. Phys Rev Lett 2018;121:246402. PubMedCrossrefGoogle Scholar

[45]

Dolde F, Fedder H, Doherty MW, et al. Electric-field sensing using single diamond spins. Nat Phys 2011;7:459–63. CrossrefGoogle Scholar

[46]

Van Oort E, Glasbeek M. Electric-field-induced modulation of spin echoes of n-v centers in diamond. Chem Phys Lett 1990;168:529–32. CrossrefGoogle Scholar

[47]

Slichter CP. Principles of magnetic resonance. In: Springer series in solid-state sciences. Berlin, Heidelberg: Springer, 1996. Google Scholar

[48]

Barry JF, Schloss JM, Bauch E, et al. Sensitivity optimization for NV-diamond magnetometry. 2019;arXiv:1903.08176. Google Scholar

[49]

Shin CS, Avalos CE, Butler MC, et al. Room-temperature operation of a radiofrequency diamond magnetometer near the shot-noise limit. J Appl Phys 2012;112:124519. CrossrefGoogle Scholar

[50]

Glenn DR, Lee K, Park H, et al. Single-cell magnetic imaging using a quantum diamond microscope. Nat Methods 2015;12:736–8. PubMedCrossrefGoogle Scholar

[51]

Barry JF, Turner MJ, Schloss JM, et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc Natl Acad Sci 2016;113:14133–8. CrossrefGoogle Scholar

[52]

Schloss JM, Barry JF, Turner MJ, Walsworth RL. Simultaneous broadband vector magnetometry using solid-state spins. Phys Rev Appl 2018; 10:034044. CrossrefGoogle Scholar

[53]

Ramsey NF. A molecular beam resonance method with separated oscillating fields. Phys Rev 1950;78:695–9. CrossrefGoogle Scholar

[54]

Balasubramanian G, Neumann P, Twitchen D, et al. Ultralong spin coherence time in isotopically engineered diamond. Nat Mater 2009;8:383–7. PubMedCrossrefGoogle Scholar

[55]

Taylor JM, Cappellaro P, Childress L, et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat Phys 2008;4:810–6. CrossrefGoogle Scholar

[56]

de Lange G, Wang ZH, Ristè D, Dobrovitski VV, Hanson R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 2010;330:60–3. PubMedCrossrefGoogle Scholar

[57]

Bauch E, Singh S, Lee J, et al. Decoherence of dipolar spin ensembles in diamond. 2019;arXiv:1904.08763. Google Scholar

[58]

Cywinski L, Lutchyn RM, Nave CP, Das Sarma S. How to enhance dephasing time in superconducting qubits. Phys Rev B 2008;77:174509. CrossrefGoogle Scholar

[59]

Pham LM, Bar-Gill N, Belthangady C, et al. Enhanced solid-state multispin metrology using dynamical decoupling. Phys Rev B 2012;86:045214. CrossrefGoogle Scholar

[60]

de Sousa R. Electron spin as a spectrometer of nuclear-spin noise and other fluctuations. In: Fanciulli M, editor. Electron spin resonance and related phenomena in low-dimensional structures, volume 115 of topics in applied physics. Berlin, Heidelberg: Springer, 2009:183–220. Google Scholar

[61]

Szankowski P, Ramon G, Krzywda J, Kwiatkowski D, Cywinski L. Environmental noise spectroscopy with qubits subjected to dynamical decoupling. J Phys Condens Matter 2017;29:333001. PubMedCrossrefGoogle Scholar

[62]

Shao L, Liu R, Zhang M, et al. Wide-field optical microscopy of microwave fields using nitrogen-vacancy centers in diamonds. Adv Opt Mater 2016;19:E2347. Google Scholar

[63]

Horsley A, Appel P, Wolters J, et al. Microwave device characterization using a widefield diamond microscope. Phys Rev Appl 2018;10:044039. CrossrefGoogle Scholar

[64]

Steinert S, Ziem F, Hall LT, et al. Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat Commun 2013;4:1607. CrossrefPubMedGoogle Scholar

[65]

Naydenov B, Dolde F, Hall LT, et al. Dynamical decoupling of a single-electron spin at room temperature. Phys Rev B 2011;83:081201. CrossrefGoogle Scholar

[66]

Steinert S, Dolde F, Neumann P, et al. High sensitivity magnetic imaging using an array of spins in diamond. Rev Sci Instrum 2010;81:043705. CrossrefPubMedGoogle Scholar

[67]

Allred JC, Lyman RN, Kornack TW, Romalis MV. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys Rev Lett 2002;89:130801. PubMedCrossrefGoogle Scholar

[68]

Budker D, Romalis M. Optical magnetometry. Nat Phys 2007;3:227–34. CrossrefGoogle Scholar

[69]

Dobrovitski VV, Feiguin AE, Hanson R, Awschalom DD. Decay of rabi oscillations by dipolar-coupled dynamical spin environments. Phys Rev Lett 2009;102:237601. PubMedCrossrefGoogle Scholar

[70]

Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila Ju, Lounasmaa OV. Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 1993;65:413–97. CrossrefGoogle Scholar

[71]

Lima EA, Weiss BP. Obtaining vector magnetic field maps from single-component measurements of geological samples. J Geophys Res: Solid Earth 2009;114. Google Scholar

[72]

Tetienne J-P, Broadway DA, Lillie SE, et al. Proximity-induced artefacts in magnetic imaging with nitrogen-vacancy ensembles in diamond. Sensors 2018;18. PubMedGoogle Scholar

[73]

Naydenov B, Reinhard F, Lämmle A, et al. Increasing the coherence time of single electron spins in diamond by high temperature annealing. Appl Phys Lett 2010;97:242511. CrossrefGoogle Scholar

[74]

Pezzagna S, Naydenov B, Jelezko F, Wrachtrup J, Meijer J. Creation efficiency of nitrogen-vacancy centres in diamond. New J Phys 2010;12:065017. CrossrefGoogle Scholar

[75]

Ohashi K, Rosskopf T, Watanabe H, et al. Negatively charged nitrogen-vacancy centers in a 5 nm thin ^{12}C diamond film. Nano Lett 2013;13:4733–8. CrossrefGoogle Scholar

[76]

Ozawa H, Tahara K, Ishiwata H, Hatano M, Iwasaki T. Formation of perfectly aligned nitrogen-vacancy-center ensembles in chemical-vapor-deposition-grown diamond (111). Appl Phys Express 2017;10:045501. CrossrefGoogle Scholar

[77]

Ohno K, Heremans FJ, Bassett LC, et al. Engineering shallow spins in diamond with nitrogen delta-doping. Appl Phys Lett 2012;101:082413. CrossrefGoogle Scholar

[78]

Loretz M, Pezzagna S, Meijer J, Degen CL. Nanoscale nuclear magnetic resonance with a 1.9-nm-deep nitrogen-vacancy sensor. Appl Phys Lett 2014;104:033102. CrossrefGoogle Scholar

[79]

Acosta VM, Bauch E, Ledbetter MP, et al. Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys Rev B 2009;80:115202. CrossrefGoogle Scholar

[80]

Smits J, Damron J, Kehayias P, et al. Two-dimensional nuclear magnetic resonance spectroscopy with a microfluidic diamond quantum sensor. Sci Adv 2019;5:eaaw7895. PubMedCrossrefGoogle Scholar

[81]

Kleinsasser EE, Stanfield MM, Banks JKQ, et al. High density nitrogen-vacancy sensing surface created via He^{+} ion implantation of ^{12}C diamond. Appl Phys Lett 2016;108:202401. CrossrefGoogle Scholar

[82]

Aude Craik DPL, Kehayias P, Greenspon AS, et al. A microwave-assisted spectroscopy technique for determining charge state in nitrogen-vacancy ensembles in diamond. 2018;arXiv:1811.01972. Google Scholar

[83]

Grinolds MS, Warner M, De Greve K, et al. Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nat Nanotechnol 2014;9: 279–84. CrossrefPubMedGoogle Scholar

[84]

Rosskopf T, Dussaux A, Ohashi K, et al. Investigation of surface magnetic noise by shallow spins in diamond. Phys Rev Lett 2014;112:147602. PubMedCrossrefGoogle Scholar

[85]

Kilin SYa, Nizovtsev AP, Maevskaya TM, Dräbenstedt A, Wrachtrup J. Spectroscopy on single n-v defect centers in diamond: tunneling of nitrogen atoms into vacancies and fluorescence spectra. J Lumin 2000;86:201–6. CrossrefGoogle Scholar

[86]

Aslam N, Waldherr G, Neumann P, Jelezko F, Wrachtrup J. Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection. New J Phys 2013;15:013064. CrossrefGoogle Scholar

[87]

Bauch E. Nitrogen-vacancy defects in diamond for sub-millimeter magnetometry. Master’s thesis. Berlin: TU Berlin, 2010. Google Scholar

[88]

Stürner FM, Brenneis A, Kassel J, et al. Compact integrated magnetometer based on nitrogen-vacancy centres in diamond. Diam Relat Mater 2019;93:59–65. CrossrefGoogle Scholar

[89]

Beha K, Batalov A, Manson NB, Bratschitsch R, Leitenstorfer A. Optimum photoluminescence excitation and recharging cycle of single nitrogen-vacancy centers in ultrapure diamond. Phys Rev Lett 2012;109:097404. PubMedCrossrefGoogle Scholar

[90]

Bayat K, Choy J, Farrokh Baroughi M, Meesala S, Loncar M. Efficient, uniform, and large area microwave magnetic coupling to NV centers in diamond using double split-ring resonators. Nano Lett 2014;14:1208–13. CrossrefPubMedGoogle Scholar

[91]

Zhang N, Zhang C, Xu L, et al. Microwave magnetic field coupling with nitrogen-vacancy center ensembles in diamond with high homogeneity. Appl Magn Reson 2016;47:589–99. CrossrefGoogle Scholar

[92]

Labanowski D, Bhallamudi VP, Guo Q, et al. Voltage-driven, local, and efficient excitation of nitrogen-vacancy centers in diamond. Sci Adv 2018;4. PubMedGoogle Scholar

[93]

Jia W, Shi Z, Qin X, Rong X, Du J. Ultra-broadband coplanar waveguide for optically detected magnetic resonance of nitrogen-vacancy centers in diamond. Rev Sci Instrum 2018;89:064705. PubMedCrossrefGoogle Scholar

[94]

Sasaki K, Monnai Y, Saijo S, et al. Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond. Rev Sci Instrum 2016;87:053904. PubMedCrossrefGoogle Scholar

[95]

Eisenach ER, Barry JF, Pham LM, Rojas RG, Englund DR, Braje DA. Broadband loop gap resonator for nitrogen vacancy centers in diamond. Rev Sci Instrum 2018;89:094705. PubMedCrossrefGoogle Scholar

[96]

Mrozek M, Mlynarczyk J, Rudnicki DS, Gawlik W. Circularly polarized microwaves for magnetic resonance study in the ghz range: application to nitrogen-vacancy in diamonds. Appl Phys Lett 2015;107:013505. CrossrefGoogle Scholar

[97]

Alegre TPM, Santori C, Medeiros-Ribeiro G, Beausoleil RG. Polarization-selective excitation of nitrogen vacancy centers in diamond. Phys Rev B 2007;76:165205. CrossrefGoogle Scholar

[98]

Hall LT, Kehayias P, Simpson DA, et al. Detection of nanoscale electron spin resonance spectra demonstrated using nitrogen-vacancy centre probes in diamond. Nat Commun 2016;7:10211. CrossrefPubMedGoogle Scholar

[99]

Fescenko I, Laraoui A, Smits J, et al. Diamond magnetic microscopy of malarial hemozoin nanocrystals. Phys Rev Appl 2019;11:034029. CrossrefPubMedGoogle Scholar

[100]

Fischer R, Jarmola A, Kehayias P, Budker D. Optical polarization of nuclear ensembles in diamond. Phys Rev B 2013;87:125207. CrossrefGoogle Scholar

[101]

Steiner M, Neumann P, Beck J, Jelezko F, Wrachtrup J. Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy centers in diamond. Phys Rev B 2010;81:035205. CrossrefGoogle Scholar

[102]

Backlund MP, Kehayias P, Walsworth RL. Diamond-based magnetic imaging with fourier optical processing. Phys Rev Appl 2017;8:054003. CrossrefGoogle Scholar

[103]

Farchi E, Ebert Y, Farfurnik D, Haim G, Shaar R, Bar-Gill N. Quantitative vectorial magnetic imaging of multi-domain rock forming minerals using nitrogen-vacancy centers in diamond. SPIN 2017;07:1740015. CrossrefGoogle Scholar

[104]

Wojciechowski AM, Karadas M, Huck A, et al. Contributed review: camera-limits for wide-field magnetic resonance imaging with a nitrogen-vacancy spin sensor. Rev Sci Instrum 2018;89:031501. CrossrefPubMedGoogle Scholar

[105]

Chipaux M, Tallaire A, Achard J, et al. Magnetic imaging with an ensemble of nitrogen-vacancy centers in diamond. Eur Phys J D 2015;69:166. CrossrefGoogle Scholar

[106]

Tetienne J-P, Dontschuk N, Broadway DA, Stacey A, Simpson DA, Hollenberg LCL. Quantum imaging of current flow in graphene. Sci Adv 2017;3:e1602429. CrossrefPubMedGoogle Scholar

[107]

Ku MJH, Zhou TX, Li Q, et al. Imaging viscous flow of the dirac fluid in graphene using a quantum spin magnetometer. 2019;arXiv:1905.10791. Google Scholar

[108]

McCoey J, Ganesan K, Hall LT, et al. Magneto-optical imaging of thin magnetic films using spins in diamond. Sci Rep 2016;6:22797. PubMedCrossrefGoogle Scholar

[109]

McCoey JM, Matsuoka M, de Gille RW, et al. Quantum magnetic imaging of iron biomineralisation in teeth of the chiton *Acanthopleura hirtosa*. 2019;arXiv:1902.09637. Google Scholar

[110]

Davis HC, Ramesh P, Bhatnagar A, et al. Mapping the microscale origins of mri contrast with subcellular NV diamond magnetometry. Nat Commun 2018;9:131. CrossrefGoogle Scholar

[111]

Nowodzinski A, Chipaux M, Toraille L, Jacques V, Roch JF, Debuisschert T. Nitrogen-vacancy centers in diamond for current imaging at the redistributive layer level of integrated circuits. Microelectron Reliab 2015;55:1549–53. CrossrefGoogle Scholar

[112]

Gould M, Barbour RJ, Thomas N, Arami H, Krishnan KM, Fu K-MC. Room-temperature detection of a single 19nm super-paramagnetic nanoparticle with an imaging magnetometer. Appl Phys Lett 2014;105:072406. CrossrefGoogle Scholar

[113]

McCoey JM, de Gille RW, Nasr B, et al. Rapid, high-resolution magnetic microscopy of single magnetic microbeads. Small 2019;15:1805159. CrossrefGoogle Scholar

[114]

Toraille L, Aïzel K, Balloul É, et al. Optical magnetometry of single biocompatible micromagnets for quantitative magnetogenetic and magnetomechanical assays. Nano Lett 2018;18:7635–41. CrossrefPubMedGoogle Scholar

[115]

Fu RR, Weiss BP, Lima EA, et al. Solar nebula magnetic fields recorded in the semarkona meteorite. Science 2014;346:1089–92. CrossrefPubMedGoogle Scholar

[116]

Fu RR, Weiss BP, Lima EA, et al. Evaluating the paleomagnetic potential of single zircon crystals using the bishop tuff. Earth Planet Sci Lett 2017;458:1–13. CrossrefGoogle Scholar

[117]

Tang F, Taylor RJM, Einsle JF, et al. Secondary magnetite in ancient zircon precludes analysis of a hadean geodynamo. Proc Natl Acad Sci 2019;116:407–12. CrossrefGoogle Scholar

[118]

Weiss BP, Fu R, Einsle J, et al. Secondary magnetic inclusions in detrital zircons from the jack hills, western australia and implications for the origin of the geodynamo. Geology 2018;46:427–30. CrossrefGoogle Scholar

[119]

Schlussel Y, Lenz T, Rohner D, et al. Wide-field imaging of superconductor vortices with electron spins in diamond. Phys Rev Appl 2018;10:034032. CrossrefGoogle Scholar

[120]

Pham LM, Le Sage D, Stanwix PL, et al. Magnetic field imaging with nitrogen-vacancy ensembles. New J Phys 2011;13:045021. CrossrefGoogle Scholar

[121]

DeVience SJ, Pham LM, Lovchinsky I, et al. Nanoscale NMR spectroscopy and imaging of multiple nuclear species. Nat Nanotechnol 2015;10:129–34. CrossrefPubMedGoogle Scholar

[122]

Ziem F, Garsi M, Fedder H, Wrachtrup J. Quantitative nanoscale MRI with a wide field of view. 2018;arXiv:1807.08343. Google Scholar

[123]

Agrawal D, Archambeault B, Rao JR, Rohatgi P. The EM side-channel(s). In: Kaliski BS, Koç CK, Paar C, editors. Cryptographic hardware and embedded systems – CHES 2002. Berlin, Heidelberg: Springer, 2003:29–45. Google Scholar

[124]

Teschler JK, Zamorano-Sánchez D, Utada AS, et al. Living in the matrix: assembly and control of vibrio cholerae biofilms. Nat Rev Microbiol 2015;13:255–68. CrossrefPubMedGoogle Scholar

[125]

Pecher O, Carretero-González J, Griffith KJ, Grey CP. Materials’ methods: NMR in battery research. Chem Mater 2017;29:213–42. CrossrefGoogle Scholar

[126]

Lovchinsky I, Sushkov AO, Urbach E, et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 2016;351:836–41. PubMedCrossrefGoogle Scholar

[127]

Cafferty BJ, Ten AS, Fink MJ, et al. Storage of information using small organic molecules. ACS Cent Sci 2019;5:911–6. PubMedGoogle Scholar

[128]

Laraoui A, Dolde F, Burk C, Reinhard F, Wrachtrup J, Meriles CA. High-resolution correlation spectroscopy of 13c spins near a nitrogen-vacancy centre in diamond. Nat Commun 2013;4:1651. CrossrefGoogle Scholar

[129]

Arai K, Belthangady C, Zhang H, et al. Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nat Nanotechnol 2015;10:859–64. CrossrefPubMedGoogle Scholar

[130]

Staudacher T, Raatz N, Pezzagna S, et al. Probing molecular dynamics at the nanoscale via an individual paramagnetic centre. Nat Commun 2015;6:8527. PubMedCrossrefGoogle Scholar

[131]

Schmitt S, Gefen T, Stürner FM, et al. Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor. Science 2017;356:832–7. CrossrefPubMedGoogle Scholar

[132]

Boss JM, Cujia KS, Zopes J, Degen CL. Quantum sensing with arbitrary frequency resolution. Science 2017;356:837–40. CrossrefPubMedGoogle Scholar

[133]

Mizuno K, Nakajima M, Ishiwata H, Masuyama Y, Iwasaki T, Hatano M. Wide-field diamond magnetometry with millihertz frequency resolution and nanotesla sensitivity. AIP Advances 2018;8:125316. CrossrefGoogle Scholar

[134]

Simpson DA, Ryan RG, Hall LT, et al. Electron paramagnetic resonance microscopy using spins in diamond under ambient conditions. Nat Commun 2017;8:458. CrossrefPubMedGoogle Scholar

[135]

Ziem FC, Götz NS, Zappe A, Steinert S, Wrachtrup J. Highly sensitive detection of physiological spins in a microfluidic device. Nano Lett 2013;13:4093–8. CrossrefGoogle Scholar

[136]

Lesik M, Plisson T, Toraille L, et al. Magnetic measurements on micron-size samples under high pressure using designed NV centers. 2018;arXiv:1812.09894. Google Scholar

[137]

Hsieh S, Bhattacharyya P, Zu C, et al. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. 2018;arXiv:1812.08796. Google Scholar

[138]

Broadway DA, Johnson BC, Barson MSJ, et al. Microscopic imaging of elastic deformation in diamond via in-situ stress tensor sensors. 2018;arXiv:1812.01152. Google Scholar

[139]

Rajendran S, Zobrist N, Sushkov AO, Walsworth RL, Lukin M. A method for directional detection of dark matter using spectroscopy of crystal defects. Phys Rev D 2017;96:035009. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.