[1]

Maier SA. Plasmonics: fundamentals and applications. New York, Springer, 2007. Google Scholar

[2]

Stockman MI, Kneipp K, Bozhevolnyi SI, et al. Roadmap on plasmonics. J Opt 2018;20:043001. CrossrefGoogle Scholar

[3]

Law S, Podolskiy V, Wasserman D. Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics. Nanophotonics 2013;2:103–30. Google Scholar

[4]

Miller DL. Principles of infrared technology: a practical guide to the state of the art. New York, Springer, 1994. Google Scholar

[5]

Ferguson B, Zhang X-C. Materials for terahertz science and technology. Nat Mater 2002;1:26–33. CrossrefGoogle Scholar

[6]

Baker JM, Aleese LM, Meijer G, Von Helden G. Fingerprint IR spectroscopy to probe amino acid conformations in the gas phase. Phys Rev Lett 2003;91:203003. CrossrefPubMedGoogle Scholar

[7]

Keirssea J, Boussard-Pledela C, Lorealb O, et al. IR optical fiber sensor for biomedical applications. Vib Spectrosc 2003;32: 23–32. CrossrefGoogle Scholar

[8]

Adato R, Altug H. In situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat Commun 2013;4:2154. PubMedCrossrefGoogle Scholar

[9]

Dall’o G, Sarto L, Panza A. Infrared screening of residential buildings for energy audit purposes: results of a field test. Energies 2013;6:3859–78. CrossrefGoogle Scholar

[10]

Raman AP, Anoma MA, Zhu L, Rephaeli E, Fan S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature (London) 2014;515:540–4. CrossrefGoogle Scholar

[11]

Raphaelli E, Raman A, Fan SH. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett 2013;13:1457–61. PubMedCrossrefGoogle Scholar

[12]

Diakides NA, Bronzino JD. Medical Infrared Imaging. Boca Raton, FL, CRC Press (Taylor & Francis), 2007. Google Scholar

[13]

Button KJ. Infrared and millimeter waves Vol. 6: systems and components. New York, Academic Press, 1982. Google Scholar

[14]

Wanke MC, Lee M, Nordquist CD, et al. Integrated chip-scale THz technology. Proceedings of the SPIE 8031, Micro- and Nanotechnology Sensors, Systems, and Applications III. 2011:80310E. Google Scholar

[15]

Zou Y, Chakravarty S, Chung C-J, Xu X, Chen RT. Mid-infrared silicon photonic waveguides and devices. Photonics Res 2018;6:254. CrossrefGoogle Scholar

[16]

Feurer T, Stoyanov NS, Ward DW, Vaughan JC, Statz ER, Nelson KA. Terahertz polaritonics. Annu Rev Mater Res 2007;37:317–50. CrossrefGoogle Scholar

[17]

Joshua Caldwell D. Mid-IR to THz polaritonics: realizing novel materials for nanophotonics (Conference Presentation). Proceedings of the SPIE 9918, Metamaterials, Metadevices, and Metasystems 2016;2016:991828. Google Scholar

[18]

Feng K, Streyer W, Zhong Y, Hoffman AJ, Wasserman D. Photonic materials, structures and devices for reststrahlen optics. Opt Express 2015;23:A1418–33. CrossrefPubMedGoogle Scholar

[19]

Kittel C. Introduction to solid state physics. Hoboken, NJ, John Wiley & Sons, 2005. Google Scholar

[20]

Adachi S. The reststrahlen region. In: Optical properties of crystalline and amorphous semiconductors. New York, Springer, 1999:33–62. Google Scholar

[21]

Economou EN. The physics of solids: essentials and beyond. Berlin, Heidelberg, Springer-Verlag, 2010. Google Scholar

[22]

Brown FC. The physics of solids: ionic crystals, lattice vibrations and imperfections. New York, W.A. Benjamin Inc., 1967. Google Scholar

[23]

Ashcroft NW, David Mermin N. Solid state physics. New York, Holt, Rinehart and Winston, 1976. Google Scholar

[24]

Huang K. On the interaction between the radiation field and ionic crystals. Proc R Soc Lond Ser A 1951;208:352–65. CrossrefGoogle Scholar

[25]

Smith DR, Schurig D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys Rev Lett 2003;90:077405. PubMedCrossrefGoogle Scholar

[26]

Yu N, Aieta F, Genevet P, Kats MA, Gaburro Z, Capasso F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett 2012;12:6328–33. PubMedCrossrefGoogle Scholar

[27]

Aydin K, Ferry VE, Briggs RM, Atwater HA. Broadband, polarization-independent resonant light absorption using ultrathin, plasmonic super absorbers. Nat Commun 2011;2:517. PubMedCrossrefGoogle Scholar

[28]

Mason JA, Smith S, Wasserman D. Strong absorption and selective thermal emission from a midinfrared metamaterial. Appl Phys Lett 2011;98:241105. CrossrefGoogle Scholar

[29]

Watts CM, Liu X, Padilla WJ. Metamaterial electromagnetic wave absorbers. Adv Mater 2012;24:OP98. PubMedGoogle Scholar

[30]

Liu YQ, Kong LB, Liu PK, Long-range spoof surface plasmons on the doubly corrugated metal surfaces. Opt Commun 2016;370:13–7. CrossrefGoogle Scholar

[31]

Ye Y-H, Zhang J-Y, Middle-infrared transmission enhancement through periodically perforated metal films. Appl Phys Lett 2004;84:2977–9. CrossrefGoogle Scholar

[32]

Subramania G, Foteinopoulou S, Brener I. Nonresonant broadband funneling of light via ultrasubwavelength channels. Phys Rev Lett 2011;107:163902. CrossrefPubMedGoogle Scholar

[33]

Etchegoin PG, Le Ru EC, Meyer M. An analytic model for the optical properties of gold. J Chem Phys 2006;125:164705; *ibid* J. Chem Phys 2007;127:189901. PubMedCrossrefGoogle Scholar

[34]

Palik ED. Handbook of optical constants of solids, Vols. I and II, III. San Diego, CA, USA; Chestnut Hill, MA, USA; London, UK, Academic Press, 1985, 1991, 1998. Google Scholar

[35]

Johnson PB, Christy RW. Optical constants of noble metals. Phys Rev B 1972;6:4370. CrossrefGoogle Scholar

[36]

Panofsky WKH, Phillips M. Classical electricity and magnetism. Reading, MA, USA; London, UK, Addison-Wesley Publishing Company Inc., 1962. Google Scholar

[37]

Montoya JA, Tian ZB, Krishna S, Padilla WJ. Ultra-thin infrared metamaterial detector for multicolor imaging applications. Opt Express 2017;25:23343–55. CrossrefPubMedGoogle Scholar

[38]

Raether H. Surface plasmons on smooth and rough surfaces and on gratings. Berlin, Heidelberg, Springer-Verlag, 1988. Google Scholar

[39]

Economou EN. Surface plasmons in thin films. Phys Rev 1969;182, 539. Google Scholar

[40]

Pelton M, Aizpurua J, Bryant G. Metal-nanoparticle plasmonics. Laser Photon Rev 2008;2:136–59. CrossrefGoogle Scholar

[41]

Foerster B, Rutten J, Pham H, Link S, Sonnichsen C. Particle plasmons as dipole antennas: state representation of relative observables. J Phys Chem C 2018;122:19116–23. CrossrefGoogle Scholar

[42]

Foteinopoulou S, Vigneron JP, Vandenbem C. Optical near-field excitations on plasmonic nanoparticle-based structures. Opt Express 2007;15:4253–67. CrossrefPubMedGoogle Scholar

[43]

Yamamoto N, Ohtani S, Javier Garcia de Abajo F. Gap and Mie plasmons in individual silver nanospheres near a silver surface. Nano Lett 2011;11:91–5. CrossrefGoogle Scholar

[44]

Stratton JA. Electromagnetic theory. New York, London, McGraw-Hill, 1941. Google Scholar

[45]

Engheta N. Pursuing near-zero response. Science 2013;340:286–7. CrossrefPubMedGoogle Scholar

[46]

Subramania G, Fischer AJ, Luk TS. Optical properties of metal-dielectric based epsilon near zero metamaterials. Appl Phys Lett 2012;101:241107. CrossrefGoogle Scholar

[47]

Liu Y, Bartal G, Zhang X. All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region. Opt Express 2008;16:15439–48. CrossrefGoogle Scholar

[48]

Poddubny A, Iorsh I, Belov P, Kivshar Y. Hyperbolic metamaterials. Nat Photon 2013;7:948–67; (and references therein). CrossrefGoogle Scholar

[49]

Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 2014;2:1086–101. Google Scholar

[50]

Guo Q, Li C, Deng B, Yuan S, Guinea F, Xia F. Infrared nanophotonics based on graphene plasmonics. ACS Photonics 2017;4:2989–99. CrossrefGoogle Scholar

[51]

Naik GV, Kim J, Boltasseva A. Oxides and nitrides as alternative plasmonic materials in the optical range. Opt Mater Exp 2011;1:1090–9. CrossrefGoogle Scholar

[52]

Khamh H, Sachet E, Kelly K, Mariab J-P, Franzen S. As good as gold and better: conducting metal oxide materials for mid-infrared plasmonic applications. J Mater Chem C 2018;6: 8326–42. CrossrefGoogle Scholar

[53]

Ginn JC, Jarecki RL, Shaner EA, Davids PS. Infrared plasmons on heavily-doped silicon. J Appl Phys 2011;110:043110. CrossrefGoogle Scholar

[54]

Barho FB, Gonzalez-Posada F, Milla M-J, et al. Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin. Nanophotonics 2018;7:507–16. Google Scholar

[55]

Chochol J, Postava K, Cada M, et al. Plasmonic behavior of III-V semiconductors infrared and terahertz range. J Eur Opt Soc: Rapid Pub 2017;13:13. CrossrefGoogle Scholar

[56]

Zhong Y, Malagari SD, Hamilton T, Wasserman DM. Review of mid-infrared plasmonic materials. J Nanophotonics 2015;9:093971. Google Scholar

[57]

Taliercio T, Biagioni P. Semiconductor infrared plasmonics. Nanophotonics 2019;8:949–90. CrossrefGoogle Scholar

[58]

Poulet H, Mathieu JP. Vibration spectra and symmetry of crystals. New York, Gordon and Breach, 1976. Google Scholar

[59]

Yu P, Cardona M. Fundamentals of semiconductors: physics and material properties, Vol. 3, Berlin; London, Springer, 2010. Google Scholar

[60]

Jackson JD. Classical electrodynamics. New York, John Wiley and Sons, 1962. Google Scholar

[61]

Huang K. Phenomenological equations of motion for simple ionic lattices. Tech Rep 1950;T339:50–9. Google Scholar

[62]

Stern F. Elementary theory of the optical properties of solids. Solid State Phys 1963;15:299–408. CrossrefGoogle Scholar

[63]

Huang K. Lattice vibrations and optical waves in ionic crystals. Nature 1951;167:779. CrossrefGoogle Scholar

[64]

Rivera N, Coulter J, Christensen T, Narang P. Ab initio calculation of phonon polaritons in silicon carbide and boron nitride. 2018:Arxiv: 189.00058. Google Scholar

[65]

Houstoun RA. A treatise on light. London; New York, Longmans Green and Co, 1942. Google Scholar

[66]

Pahuja OP. Solid state physics. New Delhi, Laxmi Publications, 2005. Google Scholar

[67]

Dragoman D, Dragoman M. Optical characterization of solids. Berlin, Heidelberg, New York, Springer-Verlag, 2002. Google Scholar

[68]

Ushioda S, McMullen JD, Delaney MJ. Damping mechanism of polaritons in GaP. Phys Rev B 1973;8:4634–7. CrossrefGoogle Scholar

[69]

Klemens PG. Anharmonic decay of optical phonons. Phys Rev 1966;148:845. CrossrefGoogle Scholar

[70]

Schwarz UT, Maier M. Damping mechanisms of phonon-polaritons, exploited by stimulated Raman gain measurements. Phys Rev B 1998;58:766–75. CrossrefGoogle Scholar

[71]

Srivastava GP. The physics of phonons. New York, Taylor and Francis, 1990. Google Scholar

[72]

Bittner B, Scherm M, Schoed T, Tyroller T, Schwarz UT, Maier M. Phonon-polariton damping by low-frequency excitations in lithium tantalate investigated by spontaneous and stimulated Raman scattering. J Phys: Condens Matter 2002;14:9013–28. Google Scholar

[73]

Schwarz UT, Maier M. Frequency dependence of phonon-polariton damping in lithium niobate. Phys Rev B 1996;53:5074. CrossrefGoogle Scholar

[74]

Barker AS. Dielectric dispersion and phonon line shape in gallium phosphide. Phys Rev 1968;165:917–22. CrossrefGoogle Scholar

[75]

Schoche S, Hofmann T, Korlacki R, Tiwald TE, Schubert M. Infrared dielectric anisotropy and phonon modes of rutile TiO_{2}. J Appl Phys 2013;113:164102. CrossrefGoogle Scholar

[76]

Tropf WJ, Thomas ME, Harris TJ. Properties of crystals and glasses. In: Bass M, Van Stryland EW, Williams DR, Wolfe WL, editors. Handbook of optics, vol. 2: devices, measurements and properties. New York, NY, McGraw-Hill, 1995. Google Scholar

[77]

Berreman DW, Underwald FC. Adjusting poles and zeros of dielectric dispersion to fit reststrahlen of PrCl_{2} and LaCl_{2}. Phys Rev 1968;174:791. CrossrefGoogle Scholar

[78]

Gervais F, Piriou B. Temperature dependence of transverse- and longitudinal-optic modes in TiO_{2} (rutile). Phys Rev B 1974;10:1642. CrossrefGoogle Scholar

[79]

Schubert M, Tiwald TE, Herzinger CM. Infrared dielectric anisotropy and phonon-modes of sapphire. Phys Rev B 2000;61:8187. CrossrefGoogle Scholar

[80]

Foteinopoulou S, Kafesaki M, Economou EN, Soukoulis CM. Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials. Phys Rev B 2011;84:035128. CrossrefGoogle Scholar

[81]

Kaiser W, Spitzer WG, Kaiser RH, Howarth LE. Infrared properties of CaF_{2}, SrF_{2}, and BaF_{2}. Phys Rev 1962;127:1950. CrossrefGoogle Scholar

[82]

Varga BB. Coupling of plasmons to polar phonons in degenerate semiconductors. Phys Rev 1965;137:A1896–902. CrossrefGoogle Scholar

[83]

Streyer W, Feng K, Zhong Y, Hoffman AJ, Wasserman D. Engineering the reststrahlen band with hybrid plasmon/phonon excitations. MRS Commun 2016;6:1–8. CrossrefGoogle Scholar

[84]

Dunkelberger AD, Ellis CT, Ratchford DC, et al. Active tuning of surface phonon-polariton resonances via carrier photoinjection. Nat Photonics 2018;12:50–7. CrossrefGoogle Scholar

[85]

Palik ED, Kaplan R, Gammon RW, Kaplan H, Wallis RF, Quinn JJ. Coupled surface magnetoplasmon-optic-phonon-polariton modes on InSb. Phys Rev B 1976;13:2497–506. CrossrefGoogle Scholar

[86]

Vassant S,, Marquier F, Greffet JJ, Pardo F, Pelouard JL. Tailoring GaAs terahertz radiative properties with surface phonons polaritons. Appl Phys Lett 2010;97:161101. CrossrefGoogle Scholar

[87]

Catrysse PB, Fan S. Near-complete transmission through subwavelength hole arrays in phonon-polaritonic thin films. Phys Rev B 2007;75:075422. CrossrefGoogle Scholar

[88]

Spitzer WG, Kleinman D, Walsh D. Infrared properties of hexagonal silicon carbide. Phys Rev 1959;113:127. CrossrefGoogle Scholar

[89]

Manabe A, Mitsuishi A, Yoshinaga H. Infrared lattice reflection spectra of II-VI compounds. Japanese J Appl Phys 1967;6:593–600. CrossrefGoogle Scholar

[90]

Ng SS, Ooi PK, Lee SC, Hassan Z, Abu Hassan H. Surface phonon-polariton of wurtzite AlN thin film grown on sapphire. Mater Chem Phys 2012;134:493–8. CrossrefGoogle Scholar

[91]

Barker Jr AS, Ilegems M. Infrared lattice vibrations and free-electron dispersion in GaN. Phys Rev B 1973;7:743–50. CrossrefGoogle Scholar

[92]

Martin BG, Broerman JG. Theory of surface polaritons in a polar zero-gap semiconductor. Phys Rev B 1981;24. Google Scholar

[93]

Grynberg M, Le Toullec R, Balkanski M. Dielectric function in HgTe between 8 and 300 K. Phys Rev B 1974;9. Google Scholar

[94]

Claus R, Merten L, Brandmuller J. Light scattering by phonon-polaritons. Springer-Verlag Berlin, 1975. Google Scholar

[95]

Irmer G, Roder C, Himcinschi C, Kortus J. Phonon-polaritons in uniaxial crystals: a Raman scattering study of polaritons in *α*-GaN. Phys Rev B 2013;88:104303. CrossrefGoogle Scholar

[96]

Kong JA. Electromagnetic wave theory. New York, John Wiley & Sons, 1990. Google Scholar

[97]

Tiwald TE, Woollam JA, Zollner S, et al. Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry. Phys Rev B 1999;60:11464. CrossrefGoogle Scholar

[98]

Le Gall J, Olivier M, Greffet J-J. Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon-polariton. Phys Rev B 1997;55:10105–14. CrossrefGoogle Scholar

[99]

Narayanaswamy A, Chen G. Surface modes for near field thermophotovoltaics. Appl Phys Lett 2003;82:3544. CrossrefGoogle Scholar

[100]

Devarapu GCR, Foteinopoulou S. Broadband near-unidirectional absorption enabled by phonon-polariton resonances in SiC micropyramid arrays. Phys Rev Appl 2017;7:034001. CrossrefGoogle Scholar

[101]

Devarapu GCR, Foteinopoulou S. Compact photonic-crystal superabsorbers from strongly absorbing media. J Appl Phys 2013;114:033504-1–11. Google Scholar

[102]

Devarapu GCR, Foteinopoulou S. Mid-IR near-perfect absorption with a SiC photonic crystal with angle-controlled polarization selectivity. Opt Express 2012;20:13040–54. CrossrefPubMedGoogle Scholar

[103]

Wang T, Li P, Chigrin DN, et al. Phonon-polaritonic bowtie nanoantennas: controlling infrared thermal radiation at the nanoscale. ACS Photonics 2017;4:1753–60. CrossrefGoogle Scholar

[104]

Spitzer WG, Kleinman DA. Infrared lattice bands of quartz. Phys Rev B 1961;121:1324–35. CrossrefGoogle Scholar

[105]

Barker AS, Verleur HW, Guggenheim HJ. Infrared optical properties of vanadium dioxide above and below the transition temperature. Phys Rev Lett 1966;17:1286. CrossrefGoogle Scholar

[106]

Hong W-K, Cha S, Sohn JI, Kim JM. Metal-insulator phase transition in quasi-one-dimensional VO_{2} structures. J Nanomater 2015;2015:538954. Google Scholar

[107]

Miller KJ, Haglund Jr RF, Weiss SM. Optical phase change materials in integrated silicon photonic devices: review. Opt Mater Express 2018;8:2415. CrossrefGoogle Scholar

[108]

Dai S, Fei Z, Ma Q, et al. Tunable phonon-polaritons in atomically thin van der Waals crystals of boron nitride. Science 2014;343:1125–9. CrossrefGoogle Scholar

[109]

Kumar A, Low T, Hung Fung K, Avouris P, Fang NX. Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system. Nano Lett 2015;15:3172–80. PubMedCrossrefGoogle Scholar

[110]

Ambrosio A, Tamagnone M, Chaudhary K, et al. Selective excitation and imaging of ultraslow phonon-polaritons in thin hexagonal boron nitride crystals. Light Sci Appl 2018;7:27. PubMedCrossrefGoogle Scholar

[111]

Zhou Y, Qi D-X, Wang Y-K. Phonon-polaritons in cylindrically curved hBN. Opt Express 2017;25:17606–15. CrossrefGoogle Scholar

[112]

Zhao B, Guizal B, Zhang ZM, Fan S, Antezza M. Near-field heat transfer between graphene/hBN multilayers. Phys Rev B 2017;95:245437. CrossrefGoogle Scholar

[113]

Giles AJ, Dai S, Glembocki OJ, et al. Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride. Nano Lett 2016;16:3858–65. PubMedCrossrefGoogle Scholar

[114]

Dai S, Tymchenko M, Yang Y, Ma Q, et al. Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride. Adv Mater 2018;30:1706358. CrossrefGoogle Scholar

[115]

Ambrosio A, Tamagnone M, Chaudhary K, et al. imaging of ultra-confined phonon-polaritons in hexagonal boron nitride on gold. In: Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Washington, DC, Optical Society of America, 2018), paper FTh1K.6. Google Scholar

[116]

Kim KS, Trajanoski D, Ho K, et al. The effect of adjacent materials on the propagation of phonon-polaritons in hexagonal boron nitride. J Phys Chem Lett 2017;8:2902–8. CrossrefPubMedGoogle Scholar

[117]

Gilburd L, Kim KS, Ho K, et al. Hexagonal boron nitride self-launches hyperbolic phonon-polaritons. J Phys Chem Lett 8;2017:2158–62. Google Scholar

[118]

Caldwell JD, Kretinin AV, Chen Y, et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat Commun 2014;5:5221. CrossrefPubMedGoogle Scholar

[119]

Dai S, Ma Q, Andersen T, et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat Commun 2015;6:6963. CrossrefGoogle Scholar

[120]

Li P, Lewin M, Kretinin AV, et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat Commun 2015;6:7507. PubMedCrossrefGoogle Scholar

[121]

Yoxall E, Schnell M, Nikitin AY, et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat Photonics 2015;9:674–9. CrossrefGoogle Scholar

[122]

Shi Z, Bechtel HA, Berweger S, et al. Amplitude- and phase-resolved nanospectral imaging of phonon-polaritons in hexagonal boron nitride. ACS Photonics 2015;2: 790–6. CrossrefGoogle Scholar

[123]

Dai S, Ma Q, Liu MK, et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat Nanotechnol 2015;10:682. CrossrefPubMedGoogle Scholar

[124]

Brar VW, Seok Jang M, Sherrott M, et al. Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. Nano Lett 2014;14:3876–80. CrossrefPubMedGoogle Scholar

[125]

Ciano C, Giliberti V, Ortolani M, Baldassarre L. Observation of phonon-polaritons in thin flakes of hexagonal boron nitride on gold. Appl Phys Lett 2018;112:153101. CrossrefGoogle Scholar

[126]

Geick R, Perry CH, Rupprecht G. Normal modes in hexagonal boron nitride. Phys Rev 1966;146:543–7. CrossrefGoogle Scholar

[127]

Richard Powell C. Symmetry, group theory and the physical properties of crystals. New York, Springer, 2010. Google Scholar

[128]

Zheng Z, Xu N, Oscurato SL, et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci Adv 2019;5:eaav8690. CrossrefGoogle Scholar

[129]

Cai Y, Zhang L, Zeng Q, Cheng L, Xu Y. Infrared reflectance spectrum of BN calculated from first principles. Solid State Commun 2007;141:262–6. CrossrefGoogle Scholar

[130]

Guimond S, Gobke D, Sturm JM, et al. Well-ordered molybdenum oxide layers on Au(111): preparation and properties. J Phys Chem C 2013;117:8746–57. CrossrefGoogle Scholar

[131]

Eda K, Longitudinal-transverse splitting effects in IR absorption spectra of MoO3. J Solid State Chem 1991;95:64–73. CrossrefGoogle Scholar

[132]

Ma W, Alonso-Gonzalez P, Li S, et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 2018;562:557–63. CrossrefGoogle Scholar

[133]

Mitoraj MP, Michalak A. On the asymmetry in molybdenum-oxygen bonding in the MoO_{3} structure: ETS-NOCV analysis, Struct Chem 2012;23:1369–75. CrossrefGoogle Scholar

[134]

Novoselov KS, Mishchenko A, Carvalho A, Castro AH, Neto, 2D materials and van der Waals heterostructures. Science 2016;353:6298. Google Scholar

[135]

Javier Garca de Abajo F. Special issue “2D materials for nanophotonics”. ACS Photonics 2017;4:2959–61. CrossrefGoogle Scholar

[136]

Foteinopoulou S, Panoiu NC, Shalaev VM, Subramania GS. Feature issue introduction: Beyond thin films: photonics with ultrathin and atomically thin materials. Opt Mater Express 2019;9:2427–36. CrossrefGoogle Scholar

[137]

Geim AK, Grigorieva IV. van der Waals heterostructures. Nature 2013;499:419. CrossrefPubMedGoogle Scholar

[138]

Kuzmenko AB, Benfatto L, Cappelluti E, et al. Gate tunable infrared phonon anomalies in bilayer graphene. Phys Rev Lett 2009;103:116804. PubMedCrossrefGoogle Scholar

[139]

Cappelluti E, Benfatto L, Kuzmenko AB. Infrared phonon activity and Fano interference in multilayer graphenes. Phys Scr 2014;T62:014018. Google Scholar

[140]

Cappelluti E, Benfatto L, Kuzmenko AB. Phonon switching and combined Fano-Rice effect in optical spectra of bilayer graphene. Phys Rev B 2010;82:041402(R). CrossrefGoogle Scholar

[141]

Cappelluti E, Benfatto L, Manzardo M, Kuzmenko AB. Charged-phonon theory and Fano effect in the optical spectroscopy of bilayer graphene. Phys Rev B 2012;86:115439. CrossrefGoogle Scholar

[142]

Caldwell JD, Novoselov KS. Mid-infrared nanophotonics. Nat Mater 2015;14:364–6. CrossrefPubMedGoogle Scholar

[143]

Caldwell JD, Vurgaftman I, Tischler JG, Glembocki OJ, Owrutsky JC, Reinecke TL. Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics. Nat Nanotech 2016;11:9. CrossrefGoogle Scholar

[144]

Gorbachev RV, Riaz I, Nair RR, et al. Hunting for monolayer boron nitride: optical and Raman signatures. Small 2011;7:465–8. CrossrefPubMedGoogle Scholar

[145]

Ajayan P, Kim P, Banerjee K. Two-dimensional van der Waals materials. Phys Today 2016;69:38. CrossrefGoogle Scholar

[146]

A. Molina-Sanchez and Wirtz L. Phonons in single-layer and few-layer MoS_{2} and WS_{2}. Phys Rev B 2011;84:155413. CrossrefGoogle Scholar

[147]

Kumar S, Schwingenschlogl U. Thermoelectric response of bulk and monolayer MoSe_{2} and WSe_{2}. Chem Mater 2015;27:1278–84. CrossrefGoogle Scholar

[148]

Kan M, Nam HG, Lee YH, Sun Q. Phase stability and Raman vibration of the molybdenum ditelluride (MoTe_{2}) monolayer. Phys Chem Chem Phys 2015;17:14866. PubMedCrossrefGoogle Scholar

[149]

Voiry D, Mohite A, Chhowalla M. Phase engineering of transition metal dichalcogenides. Chem Soc Rev 2015;44:2702–12. CrossrefPubMedGoogle Scholar

[150]

Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 2013;5:263–75. CrossrefPubMedGoogle Scholar

[151]

Lin Y-F, Xu Y, Wang S-T, et al. Ambipolar MoTe_{2} Transistors and their applications in logic circuits. Adv Mater 2014;26: 3263–9. CrossrefPubMedGoogle Scholar

[152]

Wu W, Morales-Acosta AD, Wang Y, Pettes MT. Isotope effect in bilayer WSe_{2}. Nano Lett 2019;19:1527–33. PubMedCrossrefGoogle Scholar

[153]

Editorial: It’s still all about graphene. Nat Mater 2011;10:1. PubMedGoogle Scholar

[154]

Qian J, Allen MJ, Yang Y, Dutta M, Stroscio MA. Quantized long-wavelength optical phonon modes in graphene nanoribbon in the elastic continuum model. Superl Micros 2009;46:881–8. CrossrefGoogle Scholar

[155]

Warner JH, Schaffel F, Bachmatiuk A, Rummeli AH. Graphene: fundamentals and emergent applications. Elsevier, 2013. Google Scholar

[156]

Miroshnichenko AE, Flach S, Kivshar YS. Fano resonances in nanoscale structures. Rev Mod Phys 2010;82:2257–98 (and references therein). CrossrefGoogle Scholar

[157]

Low T, Guinea F, Yan H, Xia F, Avouris P. Novel midinfrared plasmonic properties of bilayer graphene. Phys Rev Lett 2014;112:116801. CrossrefPubMedGoogle Scholar

[158]

Yan H, Low T, Guinea F, Xia F, Avouris P. Tunable phonon-induced transparency in bilayer graphene nanoribbons. Nano Lett 2014;14:4581–6. PubMedCrossrefGoogle Scholar

[159]

Tang T-T, Zhang Y, Park C-H, et al. A tunable phonon-exciton Fano system in bilayer graphene. Nat Nanotechnol 2010;5:32–5. PubMedCrossrefGoogle Scholar

[160]

Lui CH, Cappelluti E, Li Z, Heinz TF. Tunable infrared phonon anomalies in trilayer graphene. Phys Rev Lett 2013;110:185504. CrossrefPubMedGoogle Scholar

[161]

Huang X, Cai Y, Feng X, et al. Black phosphorus carbide as a tunable anisotropic plasmonic metasurface. ACS Photonics 2018;5:3116–23. CrossrefGoogle Scholar

[162]

Zheng Z, Chen J, Wang Y, et al. Highly confined and tunable hyperbolic phonon-polaritons in van der Waals semiconducting transition metal oxides. Adv Mater 2018;30:1705318. CrossrefGoogle Scholar

[163]

Sun Y-Y, Zhang S. Communication: Effect of accidental mode degeneracy on Raman intensity in 2D materials: hybrid functional study of bilayer phosphorene. J Chem Phys 2016;145:21102. CrossrefGoogle Scholar

[164]

Hou X, Huang J, Liu M, et al. Single-Crystal MoO_{3} Micrometer and millimeter belts prepared from discarded molybdenum disilicide heating elements. Sci Rep 2018;8:16771. CrossrefPubMedGoogle Scholar

[165]

Caspani L, Kaipurath RPM, Clerici M, et al. Enhanced nonlinear refractive index in *ε*-near-zero materials. Phys Rev Lett 2016;116:233901. CrossrefPubMedGoogle Scholar

[166]

Park J, Kang J-H, Liu X, Brongersma ML. Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers. Sci Rep 2015;5:15754. CrossrefPubMedGoogle Scholar

[167]

Krayer LJ, Kim J, Munday JN. Near-perfect absorption throughout the visible using ultra-thin metal films on index-near-zero substrates [Invited]. Opt Mater Express 2019;9:330–8. CrossrefGoogle Scholar

[168]

Kim J, Dutta A, Naik GV, et al. Role of epsilon-near-zero substrates in the optical response of plasmonic antennas. Optica 2016;3:339–46. CrossrefGoogle Scholar

[169]

DeVault CT, Zenin VA, Pors A, et al. Suppression of near-field coupling in plasmonic antennas on epsilon-near-zero substrates. Optica 2018;5:2334–6. Google Scholar

[170]

Dominguez O, Nordin L, Lu J, Feng K, Wasserman D, Hoffman AJ. Monochromatic multimode antennas on epsilon-near-zero materials. Adv Opt Mater 2019;7:1800826. CrossrefGoogle Scholar

[171]

Nordin L, Dominguez O, Roberts CM, et al. Mid-infrared epsilon-near-zero modes in ultra-thin phononic films. Appl Phys Lett 2017;111:091105. CrossrefGoogle Scholar

[172]

Berreman DW. Infrared absorption at longitudinal optic frequency in cubic crystal films. Phys Rev 1963;130:2193–8. CrossrefGoogle Scholar

[173]

Tamagnone M, Ambrosio A, Chaudhary K, et al. Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Sci Adv 2018;4:7189. CrossrefGoogle Scholar

[174]

Merten L. Polariton dispersion in biaxial and uniaxial crystals. Phys Stat Sol 1968;30:449. CrossrefGoogle Scholar

[175]

da Silva RR, Silva RM, Dumelow T, da Costa JAP, Honorato SB, Ayala AP. Using phonon resonances as a route to all-angle negative refraction in the far-infrared region: the case of crystal quartz. Phys Rev Lett 2010;105:163903. CrossrefPubMedGoogle Scholar

[176]

Dumelow T. Chapter 2 – Negative refraction and imaging from natural crystals with hyperbolic dispersion. Solid State Phys 2016;67:103–82. CrossrefGoogle Scholar

[177]

Maceedo R, Dumelow T, Camley RE, Stamps RL. Oriented asymmetric wave propagation and refraction bending in hyperbolic media. ACS Photonics 2018;5:5086–94. CrossrefGoogle Scholar

[178]

Pendry JB. Negative refraction. Contemp Phys 2004;45: 191–202. CrossrefGoogle Scholar

[179]

Macedo R, Rodrigues da Silva R, Dumelow T, da Costa JAP. MgF_{2} as a material exhibiting all-angle negative refraction and sub-wavelength imaging due to the phonon response in the far infrared. Opt Commun 2014;310:94–9. CrossrefGoogle Scholar

[180]

Yang T, Jing H, Liu D. An improved description of Jones vectors of the electric fields of incident and refracted rays in a birefringent plate. J Opt A: Pure Appl Opt 2006;8:295–9. CrossrefGoogle Scholar

[181]

Foteinopoulou S. Photonic crystals as metamaterials. Physica B 2012;407:4056–61. CrossrefGoogle Scholar

[182]

Shekhar P, Atkinson J, Jacob Z. Hyperbolic metamaterials: fundamentals and applications. Nano Convergence 2014;1:14. CrossrefPubMedGoogle Scholar

[183]

Wasserman D, Ribaudo T, Lyon SA, Lyo SK, Shaner EA. Room temperature midinfrared electroluminescence from InAs quantum dots. Appl Phys Lett 2009;94:061101. CrossrefGoogle Scholar

[184]

Caldwell JD, Lindsay L, Giannini V, et al. Low-loss, infrared and terahertz nanophotonics using surface phonon-polaritons. Nanophotonics 2015;4:44–68. Google Scholar

[185]

Faryad M, Lakhtakia A. Observation of the Uller-Zenneck wave. Opt Lett 2014;39:5204. CrossrefPubMedGoogle Scholar

[186]

Dionne JA, Sweatlock LA, Atwater HA, Polman A. Phys Rev B 2005;72:075405. CrossrefGoogle Scholar

[187]

Berini P. Figures of merit for surface plasmon waveguides. Opt Express 2006;14:13030. PubMedCrossrefGoogle Scholar

[188]

Knight JC. Photonic crystal fibres. Nature 2003;424:847–51. PubMedCrossrefGoogle Scholar

[189]

Schuller E, Falge HJ, Borstel G. Dispersion curves of surface phonon-polaritons with backbending. Phys Lett 1975;54A:317. Google Scholar

[190]

Borstel G, Schuller E, Falge HJ. Surface phonon polaritons on absorbing crystals. Phys Stat Sol B 1976;76:759. CrossrefGoogle Scholar

[191]

Huang Y, Boriskina SV, Chen G. Electrically tunable near-field radiative heat transfer via ferroelectric materials. Appl Phys Lett 2014;105:244102. CrossrefGoogle Scholar

[192]

van Zwol PJ, Joulain K, Ben-Abdallah P, Chevrier J. Phonon-polaritons enhance near-field thermal transfer across the phase transition of VO_{2}. Phys Rev B 2011;84:161413(R). CrossrefGoogle Scholar

[193]

Francoeur M, Pinar Menguc M, Vaillon R. Near-field radiative heat transfer enhancement via surface phonon-polaritons coupling in thin films. Appl Phys Lett 2008;93:043109. CrossrefGoogle Scholar

[194]

Ghashami M, Geng H, Kim T, Iacopino N, Cho SK, Park K. Precision measurement of phonon-polaritonic near-field energy transfer between macroscale planar structures under large thermal gradients. Phys Rev Lett 2018;120:175901. PubMedCrossrefGoogle Scholar

[195]

Passler NC, Razdolski I, Gewinner S, Schollkopf W, Wolf M, Paarmann A. Second-harmonic generation from critically coupled surface phonon polaritons. ACS Photonics 2017;4: 1048–53. CrossrefGoogle Scholar

[196]

Chen DA, Narayanaswamy A, Chen G. Surface phonon-polariton mediated thermal conductivity enhancement of amorphous thin films. Phys Rev B 2005;72:155435. CrossrefGoogle Scholar

[197]

Griffiths PR, Surface-enhanced infrared absorption spectroscopy: principles and applications. In: Yarwood J, Douthwaite R, Duckett S, editors. Spectroscopic properties of inorganic and organometallic compounds: techniques, materials and applications. vol. 44. London, UK, RCS, 2013. Google Scholar

[198]

Zheng G, Chen Y, Bu L, Xu L, Su W. Waveguide-coupled surface phonon resonance sensors with super-resolution in the mid-infrared region. Opt Lett 2016;41:1582–5. CrossrefPubMedGoogle Scholar

[199]

Prabowo BA, Purwidyantri A, Liu K-C. Surface plasmon resonance optical sensor: a review on light source technology. Biosensor 2018;8:80. CrossrefGoogle Scholar

[200]

Youngblood N, Rios C, Gemo E, et al. Tunable volatility of Ge2Sb2Te5 in integrated photonics. Adv Funct Mater 2019;29:1807571. CrossrefGoogle Scholar

[201]

Zhang Q, Zhang Y, Li J, Soref R, Gu T, Hu J. Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. Opt Lett 2018;43:94–7. PubMedCrossrefGoogle Scholar

[202]

Peters DW, Goldflam MD, Campione S, et al. Resonant ultrathin infrared detectors enabling high quantum efficiency, 2018 IEEE Research and Applications of Photonics In Defense Conference (RAPID), Miramar Beach, FL, USA, IEEE, 2018:1–3. Google Scholar

[203]

Baraniuk RG, Kelly KF, Krishna S, Bridge RF. Compressive sensing architecture advances infrared camera design. Laser Focus World 2011;47:31. Google Scholar

[204]

Choi KK, Allen SC, Sun JG, Endres D, Olver KA, Fu RX. Small pitch resonator-QWIP detectors and arrays. Infrared Phys Technol 2018;94:118–25. CrossrefGoogle Scholar

[205]

Huber AJ, Deutsch B, Novotny L, Hillenbrand R. Focusing of surface phonon-polaritons. Appl Phys Lett 2008;92:203104. CrossrefGoogle Scholar

[206]

Narimanov EE. Dyakonov waves in biaxial anisotropic crystals. Phys Rev A 2018;98:013818. CrossrefGoogle Scholar

[207]

Takayama O, Bogdanov AA, Lavrinenko AV. Photonic surface waves on metamaterial interfaces. J Phys Cond Mater 2017;29:463001. CrossrefGoogle Scholar

[208]

Folland TG, Nordin L, Wasserman D, Caldwell JD. Probing polaritons in the mid- to far-infrared. J Appl Phys 2019;125:191102. CrossrefGoogle Scholar

[209]

Li P, Dolado I, Alfaro-Moraz FJ, et al. Optical nanoimaging of hyperbolic surface polaritons at the edges of van der Waals materials. Nano Lett 2017;17:228–35. CrossrefGoogle Scholar

[210]

Alfaro-Mozaz FJ, Alonso-Gonzalez P, Velez S, et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat Commun 2017;8:15624. CrossrefPubMedGoogle Scholar

[211]

Autore M, Li P, Dolado I, et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light: Sci Appl 2018;7:17172. PubMedCrossrefGoogle Scholar

[212]

Kliewer KI, Fuchs R. Optical modes of vibration in an ionic crystal slab including retardation. I. Nonradiative region. Phys Rev 1966;144:495. CrossrefGoogle Scholar

[213]

Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett 2000;85:3966. CrossrefPubMedGoogle Scholar

[214]

Taubner T, Korobkin D, Urzhumov Y, Shvets G, Hillebrand R. Near-field microscopy through a SiC superlens. Science 2006;313:1595. CrossrefPubMedGoogle Scholar

[215]

Dai S, Quan J, Hu G, et al. Hyperbolic phonon polaritons in suspended hexagonal boron nitride. Nano Lett 2019;19:1009–14. CrossrefPubMedGoogle Scholar

[216]

Woessner A, Parret R, Davydovskaya D, et al. Electrical detection of hyperbolic phonon-polaritons in heterostructures of graphene and boron nitride. npj 2D Mater Appl 2017;1:25. CrossrefGoogle Scholar

[217]

Giles AJ, Dai S, Vurgaftman I, et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat Mater 2018;17:134. PubMedCrossrefGoogle Scholar

[218]

Kravets VG, Kabashin AV, Barnes WL, Grigorenko AN. Plasmonic surface lattice resonances: a review of properties and applications. Chem Rev 2018;118:5912–51. CrossrefPubMedGoogle Scholar

[219]

Kalkbrenner T, Ramstein M, Mlynek J, Sandoghdar V. A single gold particle as a probe for apertureless scanning near-field optical microscopy. Microscopy J 2000;202:72–6. Google Scholar

[220]

Premaratne M, Stockman MI. Theory and technology of SPASERs. Adv Opt Photonics 2017;9:81. Google Scholar

[221]

Tzarouchis D, Sihvola A. Light scattering by a dielectric sphere: perspectives on the Mie resonances. Appl Sci 2018;8:184. CrossrefGoogle Scholar

[222]

Bohren CF, Huffman DR. Absorption and scattering of light by small particles. John Wiley and Sons, 1983. Google Scholar

[223]

Antonoyiannakis EI. Electromagnetic fields and forces in nanostructures. Imperial College of Science. Technology and Medicine, Ph.D. Thesis, 1998. Google Scholar

[224]

Feng K, Streyer W, Islam SM, et al. Localized surface phonon-polariton resonances in polar gallium nitride. Appl Phys Lett 2015;107:081108. CrossrefGoogle Scholar

[225]

Ameen M, Garcia-Etxarri A, Schnell M, Hillenbrand R, Aizpurua J. Infrared phononic nanoantennas: localized surface phonon polaritons in SiC disks. Chinese Sci Bull 2010;55:2625–8. CrossrefGoogle Scholar

[226]

Razdolski I, Chen Y, Giles AJ, et al. Resonant enhancement of second-harmonic generation in the mid-infrared using localized surface phonon polaritons in subdiffractional nanostructures. Nano Lett 2016;16:6954–9. PubMedCrossrefGoogle Scholar

[227]

Dominguez O, McGinnity TL, Roeder RK, Hoffman AJ. Mid- and far-infrared optical characterization of monoclinic HfO_{2} nanoparticles and evidence of localized surface phonon polaritons. Proc SPIE 2017;10100:101001G. Google Scholar

[228]

Kivshar Y, Miroshnichenko A. Meta-optics with Mie resonances. Opt Photonics News 2017;28:25–31. Google Scholar

[229]

Rockstuhl C, Salt MG, Herzig HP. Analysis of the phonon-polariton response of silicon carbide microparticles and nanoparticles by use of the boundary element method. J Opt Soc Am B 2005;22:481. CrossrefGoogle Scholar

[230]

Gubbin CR, Maier SA, De Liberato S. Theoretical investigation of phonon polaritons in SiC micropillar resonators. Phys Rev B 2017;95:035313. CrossrefGoogle Scholar

[231]

Caldwell JD, Glembocki OJ, Francescato Y, et al. Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. Nano Lett 2013;13:3690–7. CrossrefPubMedGoogle Scholar

[232]

Neuer III B, Wu C, Eyck GT, et al. Efficient infrared thermal emitters based on low-albedo polaritonic meta-surfaces. Appl Phys Lett 2013;102:211111. CrossrefGoogle Scholar

[233]

Chen Y, Francescato Y, Caldwell JD, et al. Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications. ACS Photonics 2014;1:718–24. CrossrefGoogle Scholar

[234]

Shen S, Narayanaswamy A, Chen G. Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett 2009;9:2909–13. PubMedCrossrefGoogle Scholar

[235]

Kottmann J, Martin O, Smith D, Schultz S. Spectral response of plasmon resonant nanoparticles with a non-regular shape. Opt Express 2000;6:213–9. CrossrefPubMedGoogle Scholar

[236]

Gubbin GR, Berte R, Meeker MA, et al. Hybrid longitudinal-transverse phonon polaritons. Nat Commun 2019;10:1682. PubMedCrossrefGoogle Scholar

[237]

Venkataram PS, Hermann J, Tkatchenko A, Rodriguez AW. Phonon-polariton mediated thermal radiation and heat transfer among molecules and macroscopic bodies: nonlocal electromagnetic response at mesoscopic scales. Phys Rev Lett 2018;121:045901. PubMedCrossrefGoogle Scholar

[238]

Narimanov EE. Photonic hypercrystals. Phys Rev X 2014;4:041014. Google Scholar

[239]

Foteinopoulou S. Viewpoint: photonic crystals “go hyper”. Physics 2014;7:110. CrossrefGoogle Scholar

[240]

Foteinopoulou S. Photonic-crystal-based polaritonic metamaterials functional at terahertz. In: 14th International Conference on Transparent Optical Networks (ICTON), We.A6.3, Coventry, UK, IEEE, 2012:1–4. Google Scholar

[241]

Reyes-Coronado A, Acosta MF, Merino RI, et al. Self-organization approach for THz polaritonic metamaterials. Opt Express 2012;20:14663. PubMedCrossrefGoogle Scholar

[242]

Biehs S-A, Tschikin M, Messina R, Ben-Abdallah P. Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials. Appl Phys Lett 2013;102:131106. CrossrefGoogle Scholar

[243]

Li P, Dolado I, Alfaro-Mozaz FJ, et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 2018;359:892–6. CrossrefGoogle Scholar

[244]

Huang KC, Povinelli ML, Joannopoulos JD. Negative effective permeability in polaritonic photonic crystals. Appl Phys Lett 2004;85:543. CrossrefGoogle Scholar

[245]

Schuller JA, Zia R, Taubner T, Brongersma ML. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. Phys Rev Lett 2007;99:107401. CrossrefPubMedGoogle Scholar

[246]

Shen L, Wang H, Li R, Xu Z, Chen H, Hyperbolic-polaritons-enabled dark-field lens for sensitive detection. Sci Rep 2017;7:6995. CrossrefPubMedGoogle Scholar

[247]

Guo T, Zhu L, Chen P-Y, Argyropoulos C. Tunable terahertz amplification based on photoexcited active graphene hyperbolic metamaterials [Invited]. Opt Mater Express 2018;8:3941–52. CrossrefGoogle Scholar

[248]

Rybin MV, Filonov DS, Samusev KB, Belov PA, Kivshar YS, Limonov MF. Phase diagram for the transition from photonic crystals to dielectric metamaterials. Nat Commun 2015;6:10102. CrossrefPubMedGoogle Scholar

[249]

Vynck K, Felbacq D, Centeno E, Cabuz AI, Cassagne D, Guizal B. All-dielectric rod-type metamaterials at optical frequencies. Phys Rev Lett 2009;102:133901. CrossrefPubMedGoogle Scholar

[250]

Yannopapas V, Moroz A. Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges. J Phys: Cond Matt 2005;17:3717–34. Google Scholar

[251]

Alu A, Engheta N. Pairing an epsilon-negative slab with a Mu-negative slab: resonance, tunneling and transparency. IEEE Trans Antennas Prop 2003;51:2558–71. CrossrefGoogle Scholar

[252]

Huang KC, Bienstman P, Joannopoulos JD, Nelson KA, Fan S. Field expulsion and reconfiguration in polaritonic photonic crystals. Phys Rev Lett 2003;90:196402. CrossrefPubMedGoogle Scholar

[253]

Ni X, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM. Broadband light bending with plasmonic nanoantennas. Science 2012;335:427–8. CrossrefPubMedGoogle Scholar

[254]

Kuznetsov AI, Miroshnichenko AE, Brongersma ML, Kivshar YS, Lukyanchuk B. Optically resonant dielectric nanostructures. Science 2016;354:aag2472. PubMedCrossrefGoogle Scholar

[255]

Liu W, Kivshar YS. Generalized Kerker effects in nanophotonics and meta-optics [Invited]. Opt Express 2018;26:13085–105. CrossrefPubMedGoogle Scholar

[256]

Radi Y, Asadchy VS, Kosulnikov SU. Full light absorption in single arrays of spherical nanoparticles. ACS Photonics 2015;2:653–60. CrossrefGoogle Scholar

[257]

Sun J, Wang X, Wu J, et al. Biomimetic moth-eye nanofabrication: enhanced antireflection with superior self-cleaning characteristic. Sci Rep 2018;8:5438. CrossrefPubMedGoogle Scholar

[258]

Hermes M, Brandstrup Morrish R, Huot L, et al. Mid-IR hyperspectral imaging for label-free histopathology and cytology. J Opt 2018;20:023002. CrossrefGoogle Scholar

[259]

Eaton HAC. Infrared imaging bolometers. In: Huber MCE, Pauluhn A, Culhane JL, Timothy JG, Wilhelm K, Zehnder A, editors. Observing photons in space: a guide to experimental space astronomy. 2013;9:515–24. Google Scholar

[260]

Boriskina SV, Weinstein LA, Tong JK, Hsu W-C, Chen G. Hybrid optical-thermal antennas for enhanced light focusing and local temperature control. ACS Photonics 2016;3:1714–22. CrossrefGoogle Scholar

[261]

Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998;391:667–9. CrossrefGoogle Scholar

[262]

Garca de Abajo FJ, Gomez-Medina R, Saenz JJ. Full transmission through perfect-conductor subwavelength hole arrays. Phys Rev E 2005;72:016608. CrossrefGoogle Scholar

[263]

Korobkin D, Urzhumov YA, Neuner III B, et al. Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritons. Appl Phys A 2007;88:605–9. CrossrefGoogle Scholar

[264]

Zhang X, Liu H, Zhong Y. Microscopic analysis of surface Bloch modes on periodically perforated metallic surfaces and their relation to extraordinary optical transmission. Phys Rev B 2014;89:195431. CrossrefGoogle Scholar

[265]

Sakakibara R, Stelmakh V, Chan WR, et al. Practical emitters for thermophotovoltaics: a review. J Photonics Energy 2019;9:032713. Google Scholar

[266]

Devarapu GCR, Foteinopoulou S. Broadband mid-IR superabsorption with aperiodic polaritonic photonic crystals. J Eur Opt Soc: Rapid Pub 2014;9:14012. CrossrefGoogle Scholar

[267]

Rodriguez-Ulibarri P, Beruete M, Serebryannikov AE. One-way quasiplanar terahertz absorbers using nonstructured polar dielectric layers. Phys Rev B 2017;96:155148. CrossrefGoogle Scholar

[268]

Serebryannikov AE, Nojima S, Ozbay E. One-way absorption of terahertz waves in rod-type and multilayer structures containing polar dielectrics. Phys Rev B 2014;90:235126. CrossrefGoogle Scholar

[269]

Baker MJ, Trevisan J, Bassan P, et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 2014;9:1771–91. PubMedCrossrefGoogle Scholar

[270]

Svensson T, Hallberg T. Infrared absorption bands measured with an uncooled interferometric LWIR hyperspectral camera. Proc SPIE 10644, 2018:106440Y. Google Scholar

[271]

Talwar DN. Direct evidence of LO phonon-plasmon coupled modes in n-GaN. Appl Phys Lett 2010;97:051902. CrossrefGoogle Scholar

[272]

Janipour M, Misirlioglu IB, Sendur K. Tunable surface plasmon and phonon-polariton interactions for moderately doped semiconductor surfaces. Sci Rep 2016;6:34071. CrossrefPubMedGoogle Scholar

[273]

Spann BT, Compton R, Ratchford D, et al. Photoinduced tunability of the reststrahlen band in 4H-SiC. Phys Rev B 2016;93:085205. CrossrefGoogle Scholar

[274]

Kukharskii AA. Plasmon-phonon coupling in GaAs. Solid State Commun 1973;13:1761–5. CrossrefGoogle Scholar

[275]

Cartella A, Nova TF, Fechner M, Merlin R, Cavalleri A. Parametric amplification of optical phonons. Proc Natl Acad Sci USA 2018;115:12148–51. CrossrefGoogle Scholar

[276]

Valasek J. Piezo-electric and allied phenomena in Rochelle salt. Phys Rev 1921;17:475–81. CrossrefGoogle Scholar

[277]

Whatmore R. Ferroelectric materials. In: Kasap S, Capper P, editors. New York, Springer handbook of electronic and photonic materials, 2017:589–614. Google Scholar

[278]

Cochran W. Crystal stability and the theory of ferroelectricity. Adv Phys 1960;9:387–23. CrossrefGoogle Scholar

[279]

Worlock JM, Fleury PA. Electric field dependence of optical-phonon frequency. Phys Rev Lett 1967;19:1176. CrossrefGoogle Scholar

[280]

Pertsev NA, Zembilgotov AG, Hoffmann S, Waser R, Tagantsev AK. Ferroelectric thin films grown on tensile substrates: renormalization of the Curie-Weiss law and apparent absence of ferroelectricity. J Appl Phys 1999;85:1698. CrossrefGoogle Scholar

[281]

Wang B, Woo CH, Zheng Y. Tunable ferroelectric phase transition, UTAM Symposium on Size Effects on Material and Structural Behavior at Micron- and Nano-Scales. Hong Kong, China, Proceedings of the IUTAM Symposium, 2004:1–12. Google Scholar

[282]

Cui C, Xue F, Hu W-J, Li L-J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj-2D Mater Appl 2018;2:18. CrossrefGoogle Scholar

[283]

Liu C, Wan W, Ma J, Guo W, Yao Y. Robust ferroelectricity in two-dimensional SbN and BiP, Nanoscale 2018;10:7984–90. CrossrefPubMedGoogle Scholar

[284]

Guan S, Liu C, Lu Y, Yao Y, Yang SA. Tunable ferroelectricity and anisotropic electric transport in monolayer *β*-GeSe. Phys Rev B 2018;97:114104. Google Scholar

[285]

Cochran W. Crystal stability and the theory of ferroelectricity. Phys Rev Lett 1959;3:412. CrossrefGoogle Scholar

[286]

Kukreti A, Kumar A, Naithani UC. Condensed matter: electronic structure, electrical, magnetic and optical properties-electric field dependence of Curie temperature in BaxSr1-xTiO3 ferroelectric perovskites. Indian J Pure Appl Phys 2011;49:126–31. Google Scholar

[287]

Skoromets V, Nĕmec H, Kadlec C, Fattakhova-Rohlfing D, Kužel P. Electric-field-tunable defect mode in one-dimensional photonic crystal operating in the terahertz range. Appl Phys Lett 2013;102:241106. CrossrefGoogle Scholar

[288]

Cardona M. Faraday rotation in semiconductors. In: Advances in Solid State Physics. New York, Springer, 2007:72–88. Google Scholar

[289]

Mu Q, Fan F, Chen S, et al. Tunable magneto-optical polarization device for terahertz waves based on InSb and its plasmonic structure. Photonics Res 2019;7:325–31. CrossrefGoogle Scholar

[290]

Qazilbash MM, Brehm M, Andreev GO, et al. Infrared spectroscopy and nano-imaging of the insulator-to-metal transition in vanadium dioxide. Phys Rev B 2009;79:075107. CrossrefGoogle Scholar

[291]

Chochol J, Postava K, Cada M, et al. Magneto-optical properties of InSb for terahertz applications. AIP Adv 2016;6:115021. CrossrefGoogle Scholar

[292]

Chochol J, Postava K, Cada M, Pistora J. Experimental demonstration of magnetoplasmon polariton at InSb(InAs)/dielectric interface for terahertz sensor application. Sci Rep 2017;7:13117. CrossrefPubMedGoogle Scholar

[293]

Moncada-Villa E, Fernandez-Hurtado V, Garcia-Vidal FJ, Garcia-Martin A, Cuevas JC. Magnetic field control of near-field radiative heat transfer and the realization of highly tunable hyperbolic thermal emitters. Phys Rev B 2015;92:125418. CrossrefGoogle Scholar

[294]

Abraham Ekeroth RM, Ben-Abdallah P, Cuevas JC, Garcia-Martin A. Anisotropic thermal magnetoresistance for an active control of radiative heat transfer. ACS Photonics 2018;5:705–10. CrossrefGoogle Scholar

[295]

Ben-Abdallah P, Benisty H, Besbes M. Microsecond switchable thermal antenna. J Appl Phys 2014;116:034306. CrossrefGoogle Scholar

[296]

Bragaglia V, Holldack K, Boschker JE, et al. Far-infrared and Raman spectroscopy investigation of phonon modes in amorphous and crystalline epitaxial GeTe-Sb_{2}Te_{3} alloys. Sci Rep 2016;6:28560. PubMedCrossrefGoogle Scholar

[297]

Chen C, Jost PH, Volker M, et al. Dielectric properties of amorphous phase-change materials. Phys Rev B 2017;95:094111. CrossrefGoogle Scholar

[298]

Wu S-H, Chen M, Barako MT, et al. Thermal homeostasis using microstructured phase-change materials. Optica 2017;4:1390–6. CrossrefGoogle Scholar

[299]

Kats MA, Blachard R, Zhang SY, et al. Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance. Phys Rev X 2013;3:041004. Google Scholar

[300]

Chen S, Wang Z, Ren H, et al. Gate-controlled VO_{2} phase transition for high-performance smart windows. Sci Adv 2019;5:6815. CrossrefGoogle Scholar

[301]

Liu C-H, Zheng J, Chen Y, Fryett T, Majumdar A. Van-der-Waals materials integrated nanophotonic devices [Invited]. Opt Mater Express 2019;9:384–99. CrossrefGoogle Scholar

[302]

Zhang X, Choi S, Wang D, Naylor CH, Charlie Johnson AT, Cubukcu E. Unidirectional doubly enhanced MoS_{2} emission via photonic fano resonances. Nano Lett 2017;17:6715–20. CrossrefPubMedGoogle Scholar

[303]

Doeleman HM, Verhagen E, Femius Koenderink A. Antenna-cavity hybrids: matching polar opposites for purcell enhancements at any linewidth. ACS Photonics 2016;3:1943–51. CrossrefGoogle Scholar

[304]

Yu X, Yuan Y, Xu J, Yong K-T, Qu J, Song J. Strong coupling in microcavity structures: principle, design, and practical application. Laser Photonics Rev 2019;13:1800219. CrossrefGoogle Scholar

[305]

Papadakis GT, Zhao B, Buddhiraju S, Fan S. Gate-tunable near-field heat transfer. ACS Photonics 2019;6:709–19. CrossrefGoogle Scholar

[306]

Huck C, Vogt J, Neuman T, et al. Strong coupling between phonon-polaritons and plasmonic nanorods. Opt Express 2016;24:25528. PubMedCrossrefGoogle Scholar

[307]

Wan W, Yang X, Gao J. Strong coupling between mid-infrared localized plasmons and phonons. Opt Express 2016;24:12367–74. CrossrefPubMedGoogle Scholar

[308]

Luxmoore IJ, Gan CH, Qiang Liu P, et al. Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide. ACS Photonics 2014;1:1151–5. CrossrefGoogle Scholar

[309]

Fischetti MV, Neumayer DA, Cartier EA. Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-*κ* insulator: the role of remote phonon scattering. J Appl Phys 2001;90:4587. CrossrefGoogle Scholar

[310]

Jia Y, Zhao H, Guo Q, Wang X, Wang H, Xia F. Tunable plasmon-phonon polaritons in layered graphene-hexagonal boron nitride heterostructures. ACS Photonics 2015;2: 907–12. CrossrefGoogle Scholar

[311]

Jiang Y, Lin X, Low T, Zhang B, Chen H. Group-velocity-controlled and gate-tunable directional excitation of polaritons in graphene-boron nitride heterostructures. Laser Photonics Rev 2018;12:180049. Google Scholar

[312]

Lina X, Yangc Y, Rivera N, et al. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures. Proc Natl Acad Sci USA 2017;114:6717–21. Google Scholar

[313]

Li P, Yang X, Mass TWW, et al. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material. Nat Mater 2016;15:870. CrossrefPubMedGoogle Scholar

[314]

Huber MA, Mooshammer F, Plankl M, et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat Nanotech 2017;12:207. CrossrefGoogle Scholar

[315]

Jablan M, Soljacic M, Buljan H. Unconventional plasmon-phonon coupling in graphene. Phys Rev B 2011;83:161409. CrossrefGoogle Scholar

[316]

Bezares FJ, De Sanctis A, Saavedra JRM, et al. Intrinsic plasmon-phonon interactions in highly doped graphene: a near-field imaging study. Nano Lett 2017;17:5908–13. PubMedCrossrefGoogle Scholar

[317]

Liu PQ, Reno JL, Brener I. Quenching of infrared-active optical phonons in nanolayers of crystalline materials by graphene surface plasmons. ACS Photonics 2018;5:2706–11. CrossrefGoogle Scholar

[318]

Tielrooij K-J, Hesp NCH, Principi A, et al. Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling. Nat Nanotechnol 2018;13:41–6. CrossrefGoogle Scholar

[319]

Yang W, Berthou S, Lu X, et al. A graphene Zener-Klein transistor cooled by a hyperbolic substrate. Nat Nanotechnol 2018;13:47–52. CrossrefPubMedGoogle Scholar

[320]

Dubrovkin AM, Qiang B, Krishnamoorthy HNS, Zheludev NI, Wang QJ. Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics. Nat Commun 2018;9:1762. CrossrefGoogle Scholar

[321]

Hajian H, Serebryannikov AE, Ghobadi A, et al. Tailoring far-infrared surface plasmon polaritons of a single-layer graphene using plasmon-phonon hybridization in graphene-LiF heterostructures. Sci Rep 2018;8:13209. CrossrefPubMedGoogle Scholar

[322]

Imran M, Wang H, Jiang Y, Xu Z, Shen L. Harnessing graphene graphene-hBN hyperstructure for single-photon sources. Opt Express 2019;27:16461. CrossrefPubMedGoogle Scholar

[323]

Brouillet J, Papadakis GT, Atwater HA. Experimental demonstration of tunable graphene hyperbolic metamaterial. 2019:arXiv:1906.10663. Google Scholar

[324]

Chaudhary K, Tamagnone M, Rezaee M, et al. Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy. Sci Adv 2019; 5:7171. CrossrefGoogle Scholar

[325]

Zhang Q, Zhen Z, Liu C, Jariwala D, Cui X. Gate-tunable polariton superlens in 2D/3D heterostructures. Opt Express 2019;27:18628–41. CrossrefPubMedGoogle Scholar

[326]

Hajian H, Ghobadi A, Serebryannikov AE, et al. VO_{2}-hBN-graphene-based bi-functional metamaterial for mid-infrared bi-tunable asymmetric transmission and nearly perfect resonant absorption. J Opt Soc Am B 2019;36:1607. CrossrefGoogle Scholar

[327]

Folland TG, Fali A, White ST, et al. Reconfigurable infrared hyperbolic metasurfaces using phase change materials. Nat Commun 2018;9:4371. PubMedCrossrefGoogle Scholar

[328]

I. Staude and Rockstuhl C. To scatter or not to scatter. Nat Mater 2016;15:821. CrossrefPubMedGoogle Scholar

[329]

Sumikura H, Wang T, Li P, et al. Highly confined and switchable mid-infrared surface phonon polariton resonances of planar circular cavities with a phase change material. Nano Lett 2019;19:2549–54. PubMedCrossrefGoogle Scholar

[330]

Finch MF, Saunders CAB, Premkumar N, Yang YC, Lail BA. A 4H-SiC phonon-polariton enhanced hybrid waveguide. Fajardo, Puerto Rico, IEEE Antennas and Propagation Society International Symposium, 2016:987–8. Google Scholar

[331]

Miao S, Premkumar N, Yang Y, Xiong D, Lail BA. Hybrid slot-waveguide fed antenna using hexagonal boron nitride Dyakonov polaritons. Opt Express 2019;27:9115–27. CrossrefGoogle Scholar

[332]

Qiang B, Dubrovkin AM, Krishnamoorthy HNS, et al. High Q-factor controllable phononic modes in hybrid phononic-dielectric structures. Adv Photonics 2019;1:026001. Google Scholar

[333]

Kurman Y, Rivera N, Christensen T, et al. Control of semiconductor emitter frequency by increasing polariton momenta. Nat Photonics 2018;12:423–9. CrossrefGoogle Scholar

[334]

Ohtani K, Meng B, Franckie M, et al. An electrically pumped phonon-polariton laser. Sci Adv 2019;5:1632. CrossrefGoogle Scholar

[335]

Serebryannikov AE, Hajian H, Beruete M, Ozbay E, Vandenbosch G. Tunable deflection and asymmetric transmission of THz waves using a thin slab of graphene-dielectric metamaterial, with and without ENZ components. Opt Mater Express 2018;8:3887. CrossrefGoogle Scholar

[336]

Basov DN, Fogler MM, Garcia de Abajo FJ. Polaritons in van der Waals materials. Science 2016;354:aag1992. CrossrefGoogle Scholar

[337]

Ballarini D, Liberato SD, Polaritonics: from microcavities to sub-wavelength confinement. Nanophotonics 2019;8:641–54. CrossrefGoogle Scholar

[338]

Grishunin K, Huisman T, Li G, et al. Terahertz magnon-polaritons in TmFeO3, ACS Photonics 2018;5:1375–80. PubMedCrossrefGoogle Scholar

[339]

De Silva LMS, Wijewardena Gamalath KAIL. Modelling of exciton-polaritons. World Sci News 2018;106:194–213. Google Scholar

[340]

Papadakis GT, Davoyan A, Yeh P, Atwater HA. Mimicking surface polaritons for unpolarized light with high-permittivity materials. Phys Rev Mater 2019;3:015202. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.