[1]

Aspelmeyer M, Kippenberg T-J, Marquardt F. Cavity optomechanics. Rev Mod Phys 2014;86:1391–452. CrossrefWeb of ScienceGoogle Scholar

[2]

Kippenber T-J, Vahala K-J. Cavity optomechanics: back-action at the mesoscale. Science 2008;321:1172–6. PubMedCrossrefWeb of ScienceGoogle Scholar

[3]

Ekinci K-L, Roukes M-L. Nanoelectromechanical systems. Rev Sci Instrum 2005;76:061101. CrossrefGoogle Scholar

[4]

Favero I, Karrai K. Optomechanics of deformable optical cavities. Nat Photon 2009;3:201–5. CrossrefGoogle Scholar

[5]

Teufel J-D, Li D, Allman M-S, et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 2011;471:204–8. Web of SciencePubMedCrossrefGoogle Scholar

[6]

Sapmaz S, Blanter Y-M, Gurevich L, van der Zant H-S-J. Carbon nanotubes as nanoelectromechanical systems. Phys Rev B 2003;67:235414. CrossrefGoogle Scholar

[7]

Belacel C, Todorov Y, Barbieri S, Gacemi D, Favero I, Sirtori C. Optomechanical terahertz detection with single meta-atom resonator. Nat Commun 2017;8:1578. PubMedWeb of ScienceCrossrefGoogle Scholar

[8]

Manjappa M, Pitchappa P, Singh N, et al. Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies. Nat Commun 2018;9:4056. CrossrefPubMedWeb of ScienceGoogle Scholar

[9]

Jimzewski J-K, Gerber C, Meyer E, Schlittler R-R. Observation of a chemical reaction using a micromechanical sensor. Chem Phys Lett 1994;217:589–94. CrossrefGoogle Scholar

[10]

Gil-Santos E, Baker C, Nguyen D-T. High-frequency nano-optomechanical disk resonators in liquids. Nat Nanotech 2015;10:810–6. CrossrefGoogle Scholar

[11]

Alves F, Pimental L, Grbovic D, Karunasiri G. MEMS terahertz-to-infrared band converter using frequency selective planar metamaterial. Sci Rep 2018;8:12466. PubMedCrossrefWeb of ScienceGoogle Scholar

[12]

Tsvirkun V, Surrente A, Raineri F, et al. Integrated III-V photonic crystal – Si waveguide platform with tailored optomechanical coupling. Sci Rep 2015;5:16526. Web of ScienceCrossrefGoogle Scholar

[13]

Metzger C, Favero I, Ortlieb A, Karrai K. Optical self cooling of a deformable Fabry-Perot cavity in the classical limit. Phys Rev B 2008;78:035309. Web of ScienceCrossrefGoogle Scholar

[14]

Teufel J-D, Donner T, Li D. Sideband cooling of micromechanical motion to the quantum ground state. Nature 2011;475:359–63. PubMedWeb of ScienceCrossrefGoogle Scholar

[15]

Gil-Santos E, Labousse M, Baker C, et al. Light-mediated cascaded locking of multiple nano-optomechanical oscillators. Phys Rev Lett 2017;118:063605. Web of ScienceCrossrefPubMedGoogle Scholar

[16]

Ockeloen-Korppi C-F, Damskägg E, Pirkkalainen J-M, et al. Stabilized entanglement of massive mechanical oscillators. Nature 2018;556:478–82. Web of ScienceCrossrefPubMedGoogle Scholar

[17]

Marinković I, Wallucks A, Riedinger R, Hong S, Aspelmeier M, Gröblacher S. Optomechanical Bell test. Phys Rev Lett 2018;121:220404. Web of SciencePubMedCrossrefGoogle Scholar

[18]

Riedinger R, Wallucks A, Marinković I, et al. Remote quantum entanglement between two micromechanical oscillators. Nature 2018;556:473–7. Web of SciencePubMedCrossrefGoogle Scholar

[19]

Regal C-A, Lehnert K-W. From cavity electromechanics to cavity optomechanics. J Phys Conf Ser 2011;264:012025. CrossrefGoogle Scholar

[20]

Ottaviani C, Woolley M-J, Erementchouk M, et al. Terahertz quantum cryptography. 2018;arXiv:1805.03514. Google Scholar

[21]

Law C-K. Interaction between a moving mirror and radiation pressure: a Hamiltonian formulation. Phys Rev A 1995;51: 2537–41. PubMedCrossrefGoogle Scholar

[22]

Cripe J, Aggarwal N, Singh R, et al. Radiation-pressure-mediated control of an optomechanical cavity. Phys Rev A 2018;97:013827. CrossrefWeb of ScienceGoogle Scholar

[23]

Roy Chowdhury D, Xu N, Zhang W, Singh R. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials. J Appl Phys 2015;118:023104. CrossrefWeb of ScienceGoogle Scholar

[24]

Zhang Y, Watanabe Y, Hosono S, Nagai N, Hirakawa K. Room temperature, very sensitive thermometer using a doubly clamped microelectromechanical beam resonator for bolometer applications. Appl Phys Lett 2016;108:163503. Web of ScienceCrossrefGoogle Scholar

[25]

Barton R-A, Storch I-R, Adiga V-P, et al. Photothermal self-oscillation and laser cooling of graphene optomechanical systems. Nano Lett 2012;12:4681–6. Web of ScienceCrossrefPubMedGoogle Scholar

[26]

De Alba R, Abhilash T-S, Rand R-H, Craighead H-G, Parpia J-M. Low-power photothermal self-oscillation of bimetallic nanowires. Nano Lett 2017;17:3995–4002. CrossrefPubMedWeb of ScienceGoogle Scholar

[27]

Barnes J-R, Stephenson R-J, Woodburn C-N, et al. A femtojoule calorimeter using micromechanical sensors. Rev Sci Instrum 1994;65:3793–8. CrossrefGoogle Scholar

[28]

Al-Naib I, Yang Y, Dignam M-M, Zhang W, Singh R. Ultra-high Q even eigenmode resonance in terahertz metamaterials. Appl Phys Lett 2015;106:011102. Web of ScienceCrossrefGoogle Scholar

[29]

Cleland A-N, Roukes M-L. Noise processes in nanomechanical resonators. J Appl Phys 2002;92:2758–69. CrossrefGoogle Scholar

[30]

Cleland A-N. Foundations of nanomechanics. Los Angeles, CA, Springer, 2002. Google Scholar

[31]

Timoshenko S. Vibration problems in engineering. New York, NY, D. Van Nostrand Company, Inc., 1937. Google Scholar

[32]

Unterreithmeier Q-P, Faust T, Kotthaus J-P. Damping of nanomechanical resonators. Phys Rev Lett 2010;105:027205. PubMedCrossrefWeb of ScienceGoogle Scholar

[33]

Zhou J, Koschny T, Soukoulis C-M. Magnetic and electric excitations in split ring resonators. Opt Expr 2007;15:17881–90. CrossrefGoogle Scholar

[34]

Barbieri S, Alton J, Beere H-E, Fowler J, Linfield E-H, Ritchie D-A. 2.9THz quantum cascade lasers operating up to 70K in continuous wave. Appl Phys Lett 2004;85:1674–6. CrossrefGoogle Scholar

[35]

Zhang X-C, Myers E-B, Sader J-E, Roukes M-L. Nanomechanical torsional resonators for frequency-shift infrared thermal sensing. Nano Lett 2013;13:1528–34. PubMedWeb of ScienceCrossrefGoogle Scholar

[36]

Richter H, Rothbart N, Hübers H-W. Characterizing the beam properties of terahertz quantum-cascade lasers. J Infr Mill Ter Wav 2014;35:686–98. CrossrefGoogle Scholar

[37]

Jeannin M, Mariotti Nesurini G, Suffit S, et al. Ultrastrong light–matter coupling in deeply subwavelength THz LC resonators. ACS Photon 2019;6:1207–15. CrossrefGoogle Scholar

[38]

Akyildiz I-F, Jornet J-M, Han C. Terahertz band: next frontier for wireless communications. Phys Commun 2014;12:16–32. CrossrefWeb of ScienceGoogle Scholar

[39]

Andrews R-W, Peterson R-W, Purdy T-P, et al. Bidirectional and efficient conversion between microwave and optical light. Nat Phys 2014;10:321–6. CrossrefWeb of ScienceGoogle Scholar

[40]

Stapfner S, Zadkov V-N, Durt T, et al. Cavity nano-optomechanics: a nanomechanical system in a high finesse optical cavity. Brussels, Belgium, SPIE Photonics Europe, 2010. Google Scholar

[41]

Albrecht T-R, Grütter P, Horne D, Rugar D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 1991;69:668–73. CrossrefGoogle Scholar

[42]

Zhang Y, Hosono S, Nagai N, Hirakawa K. Novel bolometric THz detection by MEMS resonators. 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 2018. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.