[1]

Lough WJ, Wainer IW. Chirality in natural and applied sciences. Oxford, UK, Blackwell Science, 2002. Google Scholar

[2]

Lobanov SV, Tikhodeev SG, Gippius NA, et al. Controlling circular polarization of light emitted by quantum dots using chiral photonic crystal slabs. Phys Rev B 2015;92:205309. CrossrefGoogle Scholar

[3]

Dyakov SA, Semenenko VA, Gippius NA, Tikhodeev SG. Magnetic field free circularly polarized thermal emission from a chiral metasurface. Phys Rev B 2018;98: 235416. CrossrefGoogle Scholar

[4]

Konishi K, Nomura M, Kumagai N, Iwamoto S, Arakawa Y, Kuwata-Gonokami M. Circularly polarized light emission from semiconductor planar chiral nanostructures. Phys Rev Lett 2011;106:057402. CrossrefPubMedGoogle Scholar

[5]

Söllner I, Mahmoodian S, Hansen SL, et al. Deterministic photon–emitter coupling in chiral photonic circuits. Nat Nanotechnol 2015;10:775–8. PubMedCrossrefGoogle Scholar

[6]

Pfeiffer C, Grbic A. Bianisotropic metasurfaces for optimal polarization control: analysis and synthesis. Phys Rev Appl 2014;2:044011. CrossrefGoogle Scholar

[7]

Zhao Y, Belkin M, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat Commun 2012;3:870. CrossrefPubMedGoogle Scholar

[8]

Zhao Y, Askarpour AN, Sun L, Shi J, Li X, Alù A. Chirality detection of enantiomers using twisted optical metamaterials. Nat Commun 2017;8:14180. PubMedCrossrefGoogle Scholar

[9]

Hentschel M, Schäferling M, Duan X, Giessen H, Liu N. Chiral plasmonics. Sci Adv 2017;3:e1602735. CrossrefPubMedGoogle Scholar

[10]

Kong X-T, Besteiro LV, Wang Z, Govorov AO. Plasmonic chirality and circular dichroism in bioassembled and nonbiological systems: theoretical background and recent progress. Adv Mat 2018;1:1801790. Google Scholar

[11]

Asadchy VS, Díaz-Rubio A, Tretyakov SA. Bianisotropic metasurfaces: physics and applications. Nanophotonics 2018;7:1069. CrossrefGoogle Scholar

[12]

Tullius R, Karimullah AS, Rodier M, et al. “Superchiral” spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures. J Amer Chem Soc 2015;137:8380–3. CrossrefGoogle Scholar

[13]

Schaeferling M, Engheta N, Giessen H, Weiss T. Reducing the complexity: enantioselective chiral near-fields by diagonal slit and mirror configuration. ACS Photonics 2016;3: 1076–84. CrossrefGoogle Scholar

[14]

Vázquez-Guardado A, Chanda D. Superchiral light generation on degenerate achiral surfaces. Phys Rev Lett 2018;120:137601. CrossrefPubMedGoogle Scholar

[15]

Shaltout A, Liu J, Kildishev A, Shalaev V. Photonic spin Hall effect in plasmon metasurfaces for on-chip chiroptical spectroscopy. Optica 2015;2:860–3. CrossrefGoogle Scholar

[16]

Liu L, Yang D, Wan W, Yang H, Gong Q, Li Y. Fast fabrication of silver helical metamaterial with single-exposure femtosecond laser photoreduction. Nanophotonics 2019;8:1087. CrossrefGoogle Scholar

[17]

Zhang R, Zhao Q, Wang X, Gao W, Li J, Tam WY. Measuring circular phase-dichroism of chiral metasurface. Nanophotonics 2019;8:909. CrossrefGoogle Scholar

[18]

Plum E, Liu X-X, Fedotov VA, Chen Y, Tsai DP, Zheludev NI. Metamaterials: optical activity without chirality. Phys Rev Lett 2009;102:113902. PubMedCrossrefGoogle Scholar

[19]

Plum E, Zheludev NI. Chirality and anisotropy of planar metamaterials. In: Maradudin AA, editor. Structured surfaces as optical metamaterials. Cambridge, UK, Cambridge University Press, 2011:94–157. Google Scholar

[20]

Fernandez-Corbaton I, Fruhnert M, Rockstuhl C. Objects of maximum electromagnetic chirality. Phys Rev X 2016;6:031013. Google Scholar

[21]

Garcia-Santiago X, Burger S, Rockstuhl C, Fernandez-Corbaton I. Measuring the electromagnetic chirality of 2d arrays under normal illumination. Opt Lett 2017;42:4075–8. CrossrefPubMedGoogle Scholar

[22]

Kuwata-Gonokami M, Saito N, Ino Y, et al. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys Rev Lett 2005;95:227401. PubMedCrossrefGoogle Scholar

[23]

Wu C, Arju N, Kelp G, et al. Spectrally selective chiral silicon metasurfaces based on infrared fano resonances. Nat Commun 2014;5:3892. PubMedCrossrefGoogle Scholar

[24]

Ye W, Yuan X, Guo C, Zhang J, Yang B, Zhang S. Large chiroptical effects in planar chiral metamaterials. Phys Rev Appl 2017;7:054003. CrossrefGoogle Scholar

[25]

Zhu AY, Chen WT, Zaidi A, et al. Giant intrinsic chiro-optical activity in planar dielectric nanostructures. Light Sci Appl 2018;7:17158. PubMedCrossrefGoogle Scholar

[26]

Zhao R, Sain B, Wei Q, et al. Multichannel vectorial holographic display and encryption. Light Sci Appl 2018;7:95. CrossrefPubMedGoogle Scholar

[27]

Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotech 2015;10:937–43. CrossrefGoogle Scholar

[28]

Karakasoglu I, Xiao M, Fan S. Polarization control with dielectric helix metasurfaces and arrays. Opt Exp 2018;26:21664–74. CrossrefGoogle Scholar

[29]

Zhu AY, Chen W-T, Khorasaninejad M, et al. Ultra-compact visible chiral spectrometer with meta-lenses. APL Photon 2017;2:036103. CrossrefGoogle Scholar

[30]

Balthasar Mueller JP, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 2017;118:113901. CrossrefPubMedGoogle Scholar

[31]

Li G, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces. Nat Rev Mat 2017;2:17010. CrossrefGoogle Scholar

[32]

Li A, Singh S, Sievenpiper D. Metasurfaces and their applications. Nanophotonics 2018;7:989. CrossrefGoogle Scholar

[33]

Kamali SM, Arbabi E, Arbabi A, Faraon A. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics 2018;7:1041. CrossrefGoogle Scholar

[34]

Limonov MF, Rybin MV, Poddubny AN, Kivshar YS. Fano resonances in photonics. Nat Photon 2017;11:543–54. CrossrefGoogle Scholar

[35]

Fu YH, Kuznetsov AI, Miroshnichenko AE, Yu YF, Luk’yanchuk B. Directional visible light scattering by silicon nanoparticles. Nat Commun 2013;4:1527. PubMedCrossrefGoogle Scholar

[36]

Khanikaev AB, Wu C, Shvets G. Fano-resonant metamaterials and their applications. Nanophotonics 2013;2:247. Google Scholar

[37]

Person S, Jain M, Lapin Z, Sáenz JJ, Wicks G, Novotny L. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett 2013;13:1806–9. PubMedCrossrefGoogle Scholar

[38]

Kim J, Li Y, Miskiewicz MN, Oh C, Kudenov MW, Escuti MJ. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts. Optica 2015;2:958–64. CrossrefGoogle Scholar

[39]

Hsu CW, Zhen B, Stone AD, Joannopoulos JD, Soljačić M. Bound states in the continuum. Nat Rev Mater 2016;1:16048. CrossrefGoogle Scholar

[40]

Koshelev K, Favraud G, Bogdanov A, Kivshar Y, Fratalocchi A. Nonradiating photonics with resonant dielectric nanostructures. Nanophotonics 2019;8:725. CrossrefGoogle Scholar

[41]

Collin S. Nanostructure arrays in free-space: optical properties and applications. Rep Prog Phys 2014;77:126402. PubMedCrossrefGoogle Scholar

[42]

Menzel C, Rockstuhl C, Lederer F. Advanced jones calculus for the classification of periodic metamaterials. Phys Rev A 2010;82:053811. CrossrefGoogle Scholar

[43]

Molesky S, Lin Z, Piggott AY, Jin W, Vucković J, Rodriguez AW. Inverse design in nanophotonics. Nat Photon 2018;12: 659–70. CrossrefGoogle Scholar

[44]

Kalish AN, Komarov RS, Kozhaev MA, et al. Magnetoplasmonic quasicrystals: an approach for multiband magneto-optical response. Optica 2018;5:617–23. CrossrefGoogle Scholar

[45]

Arteaga O, Maoz BM, Nichols S, Markovich G, Kahr B. Complete polarimetry on the asymmetric transmission through subwavelength hole arrays. Opt Express 2014;22:13719–32. CrossrefPubMedGoogle Scholar

[46]

Vázquez-Lozano JE, Martínez A. Optical chirality in dispersive and lossy media. Phys Rev Lett 2018;121:043901. CrossrefPubMedGoogle Scholar

[47]

Alpeggiani F, Bliokh KY, Nori F, Kuipers L. Electromagnetic helicity in complex media. Phys Rev Lett 2018;120:243605. PubMedCrossrefGoogle Scholar

[48]

Tang Y, Cohen AE. Optical chirality and its interaction with matter. Phys Rev Lett 2010;104:163901. CrossrefPubMedGoogle Scholar

[49]

Tang Y, Cohen AE. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 2011;332:333–6. CrossrefPubMedGoogle Scholar

[50]

Mun J, Rho J. Importance of higher-order multipole transitions on chiral nearfield interactions. Nanophotonics 2019;8:941. CrossrefGoogle Scholar

[51]

Ge L, Feng L. Contrasting eigenvalue and singular-value spectra for lasing and antilasing in a 𝒫𝒯-symmetric periodic structure. Phys Rev A 2017;95:013813. CrossrefGoogle Scholar

[52]

Bai B, Svirko Y, Turunen J, Vallius T. Optical activity in planar chiral metamaterials: theoretical study. Phys Rev A 2007;76:023811. CrossrefGoogle Scholar

[53]

Bai B, Konishi K, Meng X, et al. Mechanism of the large polarization rotation effect in the all-dielectric artificially chiral nanogratings. Opt Exp 2009;17:688–96. CrossrefGoogle Scholar

[54]

Ossikovski R. Interpretation of nondepolarizing Mueller matrices based on singular-value decomposition. J Opt Soc Am A 2008;25:473–82. CrossrefGoogle Scholar

[55]

Arteaga O, Canillas A. Pseudopolar decomposition of the Jones and Mueller-Jones exponential polarization matrices. J Opt Soc Am A 2009;26:783–93. CrossrefGoogle Scholar

[56]

Ossikovski R, Kuntman MA, Arteaga O. Anisotropic integral decomposition of depolarizing Mueller matrices. OSA Continuum 2019;2:1900–7. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.