[1]

Daussy C, Guinet M, Amy-Klein A, et al. Direct determination of the boltzmann constant by an optical method. Phys Rev Lett 2007;98:250801. CrossrefPubMedGoogle Scholar

[2]

Shelkovnikov A, Butcher RJ, Chardonnet C, Amy-Klein A. Stability of the proton-to-electron mass ratio. Phys Rev Lett 2008;100:150801. CrossrefPubMedGoogle Scholar

[3]

Hudson ER, Lewandowski HJ, Sawyer BC, Ye J. Cold molecule spectroscopy for constraining the evolution of the fine structure constant. Phys Rev Lett 2006;96:143004. CrossrefPubMedGoogle Scholar

[4]

Tokunaga SK, Stoeffler C, Auguste F, et al. Probing weak force-induced parity violation by high-resolution mid-infrared molecular spectroscopy. Mol Phys 2013;111:2363–73. CrossrefGoogle Scholar

[5]

Baron J, Campbell WC, DeMille D, et al. Order of magnitude smaller limit on the electric dipole moment of the electron. Science 2014;343:269–72. PubMedCrossrefGoogle Scholar

[6]

Childs DTD, Hogg RA, Revin DG, Rehman IU, Cockburn JW, Matcher SJ. Sensitivity advantage of QCL tunable-laser mid-infrared spectroscopy over FTIR spectroscopy. Appl Spectrosc Rev 2015;50:822–39. CrossrefGoogle Scholar

[7]

Phillips MC, Ho N. Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array. Opt Express 2008;16: 1836–45. PubMedCrossrefGoogle Scholar

[8]

Fuchs F. Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers. Opt Eng 2010;49:111127. CrossrefGoogle Scholar

[9]

Kosterev A, Wysocki G, Bakhirkin Y, et al. Application of quantum cascade lasers to trace gas analysis. Appl Phys B 2008;90:165–76. CrossrefGoogle Scholar

[10]

Pilling MJ, Henderson A, Gardner P. Quantum cascade laser spectral histopathology: breast cancer diagnostics using high throughput chemical imaging. Anal Chem 2017;89: 7348–55. CrossrefPubMedGoogle Scholar

[11]

Tittl A, Leitis A, Liu M, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 2018;360:1105–9. CrossrefPubMedGoogle Scholar

[12]

Curl RF, Capasso F, Gmachl C, et al. Quantum cascade lasers in chemical physics. Chem Phys Lett 2010;487:1–18. CrossrefGoogle Scholar

[13]

Locatelli M, Ravaro M, Bartalini S, et al. Real-time terahertz digital holography with a quantum cascade laser. Sci Rep 2015;5:13566. PubMedCrossrefGoogle Scholar

[14]

Ravaro M, Locatelli M, Pugliese E, et al. Mid-infrared digital holography and holographic interferometry with a tunable quantum cascade laser. Opt Lett 2014;39:4843–6. CrossrefPubMedGoogle Scholar

[15]

Consolino L, Bartalini S, Beere HE, Ritchie DA, Vitiello MS, De Natale P. THz QCL-based cryogen-free spectrometer for in Situ trace gas sensing. Sensors 2013;13:3331–40. PubMedCrossrefGoogle Scholar

[16]

Richter D, Fried A, Weibring P. Difference frequency generation laser based spectrometers. Laser Photonics Rev 2009;3:343–54. CrossrefGoogle Scholar

[17]

Consolino L, Bartalini S, De Natale P. Terahertz frequency metrology for spectroscopic applications: a review. J Infrared Millimeter Terahertz Waves 2017;38:1289–315. CrossrefGoogle Scholar

[18]

Faist J, Capasso F, Sivco DL, Sirtori C, Hutchinson AL, Cho AY. Quantum cascade laser. Science 1994;264:553–6. PubMedCrossrefGoogle Scholar

[19]

Evans A, Yu JS, David J, et al. High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers. Appl Phys Lett 2004;84:314–6. CrossrefGoogle Scholar

[20]

Capasso F. High-performance midinfrared quantum cascade lasers. Opt Eng 2010;49:111102. CrossrefGoogle Scholar

[21]

Bai Y, Slivken S, Kuboya S, Darvish SR, Razeghi M. Quantum cascade lasers that emit more light than heat. Nat Photonics 2010;4:99–102. CrossrefGoogle Scholar

[22]

Liu PQ, Hoffman AJ, Escarra MD, et al. Highly power-efficient quantum cascade lasers. Nat Photonics 2010;4:95–8. CrossrefGoogle Scholar

[23]

Yao Y, Hoffman AJ, Gmachl CF. Mid-infrared quantum cascade lasers. Nat Photonics 2012;6:432–9. CrossrefGoogle Scholar

[24]

Yang Q, Bronner W, Manz C, et al. Continuous-wave operation of GaInAs-AlGaAsSb quantum cascade lasers. IEEE Photonics Technol Lett 2005;17:2283–5. CrossrefGoogle Scholar

[25]

Bismuto A, Riedi S, Hinkov B, Beck M, Faist J. Sb-free quantum cascade lasers in the 3–4 µm spectral range. Semicond Sci Technol 2012;27, doi:10.1088/0268-1242/27/4/045013. Google Scholar

[26]

Williams BS. Terahertz quantum-cascade lasers. Nat Photonics 2007;1:517–25. CrossrefGoogle Scholar

[27]

Kazarinov RF, Suris RA. Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice. Sov Phys Semicond 1971;5:707–9. Google Scholar

[28]

Faist J. Quantum cascade lasers. Oxford, Oxford University Press, 2013. ISBN 978-0-7503-0726–0. Google Scholar

[29]

Adams RL. Molecular beam epitaxy. Woodbury: NY, USA, Cho AY, Ed, AIP, 2007. Google Scholar

[30]

Capasso F. Band-gap engineering: from physics and materials to new semiconductor devices. Science 1987;235:172–6. PubMedCrossrefGoogle Scholar

[31]

Köhler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser. Nature 2002;417:156–9. CrossrefPubMedGoogle Scholar

[32]

Faist J, Beck M, Aellen T, Gini E. Quantum-cascade lasers based on a bound-to-continuum transition. Appl Phys Lett 2001;78:147–9. CrossrefGoogle Scholar

[33]

Santamaria L, Di Sarno V, De Natale P, et al. Comb-assisted cavity ring-down spectroscopy of a buffer-gas-cooled molecular beam. Phys Chem Chem Phys 2016;18:16715–20. CrossrefPubMedGoogle Scholar

[34]

Borri S, Santambrogio G. Laser spectroscopy of cold molecules. Adv Phys X 2016;1:368–86. Google Scholar

[35]

Galli I, Bartalini S, Ballerini R, et al. Spectroscopic detection of radiocarbon dioxide at parts-per-quadrillion sensitivity. Optica 2016;3:385–8. CrossrefGoogle Scholar

[36]

Borri S, Patimisco P, Galli I, et al. Intracavity quartz-enhanced photoacoustic sensor. Appl Phys Lett 2014;104:091114. CrossrefGoogle Scholar

[37]

Ren W, Jiang W, Tittel FK. Single-QCL-based absorption sensor for simultaneous trace-gas detection of CH_{4} and N_{2}O. Appl Phys B Lasers Opt 2014;117:245–51. CrossrefGoogle Scholar

[38]

Borri S, Patimisco P, Sampaolo A, et al. Terahertz quartz enhanced photo-acoustic sensor. Appl Phys Lett 2013;103:021105. CrossrefGoogle Scholar

[39]

Siciliani de Cumis M, Viciani S, Borri S, et al. Widely-tunable mid-infrared fiber-coupled quartz-enhanced photoacoustic sensor for environmental monitoring. Opt Express 2014;22:28222–31. CrossrefPubMedGoogle Scholar

[40]

Giusfredi G, Bartalini S, Borri S, et al. Saturated-absorption cavity ring-down spectroscopy. Phys Rev Lett 2010;104:110801. CrossrefPubMedGoogle Scholar

[41]

Bartalini S, Consolino L, Cancio P, et al. Frequency-comb-assisted terahertz quantum cascade laser spectroscopy. Phys Rev X 2014;4:21006. Google Scholar

[42]

Yamanishi M, Edamura T, Fujita K, Akikusa N, Kan H. Theory of the intrinsic linewidth of quantum-cascade lasers: Hidden reason for the narrow linewidth and line-broadening by thermal photons. IEEE J Quantum Electron 2008;44:12–29. CrossrefGoogle Scholar

[43]

Bartalini S, Borri S, Galli I, et al. Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser. Opt Express 2011;19:17996–8003. CrossrefPubMedGoogle Scholar

[44]

Williams RM, Kelly JF, Hartman JS, et al. Kilohertz linewidth from frequency-stabilized mid-infrared quantum cascade lasers. Opt Lett 1999;24:1844–6. CrossrefPubMedGoogle Scholar

[45]

Borri S, Bartalini S, Galli I, et al. Lamb-dip-locked quantum cascade laser for comb-referenced IR absolute frequency measurements. Opt Express 2008;16:11637–46. PubMedCrossrefGoogle Scholar

[46]

Gambetta A, Vicentini E, Wang Y, et al. Absolute frequency measurements of CHF_{3} Doppler-free ro-vibrational transitions at 8.6 μm. Opt Lett 2017;42:1911–4. CrossrefGoogle Scholar

[47]

Galli I, Siciliani de Cumis M, Cappelli F, et al. Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy. Appl Phys Lett 2013;102:121117. CrossrefGoogle Scholar

[48]

Insero G, Clivati C, D’Ambrosio D, et al. Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals. Opt Lett 2016;41:5114–7. PubMedCrossrefGoogle Scholar

[49]

Siciliani de Cumis M, Borri S, et al. Microcavity-stabilized quantum cascade laser. Laser Photon Rev 2016;10:153–7. CrossrefGoogle Scholar

[50]

Borri S, Siciliani de Cumis M, Insero G, et al. Tunable microcavity-stabilized quantum cascade laser for Mid-IR High-Resolution spectroscopy and sensing. Sensors 2016;16:238. PubMedCrossrefGoogle Scholar

[51]

Cappelli F, Galli I, Borri S, et al. Subkilohertz linewidth room-temperature mid-infrared quantum cascade laser using a molecular sub-Doppler reference. Opt Lett 2012;37:4811–3. CrossrefPubMedGoogle Scholar

[52]

Mazzotti D, Cancio P, Giusfredi G, De Natale P, Prevedelli M. Frequency-comb-based absolute frequency measurements in the mid-infrared with a difference-frequency spectrometer. Opt Lett 2005;30:997–9. PubMedCrossrefGoogle Scholar

[53]

Tombez L, Di Francesco J, Schilt S, et al. Frequency noise of free-running 4.6μm distributed feedback quantum cascade lasers near room temperature. Opt Lett 2011;36:3109–11. CrossrefGoogle Scholar

[54]

Maddaloni P, Bellini M, De Natale P. Laser-based measurements for time and frequency domain applications: a handbook. 6000 Broken South Parkway NW 300, Boca Raton, FL 33487-2742, USA, CRC Press, 2013. ISBN ISBN-13: 978-1-4398-4151-8 e-ISBN-13: 978-1-4398-4153–2. Google Scholar

[55]

Foreman SM, Marian A, Ye J, et al. Demonstration of a HeNe/CH_{4}-based optical molecular clock. Opt Lett 2005;30:570–2. PubMedCrossrefGoogle Scholar

[56]

Rothman LS, Tashkun S, Mikhailenko S, Gordon I, Babikov Y. HITRAN on the web Available online: http://hitran.iao.ru/. (Accessed September 16, 2018).

[57]

Hansen MG, Magoulakis E, Chen Q-F, Ernsting I, Schiller S. Quantum cascade laser-based mid-IR frequency metrology system with ultra-narrow linewidth and 1×10^{−13}-level frequency instability. Opt Lett 2015;40:2289–92. CrossrefPubMedGoogle Scholar

[58]

Hansen MG, Ernsting I, Vasilyev SV, Grisard A, Gérard B, Schiller S. laser spectrometer based on frequency comb metrology of quantum cascade lasers up- converted in orientation-patterned GaAs. Opt Express 2013;21:440–9. Google Scholar

[59]

Lamperti M, Alsaif B, Gatti D, et al. Absolute spectroscopy near 7.8 μm with a comb-locked extended-cavity quantum-cascade-laser. Sci Rep 2018;8:1292. PubMedCrossrefGoogle Scholar

[60]

Mills AA, Gatti D, Jiang J, et al. Coherent phase lock of a 9 μm quantum cascade laser to a 2 μm thulium optical frequency comb. Opt Lett 2012;37:4083. CrossrefPubMedGoogle Scholar

[61]

Sow PLT, Mejri S, Tokunaga SK, et al. A widely tunable 10-μm quantum cascade laser phase-locked to a state-of-the-art mid-infrared reference for precision molecular spectroscopy. Appl Phys Lett 2014;104:264101. CrossrefGoogle Scholar

[62]

Argence B, Chanteau B, Lopez O, et al. Quantum cascade laser frequency stabilization at the sub-Hz level. Nat Photonics 2015;9:456–60. CrossrefGoogle Scholar

[63]

Clivati C, Cappellini G, Livi L, et al. Measuring absolute frequencies beyond the GPS limit via long-haul optical frequency dissemination. Opt Express 2015;24:11865–75. Google Scholar

[64]

Calonico D, Inguscio M, Levi F. Light and the distribution of time. Epl 2015;110:40001. CrossrefGoogle Scholar

[65]

Droste S, Ozimek F, Udem T, et al. Optical-frequency transfer over a single-span 1840 km fiber link. Phys Rev Lett 2013;111:110801. CrossrefGoogle Scholar

[66]

Lopez O, Haboucha A, Chanteau B, Chardonnet C, Amy-Klein A, Santarelli G. Ultra-stable long distance optical frequency distribution using the Internet fiber network. Opt Express 2012;20:23518–26. CrossrefPubMedGoogle Scholar

[67]

Lim EJ, Hertz HM, Bortz ML, Fejer MM. Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled lithium niobate waveguide. Appl Phys Lett 1991;59:2207–9. CrossrefGoogle Scholar

[68]

Gatti D, Gambetta A, Castrillo A, et al. High-precision molecular interrogation by direct referencing of a quantum-cascade-laser to a near-infrared frequency comb. Opt Express 2011;19:17520–7. PubMedCrossrefGoogle Scholar

[69]

Galli I, Bartalini S, Cancio P, Giusfredi G, Mazzotti D, De Natale P. Ultra-stable, widely tunable and absolutely linked mid-IR coherent source. Opt Express 2009;17:9582–7. CrossrefPubMedGoogle Scholar

[70]

Telle HR, Lipphardt B, Stenger J. Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements. Appl Phys B Lasers Opt 2002;74:1–6. CrossrefGoogle Scholar

[71]

Galli I, Bartalini S, Borri S, et al. Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm. Opt Lett 2010;35:3616–8. PubMedCrossrefGoogle Scholar

[72]

Galli I, Bartalini S, Cancio P, et al. Absolute frequency measurements of CO_{2} transitions at 4.3 μm with a comb-referenced quantum cascade laser. Mol Phys 2013;111:2041–5. CrossrefGoogle Scholar

[73]

Guelachvili G, Rao KN. Handbook of Infrared Standards II: with Spectral Coverage between 1.4 μm-4 μm and 6.2 μm-7.7 μm. Orlando, FL, USA, Academic Press, 1993. ISBN 0123053625. Google Scholar

[74]

Gambetta A, Coluccelli N, Cassinerio M, et al. Frequency-comb-assisted precision laser spectroscopy of CHF_{3} around 8.6 μm. J Chem Phys 2015;143:234202. PubMedCrossrefGoogle Scholar

[75]

Gambetta A, Cassinerio M, Coluccelli N, et al. Galzerano G. Direct phase-locking of a 8.6-μm quantum cascade laser to a mid-IR optical frequency comb: application to precision spectroscopy of N_{2}O. Opt Lett 2015;40:304–7. CrossrefPubMedGoogle Scholar

[76]

Gambetta A, Coluccelli N, Cassinerio M, et al. Milliwatt-level frequency combs in the 8–14μm range via difference frequency generation from an Er:fiber oscillator. Opt Lett 2013;38:1155–57. CrossrefGoogle Scholar

[77]

Vodopyanov KL, Makasyuk I, Schunemann PG. Grating tunable 4–14 μm GaAs optical parametric oscillator pumped at 3 μm. Opt Express 2014;22:4131–6. CrossrefGoogle Scholar

[78]

Rudy CW, Marandi A, Vodopyanov KL, Byer RL. Octave-spanning supercontinuum generation in in situ tapered As_{2}S_{3} fiber pumped by a thulium-doped fiber laser. Opt Lett 2013;38:2865–8. CrossrefGoogle Scholar

[79]

Ycas G, Giorgetta FR, Baumann E, et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm. Nat Photonics 2018;12:202–8. CrossrefGoogle Scholar

[80]

Galli I, Cappelli F, Cancio P, et al. High-coherence mid-infrared frequency comb. Opt Express 2013;21:28877–85. PubMedCrossrefGoogle Scholar

[81]

Schliesser A, Picqué N, Hänsch TW. Mid-infrared frequency combs. Nat Photonics 2012;6:440–9. CrossrefGoogle Scholar

[82]

Kuyken B, Ideguchi T, Holzner S, et al. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat Commun 2015;6:6310. CrossrefGoogle Scholar

[83]

Hugi A, Villares G, Blaser S, Liu HC, Faist J. Mid-infrared frequency comb based on a quantum cascade laser. Nature 2012;492:229–33. PubMedCrossrefGoogle Scholar

[84]

Villares G, Hugi A, Blaser S, Faist J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat Commun 2014;5:5192. CrossrefPubMedGoogle Scholar

[85]

Cappelli F, Villares G, Riedi S, Faist J. Intrinsic linewidth of quantum cascade laser frequency combs. Optica 2015;2: 836–40. CrossrefGoogle Scholar

[86]

Schilt S, Bucalovic N, Dolgovskiy V, et al. Fully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM-modelocked 1.5-μm solid-state laser. Opt Express 2011;19:24171. CrossrefPubMedGoogle Scholar

[87]

Cappelli F, Campo G, Galli I, et al. Frequency stability characterization of a quantum cascade laser frequency comb. Laser Photon Rev 2016;10:623–30. CrossrefGoogle Scholar

[88]

Burghoff D, Yang Y, Hu Q. Computational multiheterodyne spectroscopy. Sci Adv 2016;2:e1601227. PubMedCrossrefGoogle Scholar

[89]

Singleton M, Jouy P, Beck M, Faist J. Evidence of linear chirp in mid-infrared quantum cascade lasers. Optica 2018;5:948–53. CrossrefGoogle Scholar

[90]

Savchenkov AA, Matsko AB, Ilchenko VS, Maleki L. Optical resonators with ten million finesse. Opt Express 2007;15:6768. CrossrefPubMedGoogle Scholar

[91]

Savchenkov AA, Ilchenko VS, Di Teodoro F, et al. Generation of Kerr combs centered at 4.5μm in crystalline microresonators pumped with quantum-cascade lasers. Opt Lett 2015;40:3468–71. CrossrefGoogle Scholar

[92]

Lecaplain C, Javerzac-Galy C, Gorodetsky ML, Kippenberg TJ. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials. Nat Commun 2016;7:13383. CrossrefPubMedGoogle Scholar

[93]

Fasci E, Coluccelli N, Cassinerio M, et al. Narrow-linewidth quantum cascade laser at 8.6μm. Opt Lett 2014;39:4946–9. CrossrefGoogle Scholar

[94]

Testi L, Zwaan M, Vlahakis C, Corder S. Science verification datasets on the ALMA science portal. The Messenger 2012;150:59–61. Google Scholar

[95]

Leisawitz DT, Danchi WC, DiPirro MJ, et al. Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers. In UV, Optical, and IR Space Telescopes and Instruments 2000;4013:36–46. CrossrefGoogle Scholar

[96]

Bellini M, De Natale P, Di Lonardo G, Fusina L, Inguscio M, Prevedelli M. Tunable far infrared spectroscopy of ^{16}O_{3} ozone. J Mol Spectrosc 1992;152:256–9. CrossrefGoogle Scholar

[97]

Luhmann NC, Peebles WA. Instrumentation for magnetically confined fusion plasma diagnostics. Rev Sci Instrum 1984;55:279–331. CrossrefGoogle Scholar

[98]

Brown JM, Evenson KM, Zink LR. Laser magnetic-resonance measurement of the ^{3}P_{1}-^{3}P_{2} fine-structure splittings in ^{17}O and ^{18}O. Phys Rev A 1993;48:3761–3. CrossrefPubMedGoogle Scholar

[99]

Bićanić DD, Zuidberg BFJ, Dymanus A. Generation of continuously tunable laser sidebands in the submillimeter region. Appl Phys Lett 1978;32:367–9. CrossrefGoogle Scholar

[100]

Farhoomand J, Blake GA, Frerking MA, Pickett HM. Generation of tunable laser sidebands in the far-infrared region. J Appl Phys 1985;57:1763–6. CrossrefGoogle Scholar

[101]

Evenson KM, Jennings DA, Petersen FR. Tunable far-infrared spectroscopy. Appl Phys Lett 1984;44:576–8. CrossrefGoogle Scholar

[102]

Zink LR, De Natale P, Pavone FS, Prevedelli M, Evenson KM, Inguscio M. Rotational far infrared spectrum of ^{13}CO. J Mol Spectrosc 1990;143:304–10. CrossrefGoogle Scholar

[103]

Odashima H, Zink LR, Evenson KM. Tunable far-infrared spectroscopy extended to 9.1 THz. Opt Lett 1999;24:406–7. CrossrefGoogle Scholar

[104]

Di Lonardo G, Fusina L, De Natale P, Inguscio M, Prevedelli M. The pure rotation spectrum of HBr in the submillimeter-wave region. J Mol Spectrosc 1991;148:86–92. CrossrefGoogle Scholar

[105]

Bellini M, De Natale P, Inguscio M, Varberg TD, Brown JM. Precise experimental test of models for the breakdown of the Born-Oppenheimer separation: the rotational spectra of isotopic variants of lithium hydride. Phys Rev A 1995;52:1954–60. CrossrefPubMedGoogle Scholar

[106]

Bellini M, De Natale P, Inguscio M, Fink E, Galli D, Palla F. Laboratory measurements of rotational transitions of lithium hydride in the far-infrared. Astrophys J 1994;424:507–9. CrossrefGoogle Scholar

[107]

Buffa G, Tarrini O, De Natale P, et al. Far-infrared self-broadening in methylcyanide: Absorber-perturber resonance. Phys Rev A 1992;45:6443–50. CrossrefPubMedGoogle Scholar

[108]

De Natale P, Bellini M, Goetz W, Prevedelli M, Inguscio M. Hyperfine structure and isotope shift in the far-infrared ground-state transitions of atomic oxygen. Phys Rev A 1993;48:3757–60. CrossrefPubMedGoogle Scholar

[109]

Gagliardi G, Viciani S, Inguscio M, et al. Generation of tunable far-infrared radiation with a quantum cascade laser. Opt Lett 2002;27:521–3. PubMedCrossrefGoogle Scholar

[110]

Kiessling J, Breunig I, Schunemann PG, Buse K, Vodopyanov KL. High power and spectral purity continuous-wave photonic THz source tunable from 1 to 4.5 THz for nonlinear molecular spectroscopy. New J Phys 2013;15:105014. CrossrefGoogle Scholar

[111]

Zhao P, Ding YJ, Zotova IB. Power scaling of blue and red light based on frequency mixing inside adhesive-free bond composite Nd:YAG laser cavity. Opt Commun 2010;283:1905–8. CrossrefGoogle Scholar

[112]

Zhao P, Ragam S, Ding YJ, Zotova IB. Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser. Opt Lett 2010;35:3979–81. PubMedCrossrefGoogle Scholar

[113]

Zhao P, Ragam S, Ding YJ, Zotova IB. Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers. Appl Phys Lett 2011;98:131106. CrossrefGoogle Scholar

[114]

Zhao P, Ragam S, Ding YJ, Zotova IB. Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses. Opt Lett 2011;36:4818–20. PubMedCrossrefGoogle Scholar

[115]

Zhao P, Ragam S, Ding YJ, et al. Singly resonant optical parametric oscillator based on adhesive-free-bonded periodically inverted KTiOPO_{4} plates: terahertz generation by mixing a pair of idler waves. Opt Lett 2012;37:1283–5. PubMedCrossrefGoogle Scholar

[116]

Zhao P, Ragam S, Ding YJ, Zotova IB. Terahertz intracavity generation from output coupler consisting of stacked GaP plates. Appl Phys Lett 2012;101:021107. CrossrefGoogle Scholar

[117]

Fathololoumi S, Dupont E, Chan CWI, et al. Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling. Opt Express 2012;20:3866–76. CrossrefPubMedGoogle Scholar

[118]

Reix JM, Passvogel T, Crone G, et al. The Herschel/Planck programme, technical challenges for two science missions, successfully launched. Acta Astronaut 2010;66:130–48. CrossrefGoogle Scholar

[119]

Mittleman DM. Sensing with Terahertz Radiation; Mittleman, D., Ed, Springer, 2003. ISBN 9783642057991. Google Scholar

[120]

Tonouchi M. Cutting-edge terahertz technology. Nat Photonics 2007;1:97–105. CrossrefGoogle Scholar

[121]

Capasso F, Paiella R, Martini R, et al. Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission. IEEE J. Quantum Electron 2002;38:511–32. CrossrefGoogle Scholar

[122]

Barkan A, Tittel FK, Mittleman DM, et al. Linewidth and tuning characteristics of terahertz quantum cascade lasers. Opt Lett 2004;29:575–7. PubMedCrossrefGoogle Scholar

[123]

Betz AL, Boreiko RT, Williams BS, Kumar S, Hu Q, Reno JL. Frequency and phase-lock control of a 3 THz quantum cascade laser. Opt Lett 2005;30:1837–9. CrossrefPubMedGoogle Scholar

[124]

Maulini R, Yarekha DA, Bulliard J-M, Giovannini M, Faist J, Gini E. Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser. Opt Lett 2005;30:2584–6. PubMedCrossrefGoogle Scholar

[125]

Hübers H-W, Pavlov SG, Semenov AD, et al. Terahertz quantum cascade laser as local oscillator in a heterodyne receiver. Opt Express 2005;13:5890–6. CrossrefGoogle Scholar

[126]

Baryshev A, Hovenier JN, Adam AJL, et al. Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser. Appl Phys Lett 2006;89:031115. CrossrefGoogle Scholar

[127]

Vitiello MS, Consolino L, Bartalini S, et al. Quantum-limited frequency fluctuations in a terahertz laser. Nat Photonics 2012;6:525–8. CrossrefGoogle Scholar

[128]

Ravaro M, Barbieri S, Santarelli G, et al. Measurement of the intrinsic linewidth of terahertz quantum cascade lasers using a near-infrared frequency comb. Opt Express 2012;20: 25654–61. CrossrefPubMedGoogle Scholar

[129]

Hübers HW, Pavlov SG, Richter H, et al. High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser. Appl Phys Lett 2006;89:061115. CrossrefGoogle Scholar

[130]

Khosropanah P, Baryshev A, Zhang W, et al. Phase locking of a 2.7 THz quantum cascade laser to a microwave reference. Opt Lett 2009;34:2958–60. CrossrefPubMedGoogle Scholar

[131]

Ravaro M, Manquest C, Sirtori C, et al. Phase-locking of a 2.5 THz quantum cascade laser to a frequency comb using a GaAs photomixer. Opt Lett 2011;36:3969–71. CrossrefPubMedGoogle Scholar

[132]

Barbieri S, Gellie P, Santarelli G, et al. Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser. Nat Photonics 2010;4:636–40. CrossrefGoogle Scholar

[133]

Consolino L, Taschin A, Bartolini P, et al. Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers. Nat Commun 2012;3:1040. PubMedCrossrefGoogle Scholar

[134]

Consolino L, Campa A, Ravaro M, et al. Saturated absorption in a rotational molecular transition at 2.5 THz using a quantum cascade laser. Appl Phys Lett 2015;106:021108. CrossrefGoogle Scholar

[135]

Wienold M, Alam T, Schrottke L, Grahn HT, Hübers H-W. Doppler-free spectroscopy with a terahertz quantum-cascade laser. Opt Express 2018;26:6692–9. CrossrefPubMedGoogle Scholar

[136]

Campa A, Consolino L, Ravaro M, et al. High-Q resonant cavities for terahertz quantum cascade lasers. Opt Express 2015;23:3751–61. CrossrefPubMedGoogle Scholar

[137]

Belkin MA, Capasso F, Belyanin A, et al. Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nat Photonics 2007;1:288–92. CrossrefGoogle Scholar

[138]

Belkin MA, Capasso F, Xie F, et al. Microwatt-level terahertz intra-cavity difference-frequency generation in mid- infrared quantum cascade lasers. Appl Phys Lett 2008;92:201101. CrossrefGoogle Scholar

[139]

Lu Q, Razeghi M. Recent advances in room temperature, high-power terahertz quantum cascade laser sources based on difference-frequency generation. Photonics 2016;3:42. CrossrefGoogle Scholar

[140]

Vijayraghavan K, Adams RW, Vizbaras A, et al. Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers. Appl Phys Lett 2012;100:251104. CrossrefGoogle Scholar

[141]

Vijayraghavan K, Jiang Y, Jang M, et al. Broadly tunable terahertz generation in mid-infrared quantum cascade lasers. Nat Commun 2013;4:2021. CrossrefPubMedGoogle Scholar

[142]

Lu Q, Wu D, Sengupta S, Slivken S, Razeghi M. Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers. Sci Rep 2016;6:23595. PubMedCrossrefGoogle Scholar

[143]

Belkin MA, Capasso F. New frontiers in quantum cascade lasers: high performance room temperature terahertz sources. Phys Scr 2015;90:118002. CrossrefGoogle Scholar

[144]

Consolino L, Jung S, Campa A, et al. Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation. Sci Adv 2017;3:e1603317. PubMedCrossrefGoogle Scholar

[145]

Wang F, Nong H, Fobbe T, et al. Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser. Laser Photonics Rev 2017;11:1–9. Google Scholar

[146]

Bachmann D, Rösch M, Süess MJ, et al. Short pulse generation and mode control of broadband terahertz quantum cascade lasers. Optica 2016;3:1087–94. CrossrefGoogle Scholar

[147]

Rösch M, Scalari G, Beck M, Faist J. Octave-spanning semiconductor laser. Nat Photonics 2014;9:42–7. Google Scholar

[148]

Burghoff D, Yang Y, Hayton DJ, Gao J-R, Reno JL, Hu Q. Evaluating the coherence and time-domain profile of quantum cascade laser frequency combs. Opt Express 2015;23:1190–202. PubMedCrossrefGoogle Scholar

[149]

Friedli P, Sigg H, Hinkov B, et al. Four-wave mixing in a quantum cascade laser amplifier. Appl Phys Lett 2013;102:222104. CrossrefGoogle Scholar

[150]

Mosca S, Parisi M, Ricciardi I, et al. Modulation instability induced frequency comb generation in a continuously pumped optical parametric oscillator. Phys Rev Lett 2018;121:093903. CrossrefGoogle Scholar

[151]

Yamanishi M, Hirohata T, Hayashi S, Fujita K, Tanaka K. Electrical flicker-noise generated by filling and emptying of impurity states in injectors of quantum-cascade lasers. J Appl Phys 2014;116:183106. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.