[1]

Novotny L, Hecht B. Principles of nano-optics. Cambridge, Cambridge University Press, 2012. Google Scholar

[2]

Benson O. Assembly of hybrid photonic architectures from nanophotonic constituents. Nature 2011;480:193–9. CrossrefPubMedGoogle Scholar

[3]

Koenderink AF, Alù A, Polman A. Nanophotonics: shrinking light-based technology. Science 2015;348:516–21. PubMedCrossrefGoogle Scholar

[4]

Joannopoulos JD, Johnson SG, Winn JN, Meade RD. Photonic crystals: molding the flow of light. Princeton, Princeton University Press, 2008. Google Scholar

[5]

Zayats AV, Smolyaninov II, Maradudin AA. Nano-optics of surface plasmon polaritons. Phys Rep 2005;408:131–314. CrossrefGoogle Scholar

[6]

Cai W, Shalaev V. Optical metamaterials: fundamentals and applications. New York, Springer Science+Business Media, 2010. Google Scholar

[7]

Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014;13:139–50. CrossrefPubMedGoogle Scholar

[8]

Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science 2013;339:1232009. CrossrefPubMedGoogle Scholar

[9]

Yao K, Liu Y. Plasmonic metamaterials. Nanotechnol Rev 2014;3:177–210. Google Scholar

[10]

Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science 2001;292:77–9. CrossrefPubMedGoogle Scholar

[11]

Molesky S, Lin Z, Piggott AY, Jin W, Vucković J, Rodriguez AW.Inverse design in nanophotonics. Nat Photon 2018;12:659–70. CrossrefGoogle Scholar

[12]

Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, eds. Advances in Neural Information Processing System 25. Lake Tahoe, NV, USA, NIPS, 2012:1097–105. Google Scholar

[13]

Hinton G, Deng L, Yu D, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag 2012;29:82–97. CrossrefGoogle Scholar

[14]

Silver D, Huang A, Maddison CJ, et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016;529:484–9. PubMedCrossrefGoogle Scholar

[15]

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436–44. PubMedCrossrefGoogle Scholar

[16]

Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: generative models for matter engineering. Science 2018;361:360–5. CrossrefPubMedGoogle Scholar

[17]

Zunger A. Inverse design in search of materials with target functionalities. Nat Rev Chem 2018;2:0121. CrossrefGoogle Scholar

[18]

Carrasquilla J, Melko RG. Machine learning phases of matter. Nat Phys 2017;13:431–4. CrossrefGoogle Scholar

[19]

Gawehn E, Hiss JA, Schneider G. Deep learning in drug discovery. Mol Inform 2016;35:3–14. CrossrefPubMedGoogle Scholar

[20]

Malkiel I, Mrejen M, Nagler A, Arieli U, Wolf L, Suchowski H. Plasmonic nanostructure design and characterization via deep learning. Light Sci Appl 2018;7:60. PubMedCrossrefGoogle Scholar

[21]

Ma W, Cheng F, Liu Y. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano 2018;12:6326–34. PubMedCrossrefGoogle Scholar

[22]

Liu Z, Zhu D, Rodrigues SP, Lee K-T, Cai W. Generative model for the inverse design of metasurfaces. Nano Lett 2018;18:6570–6. CrossrefPubMedGoogle Scholar

[23]

Shen Y, Harris NC, Skirlo S, et al. Deep learning with coherent nanophotonic circuits. Nat Photon 2017;11:441–6. CrossrefGoogle Scholar

[24]

Sacha GM, Varona P. Artificial intelligence in nanotechnology. Nanotechnology 2013;24:452002. CrossrefPubMedGoogle Scholar

[25]

Jensen JS, Sigmund O. Topology optimization for nano-photonics. Laser Photonics Rev 2011;5:308–21. CrossrefGoogle Scholar

[26]

Peng H-T, Nahmias MA, de Lima TF, Tait AN, Shastri BJ, Prucnal PR. Neuromorphic photonic integrated circuits. IEEE J Sel Top Quantum Electron 2018;24:6101715. Google Scholar

[27]

Prucnal PR, Shastri BJ. Neuromorphic photonics. Boca Raton, FL, CRC Press, 2017. Google Scholar

[28]

de Lima TF, Shastri BJ, Tait AN, Nahmias MA, Prucnal PR. Progress in neuromorphic photonics. Nanophotonics 2017;6:577–99. Google Scholar

[29]

Shastri BJ, Tait AN, de Lima TF, Nahmias MA, Peng H-T, Prucnal PR. Principles of neuromorphic photonics. In: Meyers RA, ed. Encyclopedia of complexity and systems science. Berlin, Heidelberg, Springer, 2018. Google Scholar

[30]

Van der Sande G, Brunner D, Soriano MC. Advances in photonic reservoir computing. Nanophotonics 2017;6:561–76. Google Scholar

[31]

Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Cambridge, MA, MIT Press, 1992. Google Scholar

[32]

Goldberg DE, Holland JH. Genetic algorithms and machine learning. Mach Learn 1988;3:95–9. CrossrefGoogle Scholar

[33]

Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN’95 – International Conference on Neural Networks. Perth, WA, Australia, IEEE, 1995:1942–8. Google Scholar

[34]

Kennedy J. Particle swarm optimization. In: Sammut C, Webb GI, eds. Encyclopedia of machine learning. Boston, MA, Springer, 2011. Google Scholar

[35]

Robinson J, Rahmat-Samii Y. Particle swarm optimization in electromagnetics. IEEE Trans Antennas Propag 2004;52:397–407. CrossrefGoogle Scholar

[36]

Bendsøe MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 1988;71:197–224. CrossrefGoogle Scholar

[37]

Bendsoe MP, Sigmund O. Topology optimization: theory, methods, and applications. Berlin, Heidelberg, Springer-Verlag, 2004. Google Scholar

[38]

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing machines. J Chem Phys 1953;21:1087–92. CrossrefGoogle Scholar

[39]

Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science 1983;220:671–80. CrossrefPubMedGoogle Scholar

[40]

Spühler MM, Offrein BJ, Bona G-L, Germann R, Massarek I, Erni D. A very short planar silica spot-size converter using a nonperiodic segmented waveguide. J Lightwave Technol 1998;16:1680–5. CrossrefGoogle Scholar

[41]

Dobson DC, Cox SJ. Maximizing band gaps in two-dimensional photonic crystals. SIAM J Appl Math 1999;59:2108–20. CrossrefGoogle Scholar

[42]

Cox SJ, Dobson DC. Band structure optimization of two-dimensional photonic crystals in H-polarization. J Comput Phys 2000;158:214–24. CrossrefGoogle Scholar

[43]

Geremia JM, Williams J, Mabuchi H. Inverse-problem approach to designing photonic crystals for cavity QED experiments. Phys Rev E 2002;66:066606. CrossrefGoogle Scholar

[44]

Burger M, Osher SJ, Yablonovitch E. Inverse problem techniques for the design of photonic crystals. IEICE Trans Electron 2004;87:258–65. Google Scholar

[45]

Jensen JS, Sigmund O. Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends. Appl Phys Lett 2004;84:2022–4. CrossrefGoogle Scholar

[46]

Englund D, Fushman I, Vučković J. General recipe for designing photonic crystal cavities. Opt Express 2005;13:5961–75. CrossrefPubMedGoogle Scholar

[47]

Jensen JS, Sigmund O. Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide. J Opt Soc Am B 2005;22:1191–8. CrossrefGoogle Scholar

[48]

Kao CY, Osher S, Yablonovitch E. Maximizing band gaps in two-dimensional photonic crystals by using level set methods. Appl Phys B 2005;81:235–44. CrossrefGoogle Scholar

[49]

Preble S, Lipson M, Lipson H. Two-dimensional photonic crystals designed by evolutionary algorithms. Appl Phys Lett 2005;86:061111. CrossrefGoogle Scholar

[50]

Jiao Y, Fan S, Miller DA. Systematic photonic crystal device design: global and local optimization and sensitivity analysis. IEEE J Quantum Electron 2006;42:266–79. CrossrefGoogle Scholar

[51]

Sigmund O, Hougaard K. Geometric properties of optimal photonic crystals. Phys Rev Lett 2008;100:153904. PubMedCrossrefGoogle Scholar

[52]

Cao Y, Xie J, Liu Y, Liu Z. Modeling and optimization of photonic crystal devices based on transformation optics method. Opt Express 2014;22:2725–34. PubMedCrossrefGoogle Scholar

[53]

Men H, Lee KYK, Freund RM, Peraire J, Johnson SG. Robust topology optimization of three-dimensional photonic-crystal band-gap structures. Opt Express 2014;22:22632–48. CrossrefPubMedGoogle Scholar

[54]

Sanchis L, Håkansson A, López-Zanón D, Bravo-Abad J, Sánchez-Dehesa J. Integrated optical devices design by genetic algorithm. Appl Phys Lett 2004;84:4460–2. CrossrefGoogle Scholar

[55]

Borel PI, Bilenberg B, Frandsen LH, et al. Imprinted silicon-based nanophotonics. Opt Express 2007;15:1261–6. PubMedCrossrefGoogle Scholar

[56]

Lu J, Boyd S, Vučković J. Inverse design of a three-dimensional nanophotonic resonator. Opt Express 2011;19:10563–70. CrossrefPubMedGoogle Scholar

[57]

Ginzburg P, Berkovitch N, Nevet A, Shor I, Orenstein M. Resonances on-demand for plasmonic nano-particles. Nano Lett 2011;11:2329–33. PubMedCrossrefGoogle Scholar

[58]

Forestiere C, Pasquale AJ, Capretti A, et al. Genetically engineered plasmonic nanoarrays. Nano Lett 2012;12: 2037–44. CrossrefPubMedGoogle Scholar

[59]

Wang F, Jensen JS, Sigmund O. Robust topology optimization of photonic crystal waveguides with tailored dispersion properties. J Opt Soc Am B 2011;28:387–97. CrossrefGoogle Scholar

[60]

Wang F, Jensen JS, Sigmund O. High-performance slow light photonic crystal waveguides with topology optimized or circular-hole based material layouts. Photonics Nanostruct 2012;10:378–88. CrossrefGoogle Scholar

[61]

Elesin Y, Lazarov BS, Jensen JS, Sigmund O. Design of robust and efficient photonic switches using topology optimization. Photonics Nanostruct 2012;10:153–65. CrossrefGoogle Scholar

[62]

Dühring MB, Sigmund O. Optimization of extraordinary optical absorption in plasmonic and dielectric structures. J Opt Soc Am B 2013;30:1154–60. CrossrefGoogle Scholar

[63]

Elesin Y, Lazarov BS, Jensen JS, Sigmund O. Time domain topology optimization of 3D nanophotonic devices. Photonics Nanostruct 2014;12:23–33. CrossrefGoogle Scholar

[64]

Wang P, Menon R. Optimization of generalized dielectric nanostructures for enhanced light trapping in thin-film photovoltaics via boosting the local density of optical states. Opt Express 2014;22:A99–110. CrossrefPubMedGoogle Scholar

[65]

Shen B, Wang P, Polson R, Menon R. Integrated metamaterials for efficient and compact free-space-to-waveguide coupling. Opt Express 2014;22:27175–82. CrossrefPubMedGoogle Scholar

[66]

Ganapati V, Miller OD, Yablonovitch E. Light trapping textures designed by electromagnetic optimization for subwavelength thick solar cells. IEEE J Photovolt 2014;4:175–82. CrossrefGoogle Scholar

[67]

Macías D, Adam P-M, Ruíz-Cortés V, Rodríguez-Oliveros R, Sánchez-Gil JA. Heuristic optimization for the design of plasmonic nanowires with specific resonant and scattering properties. Opt Express 2012;20:13146–63. CrossrefPubMedGoogle Scholar

[68]

Forestiere C, He Y, Wang R, Kirby RM, Dal Negro L. Inverse design of metal nanoparticles’ morphology. ACS Photonics 2015;3:68–78. Google Scholar

[69]

Lin Z, Liang X, Lončar M, Johnson SG, Rodriguez AW. Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization. Optica 2016;3:233–8. CrossrefGoogle Scholar

[70]

Shen B, Polson R, Menon R. Integrated digital metamaterials enables ultra-compact optical diodes. Opt Express 2015;23:10847–55. PubMedCrossrefGoogle Scholar

[71]

Callewaert F, Butun S, Li Z, Aydin K. Inverse design of an ultra-compact broadband optical diode based on asymmetric spatial mode conversion. Sci Rep 2016;6:32577. PubMedCrossrefGoogle Scholar

[72]

Shen B, Wang P, Polson R, Menon R. Ultra-high-efficiency metamaterial polarizer. Optica 2014;1:356–60. CrossrefGoogle Scholar

[73]

Sigmund O. On the usefulness of non-gradient approaches in topology optimization. Struct Multidiscipl Optim 2011;43:589–96. CrossrefGoogle Scholar

[74]

Borel PI, Harpøth A, Frandsen LH, et al. Topology optimization and fabrication of photonic crystal structures. Opt Express 2004;12:1996–2001. CrossrefPubMedGoogle Scholar

[75]

Piggott AY, Lu J, Lagoudakis KG, Petykiewicz J, Babinec TM, Vučković J. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat Photon 2015;9:374–7. CrossrefGoogle Scholar

[76]

Shen B, Wang P, Polson R, Menon R. An integrated-nanophotonics polarization beamsplitter with 2.4× 2.4 μm^{2} footprint. Nat Photon 2015;9:378–82. CrossrefGoogle Scholar

[77]

Yu Z, Cui H, Sun X. Genetically optimized on-chip wideband ultracompact reflectors and Fabry-Perot cavities. Photon Res 2017;5:B15–9. CrossrefGoogle Scholar

[78]

Frandsen LH, Elesin Y, Frellsen LF, et al. Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material. Opt Express 2014;22: 8525–32. CrossrefGoogle Scholar

[79]

Lu J, Vučković J. Nanophotonic computational design. Opt Express 2013;21:13351–67. CrossrefPubMedGoogle Scholar

[80]

Piggott AY, Lu J, Babinec TM, Lagoudakis KG, Petykiewicz J, Vučković J. Inverse design and implementation of a wavelength demultiplexing grating coupler. Sci Rep 2014;4:7210. PubMedGoogle Scholar

[81]

Osher S, Fedkiw R. Level set methods and dynamic implicit surfaces. New York, Springer-Verlag, 2003. Google Scholar

[82]

Shen B, Wang P, Polson R, Menon R. Reply to “On nanostructured silicon success”. Nat Photon 2016;10:143. CrossrefGoogle Scholar

[83]

Sell D, Yang J, Doshay S, Fan JA. Periodic dielectric metasurfaces with high-efficiency, multiwavelength functionalities. Adv Opt Mater 2017;5:1700645. CrossrefGoogle Scholar

[84]

Sell D, Yang J, Doshay S, Yang R, Fan JA. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett 2017;17:3752–7. PubMedCrossrefGoogle Scholar

[85]

Sell D, Yang J, Doshay S, Zhang K, Fan JA. Visible light metasurfaces based on single-crystal silicon. ACS Photonics 2016;3:1919–25. CrossrefGoogle Scholar

[86]

Yang J, Sell D, Fan JA. Freeform metagratings based on complex light scattering dynamics for extreme, high efficiency beam steering. Ann Phys 2018;530:1700302. CrossrefGoogle Scholar

[87]

Lalau-Keraly CM, Bhargava S, Miller OD, Yablonovitch E. Adjoint shape optimization applied to electromagnetic design. Opt Express 2013;21:21693–701. PubMedCrossrefGoogle Scholar

[88]

Lin Z, Groever B, Capasso F, Rodriguez AW, Lončar M. Topology-optimized multilayered metaoptics. Phys Rev Appl 2018;9:044030. CrossrefGoogle Scholar

[89]

Aieta F, Genevet P, Kats M, Capasso F. Aberrations of flat lenses and aplanatic metasurfaces. Opt Express 2013;21:31530–9. PubMedCrossrefGoogle Scholar

[90]

Huntington MD, Lauhon LJ, Odom TW. Subwavelength lattice optics by evolutionary design. Nano Lett 2014;14:7195–200. CrossrefPubMedGoogle Scholar

[91]

Feichtner T, Selig O, Kiunke M, Hecht B. Evolutionary optimization of optical antennas. Phys Rev Lett 2012;109:127701. CrossrefPubMedGoogle Scholar

[92]

Wiecha PR, Arbouet A, Girard C, Lecestre A, Larrieu G, Paillard V. Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas. Nat Nanotechnol 2017;12:163–9. CrossrefPubMedGoogle Scholar

[93]

Lee W-K, Yu S, Engel CJ, et al. Concurrent design of quasi-random photonic nanostructures. Proc Natl Acad of Sci USA 2017;114:8734–9. CrossrefGoogle Scholar

[94]

Hu J, Liu C-H, Ren X, Lauhon LJ, Odom TW. Plasmonic lattice lenses for multiwavelength achromatic focusing. ACS Nano 2016;10:10275–82. CrossrefPubMedGoogle Scholar

[95]

Kristensen A, Yang JKW, Bozhevolnyi SI, et al. Plasmonic colour generation. Nat Rev Mater 2016;2:16088. Google Scholar

[96]

Torquato S. Statistical description of microstructures. Annu Rev Mater Res 2002;32:77–111. CrossrefGoogle Scholar

[97]

Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science 2006;312:1780–2. PubMedCrossrefGoogle Scholar

[98]

Leonhardt U. Optical conformal mapping. Science 2006;312:1777–80. PubMedCrossrefGoogle Scholar

[99]

Chen H, Chan CT, Sheng P. Transformation optics and metamaterials. Nat Mater 2010;9:387–96. PubMedCrossrefGoogle Scholar

[100]

Pendry JB, Luo Y, Zhao R. Transforming the optical landscape. Science 2015;348:521–4. PubMedCrossrefGoogle Scholar

[101]

Liu D, Gabrielli LH, Lipson M, Johnson SG. Transformation inverse design. Opt Express 2013;21:14223–43. CrossrefPubMedGoogle Scholar

[102]

Chen PY, Soric J, Alù A. Invisibility and cloaking based on scattering cancellation. Adv Mater 2012;24:OP281–304. PubMedGoogle Scholar

[103]

Xu S, Wang Y, Zhang B, Chen H. Invisibility cloaks from forward design to inverse design. Sci China Inform Sci 2013;56:1–11. CrossrefGoogle Scholar

[104]

Xi S, Chen H, Zhang B, Wu B-I, Kong JA. Route to low-scattering cylindrical cloaks with finite permittivity and permeability. Phys Rev B 2009;79:155122. CrossrefGoogle Scholar

[105]

Wang X, Semouchkina E. A route for efficient non-resonance cloaking by using multilayer dielectric coating. Appl Phys Lett 2013;102:113506. CrossrefGoogle Scholar

[106]

Andkjær J, Sigmund O. Topology optimized low-contrast all-dielectric optical cloak. Appl Phys Lett 2011;98:021112. CrossrefGoogle Scholar

[107]

Fujii G, Watanabe H, Yamada T, Ueta T, Mizuno M. Level set based topology optimization for optical cloaks. Appl Phys Lett 2013;102:251106. CrossrefGoogle Scholar

[108]

Lan L, Sun F, Liu Y, Ong CK, Ma Y. Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization. Appl Phys Lett 2013;103:121113. CrossrefGoogle Scholar

[109]

Urzhumov Y, Landy N, Driscoll T, Basov D, Smith DR. Thin low-loss dielectric coatings for free-space cloaking. Opt Lett 2013;38:1606–8. PubMedCrossrefGoogle Scholar

[110]

Deng Y, Korvink JG. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method. Proc R Soc A 2016;472:20150835. CrossrefGoogle Scholar

[111]

Deng Y, Liu Z, Liu Y, Wu Y. Inverse design of dielectric resonator cloaking based on topology optimization. Plasmonics 2017;12:1717–23. CrossrefGoogle Scholar

[112]

Vial B, Hao Y. Topology optimized all-dielectric cloak: design, performances and modal picture of the invisibility effect. Opt Express 2015;23:23551–60. PubMedCrossrefGoogle Scholar

[113]

Fujii G, Takahashi M, Akimoto Y. CMA-ES-based structural topology optimization using a level set boundary expression – application to optical and carpet cloaks. Comput Methods Appl Mech Engrg 2018;332:624–43. CrossrefGoogle Scholar

[114]

Ashkin A. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 1970;24:156–9. CrossrefGoogle Scholar

[115]

Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 1986;11:288–90. CrossrefPubMedGoogle Scholar

[116]

Ashkin A, Dziedzic JM. Optical trapping and manipulation of viruses and bacteria. Science 1987;235:1517–20. CrossrefPubMedGoogle Scholar

[117]

Juan ML, Righini M, Quidant R. Plasmon nano-optical tweezers. Nat Photon 2011;5:349–56. CrossrefGoogle Scholar

[118]

Chen J, Ng J, Lin Z, Chan CT. Optical pulling force. Nat Photon 2011;5:531–4. CrossrefGoogle Scholar

[119]

Powell MJD. A fast algorithm for nonlinearly constrained optimization calculations. In: Watson GA, ed. Numerical analysis. Berlin, Heidelberg, Springer, 1978:144–57. Google Scholar

[120]

Lee YE, Miller OD, Reid MTH, Johnson SG, Fang NX. Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque. Opt Express 2017;25:6757–66. CrossrefPubMedGoogle Scholar

[121]

Lin Z, Pick A, Lončar M, Rodriguez AW. Enhanced spontaneous emission at third-order Dirac exceptional points in inverse-designed photonic crystals. Phys Rev Lett 2016;117:107402. CrossrefPubMedGoogle Scholar

[122]

Zhao C, Zhang J. Binary plasmonics: launching surface plasmon polaritons to a desired pattern. Opt Lett 2009;34:2417–9. PubMedCrossrefGoogle Scholar

[123]

Rogers ETF, Lindberg J, Roy T, et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nat Mater 2012;11:432–5. CrossrefPubMedGoogle Scholar

[124]

Lu L, Joannopoulos JD, Soljačić M. Topological photonics. Nat Photon 2014;8:821–9. CrossrefGoogle Scholar

[125]

Forestiere C, Donelli M, Walsh GF, Zeni E, Miano G, Dal Negro L. Particle-swarm optimization of broadband nanoplasmonic arrays. Opt Lett 2010;35:133–5. PubMedCrossrefGoogle Scholar

[126]

Zhang Y, Yang S, Lim AE-J, et al. A compact and low loss Y-junction for submicron silicon waveguide. Opt Express 2013;21:1310–6. PubMedCrossrefGoogle Scholar

[127]

Yang C, Hong L, Shen W, Zhang Y, Liu X, Zhen H. Design of reflective color filters with high angular tolerance by particle swarm optimization method. Opt Express 2013;21:9315–23. CrossrefPubMedGoogle Scholar

[128]

Raccuglia P, Elbert KC, Adler PD, et al. Machine-learning-assisted materials discovery using failed experiments. Nature 2016;533:73–6. PubMedCrossrefGoogle Scholar

[129]

Rivenson Y, Göröcs Z, Günaydin H, Zhang Y, Wang H, Ozcan A. Deep learning microscopy. Optica 2017;4:1437–43. CrossrefGoogle Scholar

[130]

Rivenson Y, Zhang Y, Günaydın H, Teng D, Ozcan A. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci Appl 2018;7:17141. PubMedCrossrefGoogle Scholar

[131]

Wu Y-C, Shiledar A, Li Y-C, et al. Air quality monitoring using mobile microscopy and machine learning. Light Sci Appl 2017;6:e17046. PubMedCrossrefGoogle Scholar

[132]

Ota S, Horisaki R, Kawamura Y, et al. Ghost cytometry. Science 2018;360:1246–51. CrossrefPubMedGoogle Scholar

[133]

Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115–8. CrossrefPubMedGoogle Scholar

[134]

Chen Y, Lin Z, Zhao X, Wang G, Gu Y. Deep learning-based classification of hyperspectral data. IEEE J Sel Topics Appl Earth Observ Remote Sens 2014;7:2094–107. CrossrefGoogle Scholar

[135]

Schoenholz SS, Cubuk ED, Sussman DM, Kaxiras E, Liu AJ. A structural approach to relaxation in glassy liquids. Nat Phys 2016;12:469–71. CrossrefGoogle Scholar

[136]

DeVries PM, Viégas F, Wattenberg M, Meade BJ. Deep learning of aftershock patterns following large earthquakes. Nature 2018;560:632–4. CrossrefPubMedGoogle Scholar

[137]

Baldi P, Sadowski P, Whiteson D. Searching for exotic particles in high-energy physics with deep learning. Nat Commun 2014;5:4308. CrossrefPubMedGoogle Scholar

[138]

Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge, MA, MIT Press, 2016. Google Scholar

[139]

Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks, 2015. Preprint arXiv:1511.06434. Google Scholar

[140]

Collins JT, Kuppe C, Hooper DC, Sibilia C, Centini M, Valev VK. Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends. Adv Opt Mater 2017;5:1700182. CrossrefGoogle Scholar

[141]

Hentschel M, Schäferling M, Duan X, Giessen H, Liu N. Chiral plasmonics. Sci Adv 2017;3:e1602735. PubMedCrossrefGoogle Scholar

[142]

Qiu M, Zhang L, Tang Z, Jin W, Qiu C-W, Lei DY. 3D metaphotonic nanostructures with intrinsic chirality. Adv Funct Mater 2018;28:1803147. CrossrefGoogle Scholar

[143]

Wang Z, Cheng F, Winsor T, Liu Y. Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology 2016;27:412001. PubMedCrossrefGoogle Scholar

[144]

Passaseo A, Esposito M, Cuscunà M, Tasco V. Materials and 3D designs of helix nanostructures for chirality at optical frequencies. Adv Opt Mater 2017;5:1601079. CrossrefGoogle Scholar

[145]

Menzel C, Rockstuhl C, Lederer F. Advanced Jones calculus for the classification of periodic metamaterials. Phys Rev A 2010;82:053811. CrossrefGoogle Scholar

[146]

Wang Z, Jia H, Yao K, Cai W, Chen H, Liu Y. Circular dichroism metamirrors with near-perfect extinction. ACS Photonics 2016;3:2096–101. CrossrefGoogle Scholar

[147]

Schütt KT, Arbabzadah F, Chmiela S, Müller KR, Tkatchenko A. Quantum-chemical insights from deep tensor neural networks. Nat Commun 2017;8:13890. CrossrefPubMedGoogle Scholar

[148]

Pilozzi L, Farrelly FA, Marcucci G, Conti C. Machine learning inverse problem for topological photonics. Commun Phys 2018;1:57. CrossrefGoogle Scholar

[149]

Harper PG. Single band motion of conduction electrons in a uniform magnetic field. Proc Phys Soc A 1955;68: 874–8. CrossrefGoogle Scholar

[150]

Kraus YE, Zilberberg O. Topological equivalence between the Fibonacci quasicrystal and the Harper model. Phys Rev Lett 2012;109:116404. CrossrefPubMedGoogle Scholar

[151]

Peurifoy J, Shen Y, Jing L, et al. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci Adv 2018;4:eaar4206. CrossrefPubMedGoogle Scholar

[152]

Liu D, Tan Y, Khoram E, Yu Z. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 2018;5:1365–9. CrossrefGoogle Scholar

[153]

Barth C, Becker C. Machine learning classification for field distributions of photonic modes. Commun Phys 2018;1:58. CrossrefGoogle Scholar

[154]

Nasrabadi NM. Pattern recognition and machine learning. J Electron Imaging 2007;16:049901. CrossrefGoogle Scholar

[155]

Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 1987;20:53–65. CrossrefGoogle Scholar

[156]

Graves A, Wayne G, Reynolds M, et al. Hybrid computing using a neural network with dynamic external memory. Nature 2016;538:471–6. CrossrefPubMedGoogle Scholar

[157]

Merolla PA, Arthur JV, Alvarez-Icaza R, et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 2014;345:668–73. CrossrefPubMedGoogle Scholar

[158]

Poon C-S, Zhou K. Neuromorphic silicon neurons and large-scale neural networks: challenges and opportunities. Front Neurosci 2011;5:108. PubMedGoogle Scholar

[159]

Tait AN, Nahmias MA, Shastri BJ, Prucnal PR. Broadcast and weight: an integrated network for scalable photonic spike processing. J Lightwave Technol 2014;32:3427–39. Google Scholar

[160]

Prucnal PR, Shastri BJ, de Lima TF, Nahmias MA, Tait AN. Recent progress in semiconductor excitable lasers for photonic spike processing. Adv Opt Photonics 2016;8:228–99. CrossrefGoogle Scholar

[161]

Miller DA. Perfect optics with imperfect components. Optica 2015;2:747–50. CrossrefGoogle Scholar

[162]

Miller DA. Setting up meshes of interferometers – reversed local light interference method. Opt Express 2017;25: 29233–48. CrossrefGoogle Scholar

[163]

Hughes TW, Minkov M, Shi Y, Fan S. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica 2018;5:864–71. CrossrefGoogle Scholar

[164]

Lawson CL, Hanson RJ. Solving least squares problems. Englewood Chiffs, NJ, Prentice-Hall, Inc., SIAM, 1995. Google Scholar

[165]

Reck M, Zeilinger A, Bernstein HJ, Bertani P. Experimental realization of any discrete unitary operator. Phys Rev Lett 1994;73:58–61. CrossrefPubMedGoogle Scholar

[166]

Selden AC. Pulse transmission through a saturable absorber. Br J Appl Phys 1967;18:743–8. CrossrefGoogle Scholar

[167]

Bao Q, Zhang H, Ni Z, et al. Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Res 2011;4:297–307. CrossrefGoogle Scholar

[168]

Harris NC, Steinbrecher GR, Prabhu M, et al. Quantum transport simulations in a programmable nanophotonic processor. Nat Photon 2017;11:447–52. CrossrefGoogle Scholar

[169]

Georgieva NK, Glavic S, Bakr MH, Bandler JW. Feasible adjoint sensitivity technique for EM design optimization. IEEE Trans Microw Theory Techn 2002;50:2751–8. CrossrefGoogle Scholar

[170]

Hughes T, Veronis G, Wootton KP, England RJ, Fan S. Method for computationally efficient design of dielectric laser accelerator structures. Opt Express 2017;25:15414–27. PubMedCrossrefGoogle Scholar

[171]

Lin X, Rivenson Y, Yardimci NT, et al. All-optical machine learning using diffractive deep neural networks. Science 2018;361:1004–8. CrossrefPubMedGoogle Scholar

[172]

Zeng S, Zhang B, Zhang Y, Gou J. Collaboratively weighting deep and classic representation via L2 regularization for image classification, 2018. Preprint arXiv:1802.07589. Google Scholar

[173]

Sigmund O, Jensen JS, Frandsen LH. On nanostructured silicon success. Nat Photon 2016;10:142–3. CrossrefGoogle Scholar

[174]

Inampudi S, Mosallaei H. Neural network based design of metagratings. Appl Phys Lett 2018;112:241102. CrossrefGoogle Scholar

[175]

Lin L, Wang M, Peng X, et al. Opto-thermoelectric nanotweezers. Nat Photon 2018;12:195–201. CrossrefGoogle Scholar

[176]

Hayat A, Mueller JPB, Capasso F. Lateral chirality-sorting optical forces. Proc Natl Acad Sci USA 2015;112:13190–4. CrossrefGoogle Scholar

[177]

Alizadeh MH, Reinhard BM. Transverse chiral optical forces by chiral surface plasmon polaritons. ACS Photonics 2015;2:1780–8. CrossrefGoogle Scholar

[178]

Zhao Y, Saleh AAE, van de Haar MA, et al. Nanoscopic control and quantification of enantioselective optical forces. Nat Nanotechnol 2017;12:1055–9. PubMedCrossrefGoogle Scholar

[179]

Kauranen M, Zayats AV. Nonlinear plasmonics. Nat Photon 2012;6:737–48. CrossrefGoogle Scholar

[180]

Miller DAB. Meshing optics with applications. Nat Photon 2017;11:403–4. CrossrefGoogle Scholar

[181]

Lipton ZC, Berkowitz J, Elkan C. A critical review of recurrent neural networks for sequence learning, 2015. Preprint arXiv:1506.00019. Google Scholar

[182]

Bueno J, Maktoobi S, Froehly L, et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica 2018;5:756–60. CrossrefGoogle Scholar

[183]

Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of Go without human knowledge. Nature 2017;550: 354–9. CrossrefPubMedGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.