[1]

Bender CM, Boettcher S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys Rev Lett 1998;80:5243–6. CrossrefGoogle Scholar

[2]

Bender CM, Berry MV, Mandilara A. Generalized PT symmetry and real spectra. J Phys A Math Gen 2002;35:L467–71. CrossrefGoogle Scholar

[3]

Bender CM, Brody DC, Jones HF. Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction. Phys Rev D 2004;70:025001. CrossrefGoogle Scholar

[4]

Bender CM. Making sense of non-Hermitian Hamiltonians. Rep Prog Phys 2007;70:947–1018. CrossrefGoogle Scholar

[5]

Ruschhaupt A, Delgado F, Muga JG. Physical realization of PT-symmetric potential scattering in a planar slab waveguide. J Phys A Math Gen 2005;38:L171–6. CrossrefGoogle Scholar

[6]

EI-Ganainy R, Makris KG, Christodoulides DN, Musslimani ZH. Theory of coupled optical PT-symmetric structures. Opt Lett 2007;32:2632–4. PubMedCrossrefGoogle Scholar

[7]

Musslimani ZH, Makris KG, EI-Ganainy R, Christodoulides DN. Optical solitons in PT periodic potentials. Phys Rev Lett 2008;100:030402. CrossrefPubMedGoogle Scholar

[8]

Chang L, Jiang X, Hua S, et al. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat Photon 2014;8:524–9. CrossrefGoogle Scholar

[9]

Sun Y, Tan W, Li H-Q, Li J, Chen H. Experimental demonstration of a coherent perfect absorber with PT phase transition. Phys Rev Lett 2014;112:143903. PubMedCrossrefGoogle Scholar

[10]

Savoia S, Castaldi G, Galdi V, Alù A, Engheta N. PT-symmetry-induced wave confinement and guiding in *ε*-near-zero metamaterials. Phys Rev B 2015;91:115114. CrossrefGoogle Scholar

[11]

Monticone F, Valagiannopoulos CA, Alù A. Parity-time symmetric nonlocal metasurfaces: all-angle negative refraction and volumetric imaging. Phys Rev X 2016;6:041018. Google Scholar

[12]

Ge L, Makris KG, Zhang L. Optical fluxes in coupled PT-symmetric photonic structures. Phys Rev A 2017;96:023820. CrossrefGoogle Scholar

[13]

Barton III DR, Alaeian H, Lawrence M, Dionne J. Broadband and wide-angle nonreciprocity with a non-Hermitian metamaterial. Phys Rev B 2018;97:045432. CrossrefGoogle Scholar

[14]

Huang Y, Shen Y, Min C, Fan S, Veronis G. Unidirectional reflectionless light propagation. Nanophotonics 2017;6:977–96. CrossrefGoogle Scholar

[15]

Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides DN. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys Rev Lett 2011;106:213901. PubMedCrossrefGoogle Scholar

[16]

Regensburger A, Bersch C, Miri M-A, Onishchukov G, Christodoulides DN, Peschel U. Parity-time synthetic photonic lattices. Nature 2012;488:167–71. CrossrefPubMedGoogle Scholar

[17]

Feng L, Xu Y-L, Fegadolli WS, et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat Mater 2013;12:108–13. CrossrefPubMedGoogle Scholar

[18]

Makris KG, El-Ganainy R, Christodoulides DN, Musslimani ZH. Beam dynamics in PT symmetric optical lattices. Phys Rev Lett 2008;100:103904. CrossrefPubMedGoogle Scholar

[19]

Rüter CE, Makris KG, EI-Ganainy R, Christodoulides DN, Segev M, Kip D. Observation of parity-time symmetry in optics. Nature Phys 2010;6:192–5. CrossrefGoogle Scholar

[20]

Guo A, Salamo GJ, Duchesne D, et al. Observation of PT-symmetry breaking in complex optical potentials. Phys Rev Lett 2009;103:093902. CrossrefPubMedGoogle Scholar

[21]

Feng L, Ayache M, Huang J, et al. Nonreciprocal light propagation in a silicon photonic circuit. Science 2011;333:729–33. CrossrefGoogle Scholar

[22]

Peng B, Özdemir SK, Lei F, et al. Parity-time-symmetric whispering-gallery microcavities. Nature Phys 2014;10:394–8. CrossrefGoogle Scholar

[23]

Longhi S. PT-symmetric laser absorber. Phys Rev A 2010;82:031801. CrossrefGoogle Scholar

[24]

Chong YD, Ge L, Douglas Stone A. PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys Rev Lett 2011;106:093902. CrossrefPubMedGoogle Scholar

[25]

Feng L, Wong ZJ, Ma R-M, Wang Y, Zhang X. Single-mode laser by parity-time symmetry breaking. Science 2014;346:972–5. CrossrefPubMedGoogle Scholar

[26]

Hodaei H, Miri M-A, Heinrich M, Christodoulides DN, Khajavikhan M. Parity-time-symmetric microring lasers. Science 2014;346:975–8. PubMedCrossrefGoogle Scholar

[27]

Lawrence M, Xu N, Zhang X, et al. Manifestation of PT symmetry breaking in polarization space with terahertz metasurfaces. Phys Rev Lett 2014;113:093901. CrossrefPubMedGoogle Scholar

[28]

Knight MW, Sobhani H, Nordlander P, Halas NJ. Photodetection with active optical antennas. Science 2011;332:702–4. CrossrefPubMedGoogle Scholar

[29]

McFarland EW, Tang J. A photovoltaic device structure based on internal electron emission. Nature 2003;421:616–8. PubMedCrossrefGoogle Scholar

[30]

Wang F, Melosh NA. Plasmonic energy collection through hot carrier extraction. Nano Lett 2011;11:5426–30. PubMedCrossrefGoogle Scholar

[31]

Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photon 2014;8:95–103. CrossrefGoogle Scholar

[32]

Narang P, Sundararaman R, Atwater HA. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics 2016;5:96–111. Google Scholar

[33]

Scales C, Breukelaar I, Berini P. Surface-plasmon Schottky contact detector based on a symmetric metal stripe in silicon. Opt Lett 2010;35:529–31. CrossrefPubMedGoogle Scholar

[34]

Sobhani A, Knight MW, Wang Y, et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat Commun 2013;4:1643. CrossrefPubMedGoogle Scholar

[35]

Chalabi H, Schoen D, Brongersma ML. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett 2014;14:1374–80. PubMedCrossrefGoogle Scholar

[36]

Pelayo García de Arquer F, Mihi A, Konstantatos G. Large-area plasmonic-crystal-hot-electron-based photodetectors. ACS Photonics 2015;2:950–7. CrossrefGoogle Scholar

[37]

Li W, Valentine JG. Harvesting the loss: surface plasmon-based hot electron photodetection. Nanophotonics 2017;6:177–91. Google Scholar

[38]

Zhang Q, Zhang C, Qin L, Li X. Polarization-insensitive hot-electron infrared photodetection by double Schottky junction and multilayer grating. Opt Lett 2018;43:3325–8. CrossrefPubMedGoogle Scholar

[39]

Cai W, Shalaev V. Optical metamaterials: fundamentals and applications. New York, Springer, 2010. Google Scholar

[40]

Bai Q, Chen J, Liu C, Xu J, Cheng C, Shen N-H, Wang H-T. Polarization splitter of surface polaritons. Phys Rev B 2009;79:155401. CrossrefGoogle Scholar

[41]

Bai Q. Manipulating photoinduced voltage in metasurface with circularly polarized light. Opt Express 2015;23:5348–56. PubMedCrossrefGoogle Scholar

[42]

Li W, Valentine J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett 2014;14:3510–4. CrossrefPubMedGoogle Scholar

[43]

Li W, Coppens ZJ, Besteiro LV, Wang W, Govorov AO, Valentine J. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat Commun 2015;6:8379. CrossrefPubMedGoogle Scholar

[44]

Haus HA. Waves and fields in optoelectronics. Englewood Cliffs, NJ, Prentice-Hall, 1984. Google Scholar

[45]

Fan S, Suh W, Joannopoulos JD. Temporal coupled-mode theory for the Fano resonance in optical resonators. J Opt Soc Am A 2003;20:569–72. CrossrefGoogle Scholar

[46]

Hamam RE, Karalis A, Joannopoulos JD, Soljačić M. Coupled-mode theory for general free-space resonant scattering of waves. Phys Rev A 2007;75:053801. CrossrefGoogle Scholar

[47]

Chong YD, Ge L, Cao H, Stone AD. Coherent perfect absorbers: time-reversed lasers. Phys Rev Lett 2010;105:053901. CrossrefPubMedGoogle Scholar

[48]

Shalaev VM, Cai W, Chettiar UK, et al. Negative index of refraction in optical metamaterials. Opt Lett 2005;30:3356–8. PubMedCrossrefGoogle Scholar

[49]

Zhang S, Genov DA, Wang Y, Liu M, Zhang X. Plasmon-induced transparency in metamaterials. Phys Rev Lett 2008;101:047401. PubMedCrossrefGoogle Scholar

[50]

Papasimakis N, Fedotov VA, Zheludev NI, Prosvirnin SL. Metamaterial analog of electromagnetically induced transparency. Phys Rev Lett 2008;101:253903. CrossrefPubMedGoogle Scholar

[51]

Tassin P, Zhang L, Koschny Th, Economou EN, Soukoulis CM. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys Rev Lett 2009;102:053901. CrossrefPubMedGoogle Scholar

[52]

Liu N, Langguth L, Weiss T, et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 2009;8:758–62. CrossrefPubMedGoogle Scholar

[53]

Scales C, Berini P. Thin-film Schottky barrier photodetector models. IEEE J Quantum Electron 2010;46:633–43. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.