[1]

Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science 2013;339:1232009. CrossrefWeb of SciencePubMedGoogle Scholar

[2]

Meinzer N, Barnes WL, Hooper IR. Plasmonic meta-atoms and metasurfaces. Nat Photon 2014;8:889–98. CrossrefGoogle Scholar

[3]

Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014;13:139–50. Web of ScienceCrossrefPubMedGoogle Scholar

[4]

Estakhri NM, Alù A. Recent progress in gradient metasurfaces. J Opt Soc Am B 2016;33:A21–30. CrossrefGoogle Scholar

[5]

Fei D, Anders P, Sergey IB. Gradient metasurfaces: a review of fundamentals and applications. Rep Prog Phys 2018;81:026401. PubMedCrossrefWeb of ScienceGoogle Scholar

[6]

Khorasaninejad M, Capasso F. Metalenses: versatile multifunctional photonic components. Science 2017;358:1146. Web of ScienceGoogle Scholar

[7]

Bao Y, Jiang Q, Kang Y, Zhu X, Fang Z. Enhanced optical performance of multifocal metalens with conic shapes. Light Sci Appl 2017;6:e17071. CrossrefPubMedWeb of ScienceGoogle Scholar

[8]

Yu N, Aieta F, Genevet P, Kats M, Gaburro Z, Capasso F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett 2012;12:6328–33. PubMedCrossrefWeb of ScienceGoogle Scholar

[9]

Zhao Y, Alù A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. Nano Lett 2013;13:1086–91. PubMedCrossrefWeb of ScienceGoogle Scholar

[10]

Karimi E, Schulz SA, De Leon I, Qassim H, Upham J, Boyd RW. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci Appl 2014;3:e167. CrossrefWeb of ScienceGoogle Scholar

[11]

Zeng J, Li L, Yang X, Gao J. Generating and separating twisted light by gradient-rotation split-ring antenna metasurfaces. Nano Lett 2016;16:3101–8. PubMedCrossrefWeb of ScienceGoogle Scholar

[12]

Deng Z-L, Li G. Metasurface optical holography. Mater Today Phys 2017;3:16–32. CrossrefWeb of ScienceGoogle Scholar

[13]

Wan W, Gao J, Yang X. Metasurface holograms for holographic imaging. Adv Opt Mater 2017;5:1700541. CrossrefGoogle Scholar

[14]

Zhao Y, Yang X, Gao J. Twisting phase and intensity of light with plasmonic metasurfaces. Sci Rep 2018;8:4884. Web of SciencePubMedCrossrefGoogle Scholar

[15]

Yin X, Ye Z, Rho J, Wang Y, Zhang X. Photonic spin hall effect at metasurfaces. Science 2013;339:1405–7. CrossrefWeb of SciencePubMedGoogle Scholar

[16]

High AA, Devlin RC, Dibos A, et al. Visible-frequency hyperbolic metasurface. Nature 2015;522:192. Web of SciencePubMedCrossrefGoogle Scholar

[17]

Arbabi A, Arbabi E, Horie Y, Kamali SM, Faraon A. Planar metasurface retroreflector. Nat Photon 2017;11:415–20. CrossrefGoogle Scholar

[18]

Jiang Q, Bao Y, Lin F, Zhu X, Zhang S, Fang Z. Spin-controlled integrated near- and far-field optical launcher. Adv Funct Mater 2018;28:1705503. Web of ScienceCrossrefGoogle Scholar

[19]

Bao Y, Zu S, Liu W, Zhou L, Zhu X, Fang Z. Revealing the spin optics in conic-shaped metasurfaces. Phys Rev B 2017;95:081406(R). Web of ScienceCrossrefGoogle Scholar

[20]

Greengard A, Schechner YY, Piestun R. Depth from diffracted rotation. Opt Lett 2006;31:181–3. PubMedCrossrefGoogle Scholar

[21]

Pavani SRP, Piestun R. High-efficiency rotating point spread functions. Opt Express 2008;16:3484–9. Web of ScienceCrossrefPubMedGoogle Scholar

[22]

Schechner YY, Piestun R, Shamir J. Wave propagation with rotating intensity distributions. Phys Rev E 1996;54:R50–3. CrossrefGoogle Scholar

[23]

Pavani SRP, Piestun R. Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system. Opt Express 2008;16:22048–57. CrossrefWeb of SciencePubMedGoogle Scholar

[24]

Thompson MA, Lew MD, Badieirostami M, Moerner WE. Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function. Nano Lett 2010;10:211–8. CrossrefPubMedWeb of ScienceGoogle Scholar

[25]

Thompson MA, Casolari JM, Badieirostami M, Brown PO, Moerner WE. Three-dimensional tracking of single mRNA particles in *Saccharomyces cerevisiae* using a double- helix point spread function. Proc Natl Acad Sci 2010;107:17864–71. Web of ScienceCrossrefGoogle Scholar

[26]

Barsic A, Grover G, Piestun R. Three-dimensional super-resolution and localization of dense clusters of single molecules. Sci Rep 2014;4:5388. PubMedWeb of ScienceGoogle Scholar

[27]

Conkey DB, Trivedi RP, Pavani SRP, Smalyukh II, Piestun R. Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions. Opt Express 2011;19:3835–42. CrossrefWeb of SciencePubMedGoogle Scholar

[28]

Pavani SRP, Thompson MA, Biteen JS, et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci 2009;106:2995–9. Web of ScienceCrossrefGoogle Scholar

[29]

Pavani SRP, DeLuca JG, Piestun R. Polarization sensitive, three-dimensional, single-molecule imaging of cells with a double-helix system. Opt Express 2009;17:19644–55. CrossrefPubMedWeb of ScienceGoogle Scholar

[30]

Berlich R, Bräuer A, Stallinga S. Single shot three-dimensional imaging using an engineered point spread function. Opt Express 2016;24:5946–60. Web of SciencePubMedCrossrefGoogle Scholar

[31]

Huang L, Chen X, Mühlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett 2012;12:5750–5. PubMedWeb of ScienceCrossrefGoogle Scholar

[32]

Chen W, Zhu A, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotech 2018;13:220–6. CrossrefGoogle Scholar

[33]

Wang S, Wu PC, Su V-C, et al. A broadband achromatic metalens in the visible. Nat Nanotech 2018;13:227–32. CrossrefGoogle Scholar

[34]

Piestun R, Schechner YY, Shamir J. Propagation-invariant wave fields with finite energy. J Opt Soc Am A 2000;17:294–303. CrossrefGoogle Scholar

[35]

Zhang J, Elkabbash M, Wei R, Singh SC, Lam B, Guo C. Multipole plasmonic metasurfaces with 42.3% transmission efficiency in the visible. Under review. Google Scholar

[36]

Alaee R, Rockstuhl C, Fernandez-Corbaton I. An electromagnetic multipole expansion beyond the long-wavelength approximation. Opt Commun 2018;407:17–21. Web of ScienceCrossrefGoogle Scholar

[37]

Chen X, Huang L, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light. Nat Commun 2012;3:1198. Web of SciencePubMedCrossrefGoogle Scholar

[38]

Pors A, Nielsen MG, Eriksen RL, Bozhevolnyi SI. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett 2013;13:829–34. PubMedCrossrefWeb of ScienceGoogle Scholar

[39]

Paniagua-Domínguez R, Yu Y, Khaidarov E, et al. A metalens with a near-unity numerical aperture. Nano Lett 2018;18:2124–32. PubMedCrossrefWeb of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.