[1]

Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH. 2D materials and van der Waals heterostructures. Science 2016;353:aac9439. CrossrefGoogle Scholar

[2]

Geim AK. Nobel lecture: random walk to graphene. Rev Mod Phys 2011;83:851–62. CrossrefGoogle Scholar

[3]

Britnell L, Ribeiro RM, Eckmann A, et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013;340:1311–4. PubMedCrossrefGoogle Scholar

[4]

Mak KF, Xiao D, Shan J. Light–valley interactions in 2D semiconductors. Nat Photonics 2018;12:451–60. CrossrefGoogle Scholar

[5]

Malic E, Selig M, Feierabend M, et al. Dark excitons in transition metal dichalcogenides. Phys Rev Mater 2018;2:014002. CrossrefGoogle Scholar

[6]

Baranowski M, Surrente A, Maude DK, et al. Dark excitons and the elusive valley polarization in transition metal dichalcogenides. 2D Mater 2017;4:025016. CrossrefGoogle Scholar

[7]

Hsu W-T, Lu L-S, Wang D, et al. Evidence of indirect gap in monolayer WSe_{2}. Nat Commun 2017;8:929. CrossrefPubMedGoogle Scholar

[8]

Zhang C, Chen Y, Johnson A, et al. Probing critical point energies of transition metal dichalcogenides: surprising indirect gap of single layer WSe_{2}. Nano Lett 2015;15:6494–500. PubMedCrossrefGoogle Scholar

[9]

Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS_{2}: a new direct-gap semiconductor. Phys Rev Lett 2010;105:136805. CrossrefGoogle Scholar

[10]

Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS_{2}. Nano Lett 2010;10:1271–5. CrossrefPubMedGoogle Scholar

[11]

Jin W, Yeh PC, Zaki N, et al. Direct measurement of the thickness-dependent electronic band structure of MoS_{2} using angle-resolved photoemission spectroscopy. Phys Rev Lett 2013;111:106801. PubMedCrossrefGoogle Scholar

[12]

Mak KF, He K, Lee C, et al. Tightly bound trions in monolayer MoS_{2}. Nat Mater 2013;12:207. CrossrefPubMedGoogle Scholar

[13]

Ross JS, Wu S, Yu H, et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun 2013;4:1474. CrossrefGoogle Scholar

[14]

Berkelbach TC, Hybertsen MS, Reichman DR. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys Rev B 2013;88:045318. CrossrefGoogle Scholar

[15]

Lui C, Frenzel AJ, Pilon DV, et al. Trion-induced negative photoconductivity in monolayer MoS_{2}. Phys Rev Lett 2014;113:166801. CrossrefPubMedGoogle Scholar

[16]

Singh A, Moody G, Tran K, et al. Trion formation dynamics in monolayer transition metal dichalcogenides. Phys Rev B 2016;93:041401. CrossrefGoogle Scholar

[17]

Krasnok A, Lepeshov S, Alu A. Nanophotonics with 2D transition metal dichalcogenides [Invited]. Opt Express 2018;26:15972–94. CrossrefPubMedGoogle Scholar

[18]

Srivastava A, Sidler M, Allain AV, et al. Optically active quantum dots in monolayer WSe_{2}. Nat Nanotechnol 2015;10:491–6. PubMedCrossrefGoogle Scholar

[19]

He Y-M, Clark G, Schaibley JR, et al. Single quantum emitters in monolayer semiconductors. Nat Nanotechnol 2015;10:497–502. CrossrefPubMedGoogle Scholar

[20]

Chakraborty C, Kinnischtzke L, Goodfellow KM, Beams R, Vamivakas AN. Voltage-controlled quantum light from an atomically thin semiconductor. Nat Nanotechnol 2015;10:507–11. PubMedCrossrefGoogle Scholar

[21]

Mak KF, He K, Shan J, Heinz TF. Control of valley polarization in monolayer MoS_{2} by optical helicity. Nat Nanotechnol 2012;7:494–8. CrossrefPubMedGoogle Scholar

[22]

Zeng H, Dai J, Yao W, Xiao D, Cui X. Valley polarization in MoS_{2} monolayers by optical pumping. Nat Nanotechnol 2012;7:490–3. PubMedCrossrefGoogle Scholar

[23]

Cao T, Wang G, Han W, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat Commun 2012;3:887. PubMedCrossrefGoogle Scholar

[24]

Kim H, Ahn GH, Cho J, et al. Synthetic WSe_{2} monolayers with high photoluminescence quantum yield. Sci Adv 2019;5:eaau4728. CrossrefPubMedGoogle Scholar

[25]

Edelberg D, Rhodes D, Kerelsky A, et al. Hundredfold enhancement of light emission via defect control in monolayer transition-metal dichalcogenides. arXiv preprint arXiv:1805.00127;2018. Google Scholar

[26]

Schneider C, Glazov MM, Korn T, Hofling S, Urbaszek B. Two-dimensional semiconductors in the regime of strong light-matter coupling. Nat Commun 2018;9:2695. PubMedCrossrefGoogle Scholar

[27]

Stier AV, Wilson NP, Clark G, Xu X, Crooker SA. Probing the influence of dielectric environment on excitons in monolayer WSe_{2}: insight from high magnetic fields. Nano Lett 2016;16:7054–60. CrossrefPubMedGoogle Scholar

[28]

Wang G, Chernikov A, Glazov MM, et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev Mod Phys 2018;90:021001. CrossrefGoogle Scholar

[29]

Chernikov A, Berkelbach TC, Hill HM, et al. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS_{2}. Phys Rev Lett 2014;113:076802. CrossrefGoogle Scholar

[30]

Hanbicki AT, Currie M, Kioseoglou G, Friedman AL, Jonker BT. Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS_{2} and WSe_{2}. Solid State Commun 2015;203:16–20. CrossrefGoogle Scholar

[31]

Zhu B, Chen X, Cui X. Exciton binding energy of monolayer WS_{2}. Sci Rep 2015;5:9218. CrossrefGoogle Scholar

[32]

He K, Kumar N, Zhao L, et al. Tightly bound excitons in monolayer WSe_{2}. Phys Rev Lett 2014;113:026803. CrossrefGoogle Scholar

[33]

Miller RC, Kleinman DA, Tsang WT, Gossard AC. Observation of the excited level of excitons in GaAs quantum wells. Phys Rev B 1981;24:1134–6. CrossrefGoogle Scholar

[34]

Greene RL, Bajaj KK, Phelps DE. Energy levels of Wannier excitons in GaAs – Ga_{1-x}Al_{x}As quantum-well structures. Phys Rev B 1984;29:1807–12. CrossrefGoogle Scholar

[35]

Ugeda MM, Bradley AJ, Shi S-F, et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat Mater 2014;13:1091. CrossrefGoogle Scholar

[36]

Wang G, Marie X, Gerber I, et al. Giant enhancement of the optical second-harmonic emission of WSe_{2} monolayers by laser excitation at exciton resonances. Phys Rev Lett 2015;114:097403. CrossrefGoogle Scholar

[37]

Qiu DY, da Jornada FH, Louie SG. Optical spectrum of MoS_{2}: many-body effects and diversity of exciton states. Phys Rev Lett 2013;111:216805. CrossrefPubMedGoogle Scholar

[38]

Berghäuser G, Malic E. Analytical approach to excitonic properties of MoS_{2}. Phys Rev B 2014;89:125309. CrossrefGoogle Scholar

[39]

Hao K, Specht JF, Nagler P, et al. Neutral and charged inter-valley biexcitons in monolayer MoSe_{2}. Nat Commun 2017;8:15552. PubMedCrossrefGoogle Scholar

[40]

Ye Z, Waldecker L, Ma EY, et al. Efficient generation of neutral and charged biexcitons in encapsulated WSe_{2} monolayers. Nat Commun 2018;9:3718. PubMedCrossrefGoogle Scholar

[41]

Mak KF, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics 2016;10:216–26. CrossrefGoogle Scholar

[42]

Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 2012;7:699–712. CrossrefPubMedGoogle Scholar

[43]

Liu X, Galfsky T, Sun Z, et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat Photonics 2014;9:30–4. Google Scholar

[44]

Fogler MM, Butov LV, Novoselov KS. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat Commun 2014;5:4555. CrossrefGoogle Scholar

[45]

Wang H, Zhang C, Chan W, Manolatou C, Tiwari S, Rana F. Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS_{2}. Phys Rev B 2016;93:045407. CrossrefGoogle Scholar

[46]

Palummo M, Bernardi M, Grossman JC. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett 2015;15:2794–800. PubMedCrossrefGoogle Scholar

[47]

Sun D, Rao Y, Reider GA, et al. Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide. Nano Lett 2014;14:5625–9. CrossrefPubMedGoogle Scholar

[48]

Kumar N, Cui Q, Ceballos F, He D, Wang Y, Zhao H. Exciton-exciton annihilation in MoSe_{2} monolayers. Phys Rev B 2014;89:125427. CrossrefGoogle Scholar

[49]

Mouri S, Miyauchi Y, Toh M, Zhao W, Eda G, Matsuda K. Nonlinear photoluminescence in atomically thin layered WSe_{2} arising from diffusion-assisted exciton-exciton annihilation. Phys Rev B 2014;90:155449. CrossrefGoogle Scholar

[50]

Robert C, Lagarde D, Cadiz F, et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phys Rev B 2016;93:205423. CrossrefGoogle Scholar

[51]

Moody G, Dass CK, Hao K, et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat Commun 2015;6:8315. PubMedCrossrefGoogle Scholar

[52]

Jakubczyk T, Delmonte V, Koperski M, et al. Radiatively limited dephasing and exciton dynamics in MoSe_{2} monolayers revealed with four-wave mixing microscopy. Nano Lett 2016;16:5333–9. CrossrefPubMedGoogle Scholar

[53]

Jin C, Kim J, Wu K, et al. On optical dipole moment and radiative recombination lifetime of excitons in WSe_{2}. Adv Funct Mater 2017;27:1601741. CrossrefGoogle Scholar

[54]

Shi H, Yan R, Bertolazzi S, et al. Exciton dynamics in suspended monolayer and few-layer MoS_{2} 2D crystals. ACS Nano 2013;7:1072–80. CrossrefGoogle Scholar

[55]

Kleemann M-E, Chikkaraddy R, Alexeev EM, et al. Strong-coupling of WSe_{2} in ultra-compact plasmonic nanocavities at room temperature. Nat Commun 2017;8:1296. PubMedCrossrefGoogle Scholar

[56]

Stührenberg M, Munkhbat B, Baranov DG, et al. Strong light–matter coupling between plasmons in individual gold Bi-pyramids and excitons in mono- and multilayer WSe_{2}. Nano Lett 2018;18:5938–45. CrossrefGoogle Scholar

[57]

Koperski M, Nogajewski K, Arora A, et al. Single photon emitters in exfoliated WSe_{2} structures. Nat Nanotechnol 2015;10:503–6. PubMedCrossrefGoogle Scholar

[58]

Tonndorf P, Schmidt R, Schneider R, et al. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2015;2:347–52. CrossrefGoogle Scholar

[59]

Palacios-Berraquero C, Kara DM, Montblanch AR-P, et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat Commun 2017;8:15093. CrossrefPubMedGoogle Scholar

[60]

Lodahl P, Mahmoodian S, Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev Mod Phys 2015;87:347. CrossrefGoogle Scholar

[61]

Iff O, Lundt N, Betzold S, et al. Deterministic coupling of quantum emitters in WSe_{2} monolayers to plasmonic nanocavities. Opt Express 2018;26:25944–51. PubMedCrossrefGoogle Scholar

[62]

Tripathi LN, Iff O, Betzold S, et al. Spontaneous emission enhancement in strain-induced WSe_{2} monolayer-based quantum light sources on metallic surfaces. ACS Photonics 2018;5:1919–26. CrossrefGoogle Scholar

[63]

Xu X, Yao W, Xiao D, Heinz TF. Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys 2014;10:343–50. CrossrefGoogle Scholar

[64]

Xiao D, Liu G-B, Feng W, Xu X, Yao W. Coupled spin and valley physics in monolayers of MoS_{2} and other group-VI dichalcogenides. Phys Rev Lett 2012;108:196802. PubMedCrossrefGoogle Scholar

[65]

Schaibley JR, Yu H, Clark G, et al. Valleytronics in 2D materials. Nat Rev Mater 2016;1:16055. CrossrefGoogle Scholar

[66]

Gunawan O, Shkolnikov YP, Vakili K, Gokmen T, De Poortere EP, Shayegan M. Valley susceptibility of an interacting two-dimensional electron system. Phys Rev Lett 2006;97:186404. CrossrefPubMedGoogle Scholar

[67]

Shkolnikov Y, De Poortere E, Tutuc E, Shayegan M. Valley splitting of AlAs two-dimensional electrons in a perpendicular magnetic field. Phys Rev Lett 2002;89:226805. CrossrefGoogle Scholar

[68]

Rycerz A, Tworzydło J, Beenakker C. Valley filter and valley valve in graphene. Nat Phys 2007;3:172–5. CrossrefGoogle Scholar

[69]

Jha PK, Shitrit N, Ren X, Wang Y, Zhang X. Spontaneous exciton valley coherence in transition metal dichalcogenide monolayers interfaced with an anisotropic metasurface. Phys Rev Lett 2018;121:116102. PubMedCrossrefGoogle Scholar

[70]

Sallen G, Bouet L, Marie X, et al. Robust optical emission polarization in MoS_{2} monolayers through selective valley excitation. Phys Rev B 2012;86:081301. CrossrefGoogle Scholar

[71]

Bellus MZ, Ceballos F, Chiu H-Y, Zhao H. Tightly bound trions in transition metal dichalcogenide heterostructures. ACS Nano 2015;9:6459–64. CrossrefPubMedGoogle Scholar

[72]

Mouri S, Miyauchi Y, Matsuda K. Tunable photoluminescence of monolayer MoS_{2} via chemical doping. Nano Lett 2013;13:5944–8. PubMedCrossrefGoogle Scholar

[73]

Rivera P, Schaibley JR, Jones AM, et al. Observation of long-lived interlayer excitons in monolayer MoSe_{2}–WSe_{2} heterostructures. Nat Commun 2015;6:6242. CrossrefPubMedGoogle Scholar

[74]

Singh A, Tran K, Kolarczik M, et al. Long-lived valley polarization of intravalley trions in monolayer WSe_{2}. Phys Rev Lett 2016;117:257402. CrossrefGoogle Scholar

[75]

Song X, Xie S, Kang K, Park J, Sih V. Long-lived hole spin/valley polarization probed by Kerr rotation in monolayer WSe_{2}. Nano Lett 2016;16:5010–4. CrossrefPubMedGoogle Scholar

[76]

Hao K, Moody G, Wu F, et al. Direct measurement of exciton valley coherence in monolayer WSe_{2}. Nat Phys 2016;12:677–82. CrossrefGoogle Scholar

[77]

Plechinger G, Korn T, Lupton JM. Valley-polarized exciton dynamics in exfoliated monolayer WSe_{2}. J Phys Chem C 2017;121:6409–13. CrossrefGoogle Scholar

[78]

Poellmann C, Steinleitner P, Leierseder U, et al. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe_{2}. Nat Mater 2015;14:889–93. CrossrefPubMedGoogle Scholar

[79]

O’brien JL, Furusawa A, Vučković J. Photonic quantum technologies. Nat Photonics 2009;3:687–95. CrossrefGoogle Scholar

[80]

Arcari M, Söllner I, Javadi A, et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys Rev Lett 2014;113:093603. CrossrefPubMedGoogle Scholar

[81]

Ding X, He Y, Duan Z-C, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys Rev Lett 2016;116:020401. CrossrefGoogle Scholar

[82]

Somaschi N, Giesz V, De Santis L, et al. Near-optimal single-photon sources in the solid state. Nat Photonics 2016;10:340–5. CrossrefGoogle Scholar

[83]

Novotny L, Hecht B. Principles of nano-optics. Cambridge, UK, Cambridge University Press, 2012. Google Scholar

[84]

Cai T, Kim J-H, Yang Z, Dutta S, Aghaeimeibodi S, Waks E. Radiative enhancement of single quantum emitters in WSe_{2} monolayers using site-controlled metallic nanopillars. ACS Photonics 2018;5:3466–71. CrossrefGoogle Scholar

[85]

Luo Y, Shepard GD, Ardelean JV, et al. Deterministic coupling of site-controlled quantum emitters in monolayer WSe_{2} to plasmonic nanocavities. Nat Nanotechnol 2018;13:1137–42. CrossrefPubMedGoogle Scholar

[86]

Russell KJ, Liu T-L, Cui S, Hu EL. Large spontaneous emission enhancement in plasmonic nanocavities. Nat Photonics 2012;6:459–62. CrossrefGoogle Scholar

[87]

Hu S, Khater M, Salas-Montiel R, et al. Experimental realization of deep-subwavelength confinement in dielectric optical resonators. Sci Adv 2018;4:eaat2355. PubMedCrossrefGoogle Scholar

[88]

Robinson JT, Manolatou C, Chen L, Lipson M. Ultrasmall mode volumes in dielectric optical microcavities. Phys Rev Lett 2005;95:143901. PubMedCrossrefGoogle Scholar

[89]

Hu S, Weiss SM. Design of photonic crystal cavities for extreme light concentration. ACS Photonics 2016;3:1647–53. CrossrefGoogle Scholar

[90]

Choi H, Heuck M, Englund D. Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities. Phys Rev Lett 2017;118:223605. CrossrefPubMedGoogle Scholar

[91]

Koenderink AF. On the use of Purcell factors for plasmon antennas. Opt Lett 2010;35:4208–10. PubMedCrossrefGoogle Scholar

[92]

Sauvan C, Hugonin J-P, Maksymov I, Lalanne P. Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys Rev Lett 2013;110:237401. CrossrefPubMedGoogle Scholar

[93]

Kristensen PT, Hughes S. Modes and mode volumes of leaky optical cavities and plasmonic nanoresonators. ACS Photonics 2014;1:2–10. CrossrefGoogle Scholar

[94]

Koenderink AF. Single-photon nanoantennas. ACS Photonics 2017;4:710–22. CrossrefPubMedGoogle Scholar

[95]

Novotny L, Van Hulst N. Antennas for light. Nat Photonics 2011;5:83–90. CrossrefGoogle Scholar

[96]

Alù A, Engheta N. Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nat Photonics 2008;2:307–10. CrossrefGoogle Scholar

[97]

Monticone F, Argyropoulos C, Alu A. Optical antennas: controlling electromagnetic scattering, radiation, and emission at the nanoscale. IEEE Antennas Propag Mag 2017;59:43–61. CrossrefGoogle Scholar

[98]

Kuttge M, García de Abajo FJ, Polman A. Ultrasmall mode volume plasmonic nanodisk resonators. Nano Lett 2009;10:1537–41. Google Scholar

[99]

Akselrod GM, Argyropoulos C, Hoang TB, et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat Photonics 2014;8:835–40. CrossrefGoogle Scholar

[100]

Wang C, Badolato A, Wilson-Raea I, Petroff PM, Hu E. Optical properties of single InAs quantum dots in close proximity to surfaces. Appl Phys Lett 2004;85:3423–5. CrossrefGoogle Scholar

[101]

Zhang H, Huo Y, Lindfors K, et al. Narrow-line self-assembled GaAs quantum dots for plasmonics. Appl Phys Lett 2015;106:101110. CrossrefGoogle Scholar

[102]

Farahani JN, Pohl DW, Eisler H-J, Hecht B. Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys Rev Lett 2005;95:017402. PubMedCrossrefGoogle Scholar

[103]

Lyamkina A, Schraml K, Regler A, et al. Monolithically integrated single quantum dots coupled to bowtie nanoantennas. Opt Express 2016;24:28936–44. CrossrefPubMedGoogle Scholar

[104]

Pfeiffer M, Lindfors K, Zhang H, et al. Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot. Nano Lett 2013;14:197–201. PubMedGoogle Scholar

[105]

Regler A, Schraml K, Lyamkina A, et al. Emission redistribution from a quantum dot-bowtie nanoantenna. J Nanophotonics 2016;10:033509. CrossrefGoogle Scholar

[106]

Lee B, Park J, Han GH, et al. Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS_{2} integrated with plasmonic nanoantenna array. Nano Lett 2015;15:3646–53. CrossrefPubMedGoogle Scholar

[107]

Butun S, Tongay S, Aydin K. Enhanced light emission from large-area monolayer MoS_{2} using plasmonic nanodisc arrays. Nano Lett 2015;15:2700–4. PubMedCrossrefGoogle Scholar

[108]

Johnson AD, Cheng F, Tsai Y, Shih CK. Giant enhancement of defect-bound exciton luminescence and suppression of band-edge luminescence in monolayer WSe_{2}-Ag plasmonic hybrid structures. Nano Lett 2017;17:4317–22. PubMedCrossrefGoogle Scholar

[109]

Eggleston MS, Desai SB, Messer K, et al. Ultrafast spontaneous emission from a slot-antenna coupled WSe_{2} monolayer. ACS Photonics 2018;5:2701–5. CrossrefGoogle Scholar

[110]

Dutta S, Cai T, Buyukkaya MA, Barik S, Aghaeimeibodi S, Waks E. Coupling quantum emitters in WSe_{2} monolayers to a metal-insulator-metal waveguide. Appl Phys Lett 2018;113:191105. CrossrefGoogle Scholar

[111]

Palacios E, Park S, Butun S, Lauhon L, Aydin K. Enhanced radiative emission from monolayer MoS_{2} films using a single plasmonic dimer nanoantenna. Appl Phys Lett 2017;111:031101. CrossrefGoogle Scholar

[112]

Cai T, Dutta S, Aghaeimeibodi S, et al. Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons. Nano Lett 2017;17:6564–8. PubMedCrossrefGoogle Scholar

[113]

Amani M, Lien D-H, Daisuke Kiriya D, et al. Near-unity photoluminescence quantum yield in MoS_{2}. Science 2015;350:1065–8. CrossrefPubMedGoogle Scholar

[114]

Li Z, Liu C, Rong X, et al. Tailoring MoS_{2} valley-polarized photoluminescence with super chiral near-field. Adv Mater 2018;30:1801908. CrossrefGoogle Scholar

[115]

Chervy T, Azzini S, Lorchat E, et al. Room temperature chiral coupling of valley excitons with spin-momentum locked surface plasmons. ACS Photonics 2018;5:1281–7. CrossrefGoogle Scholar

[116]

Chen H, Liu M, Xu L, Neshev DN. Valley-selective directional emission from a transition-metal dichalcogenide monolayer mediated by a plasmonic nanoantenna. Beilstein J Nanotechnol 2018;9:780–8. CrossrefPubMedGoogle Scholar

[117]

Reithmaier JP, Sęk G, Löffler A, et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 2004;432:197–200. CrossrefGoogle Scholar

[118]

Dintinger J, Klein S, Bustos F, Barnes WL, Ebbesen T. Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys Rev B 2005;71:035424. CrossrefGoogle Scholar

[119]

Ezawa M. Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys Rev Lett 2012;109:055502. CrossrefPubMedGoogle Scholar

[120]

Tahir M, Manchon A, Sabeeh K, Schwingenschlögl U. Quantum spin/valley Hall effect and topological insulator phase transitions in silicene. Appl Phys Lett 2013;102:162412. CrossrefGoogle Scholar

[121]

Lee J, Mak KF, Shan J. Electrical control of the valley Hall effect in bilayer MoS_{2} transistors. Nat Nanotechnol 2016;11:421–5. PubMedCrossrefGoogle Scholar

[122]

Guinea F, Katsnelson M, Geim A. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat Phys 2010;6:30–3. CrossrefGoogle Scholar

[123]

Zhang Y, Tan Y-W, Stormer HL, Kim P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005;438:201–4. PubMedCrossrefGoogle Scholar

[124]

Mak KF, McGill KL, Park J, McEuen PL. The valley Hall effect in MoS_{2} transistors. Science 2014;344:1489–92. CrossrefPubMedGoogle Scholar

[125]

Onga M, Zhang Y, Ideue T, Iwasa Y. Exciton Hall effect in monolayer MoS_{2}. Nat Mater 2017;16:1193. PubMedCrossrefGoogle Scholar

[126]

Petersen J, Volz J, Rauschenbeutel A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science 2014;346:67–71. CrossrefPubMedGoogle Scholar

[127]

Kavokin A, Malpuech G, Glazov M. Optical spin Hall effect. Phys Rev Lett 2005;95:136601. PubMedCrossrefGoogle Scholar

[128]

Leyder C, Romanelli M, Karr JP, et al. Observation of the optical spin Hall effect. Nat Phys 2007;3:628–31. CrossrefGoogle Scholar

[129]

Mueller JPB, Capasso F. Asymmetric surface plasmon polariton emission by a dipole emitter near a metal surface. Phys Rev B 2013;88:121410. CrossrefGoogle Scholar

[130]

Rodríguez-Fortuño FJ, Marino G, Ginzburg P, et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 2013;340:328–30. CrossrefPubMedGoogle Scholar

[131]

Coles RJ, Price DM, Dixon JE, et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nat Commun 2016;7:11183. CrossrefPubMedGoogle Scholar

[132]

Sollner I, Mahmoodian S, Hansen SL, et al. Deterministic photon-emitter coupling in chiral photonic circuits. Nat Nanotechnol 2015;10:775–8. PubMedCrossrefGoogle Scholar

[133]

Wei H, Ratchford D, Li X, Xu H, Shih C-K. Propagating surface plasmon induced photon emission from quantum dots. Nano Lett 2009;9:4168–71. CrossrefPubMedGoogle Scholar

[134]

Akimov AV, Mukherjee A, Yu CL, et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 2007;450:402–6. PubMedCrossrefGoogle Scholar

[135]

Gong S-H, Alpeggiani F, Sciacca B, Garnett EC, Kuipers L. Nanoscale chiral valley-photon interface through optical spin-orbit coupling. Science 2018;359:443–7. PubMedCrossrefGoogle Scholar

[136]

Schuller JA, Karaveli S, Schiros T, et al. Orientation of luminescent excitons in layered nanomaterials. Nat Nanotechnol 2013;8:271–6. PubMedCrossrefGoogle Scholar

[137]

Sun L, Wang C-Y, Krasnok A, et al. Separation of valley excitons in a MoS_{2} monolayer using a subwavelength asymmetric groove array. Nat Photonics 2019;13:180–4. CrossrefGoogle Scholar

[138]

Hong X, Kim J, Shi S-F, et al. Ultrafast charge transfer in atomically thin MoS_{2}/WS_{2} heterostructures. Nat Nanotechnol 2014;9:682–6. PubMedCrossrefGoogle Scholar

[139]

Kozawa D, Carvalho A, Verzhbitskiy I, et al. Evidence for fast interlayer energy transfer in MoSe_{2}/WS_{2} heterostructures. Nano Lett 2016;16:4087–93. PubMedCrossrefGoogle Scholar

[140]

Chen H, Wen X, Zhang J, et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS_{2}/WS_{2} heterostructures. Nat Commun 2016;7:12512. CrossrefPubMedGoogle Scholar

[141]

He J, Kumar N, Bellus KZ, et al. Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures. Nat Commun 2014;5:5622. CrossrefGoogle Scholar

[142]

Ceballos F, Bellus MZ, Chiu H-Y, Zhao H. Ultrafast charge separation and indirect exciton formation in a MoS_{2}–MoSe_{2} van der Waals heterostructure. ACS Nano 2014;8:12717–24. CrossrefGoogle Scholar

[143]

Chiu M-H, Zhang C, Shiu H-W, et al. Determination of band alignment in the single-layer MoS_{2}/WSe_{2} heterojunction. Nat Commun 2015;6:7666. CrossrefPubMedGoogle Scholar

[144]

Claassen M, Jia C, Moritz B, Devereaux TP. All-optical materials design of chiral edge modes in transition-metal dichalcogenides. Nat Commun 2016;7:13074. CrossrefPubMedGoogle Scholar

[145]

Iadecola T, Campbell D, Chamon C, et al. Materials design from nonequilibrium steady states: driven graphene as a tunable semiconductor with topological properties. Phys Rev Lett 2013;110:176603. CrossrefPubMedGoogle Scholar

[146]

Perez-Piskunow PM, Usaj G, Balseiro CA, Foa Torres LEF. Floquet chiral edge states in graphene. Phys Rev B 2014;89:121401. CrossrefGoogle Scholar

[147]

Yu H, Liu G-B, Tang J, Xu X, Yao W. Moiré excitons: from programmable quantum emitter arrays to spin-orbit–coupled artificial lattices. Sci Adv 2017;3:e1701696. CrossrefPubMedGoogle Scholar

[148]

Wu F, Lovorn T, MacDonald AH. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys Rev B 2018;97:035306. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.