[1]

Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device. Science 2000;290:2282–5. PubMedCrossrefGoogle Scholar

[2]

Yuan Z, Kardynal BE, Stevenson RM, et al. Electrically driven single-photon source. Science 2002;295:102–5. PubMedCrossrefGoogle Scholar

[3]

Akopian N, Lindner N, Poem E, et al. Entangled photon pairs from semiconductor quantum dots. Phys Rev Lett 2006;96:130501. PubMedCrossrefGoogle Scholar

[4]

Hafenbrak R, Ulrich S, Michler P, Wang L, Rastelli A, Schmidt O. Triggered polarization-entangled photon pairs from a single quantum dot up to 30 k. New J Phys 2007;9:315. CrossrefGoogle Scholar

[5]

Santori C, Fattal D, Vučković J, Solomon GS, Yamamoto Y. Indistinguishable photons from a single-photon device. Nature 2002;419:594. CrossrefPubMedGoogle Scholar

[6]

Reithmaier JP, Sek G, Löffler A, et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 2004;432:197. CrossrefGoogle Scholar

[7]

Woggon U. Optical properties of semiconductor quantum dots. Berlin, Heidelberg, Springer, 1997. Google Scholar

[8]

Bimberg D, Grundmann M, Ledentsov NN. Quantum dot heterostructures. Chichester, John Wiley & Sons, 1999. Google Scholar

[9]

Kiraz A, Atatüre M, Imamoğlu A. Quantum-dot single-photon sources: prospects for applications in linear optics quantum-information processing. Phys Rev A 2004;69:032305. CrossrefGoogle Scholar

[10]

Michler P. Single semiconductor quantum dots, vol. 231. Heidelberg, Berlin, Springer, 2009. Google Scholar

[11]

Michler P. Quantum dots for quantum information technologies, vol. 237. Berlin, Heidelberg, Springer, 2017. Google Scholar

[12]

Jahnke F. Quantum optics with semiconductor nanostructures. Oxford, Woodhead Publishing, 2012. Google Scholar

[13]

Rodgers P. Nanoscience and technology. London, UK, Macmillan Publishers Ltd., 2009. Google Scholar

[14]

Yu-Ming H, Yu H, Yu-Jia W, et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat Nanotechnol 2013;8:213. PubMedCrossrefGoogle Scholar

[15]

Peter E, Hours J, Senellart P, et al. Phonon sidebands in exciton and biexciton emission from single GaAs quantum dots. Phys Rev B 2004;69:041307. CrossrefGoogle Scholar

[16]

Mendach S, Songmuang R, Kiravittaya S, Rastelli A, Benyoucef M, Schmidt OG. Light emission and wave guiding of quantum dots in a tube. Appl Phys Lett 2006;88:111120. CrossrefGoogle Scholar

[17]

Schmidt OG. Lateral alignment of epitaxial quantum dots. Heidelberg, Berlin, Springer Science & Business Media, 2007. Google Scholar

[18]

Zhang J, Wildmann JS, Ding F, et al. High yield and ultrafast sources of electrically triggered entangledphoton pairs based on strain-tunable quantum dots. Nat Commun 2015;6:10067. CrossrefPubMedGoogle Scholar

[19]

Schlehahn A, Fischbach S, Schmidt R, et al. A stand-alone fiber-coupled single-photon source. Sci Rep 2018;8:1340. PubMedCrossrefGoogle Scholar

[20]

Yoshie T, Scherer A, Hendrickson J, et al. Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 2004;432:200. CrossrefGoogle Scholar

[21]

Bose R, Cai T, Choudhury KR, Solomon GS, Waks E. All-optical coherent control of vacuum rabi oscillations. Nat Photonics 2014;8:858–64. CrossrefGoogle Scholar

[22]

Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol 2017;12:1026. CrossrefPubMedGoogle Scholar

[23]

Förstner J, Weber C, Danckwerts J, Knorr A. Phonon-induced damping of rabi oscillations in semiconductor quantum dots. Phys Status Solidi B 2003;238:419–22. CrossrefGoogle Scholar

[24]

Krummheuer B, Axt VM, Kuhn T, D’Amico I, Rossi F. Pure dephasing and phonon dynamics in GaAs- and GaN-based quantum dot structures: interplay between material parameters and geometry. Phys Rev B 2005;71:235329. CrossrefGoogle Scholar

[25]

Quilter JH, Brash AJ, Liu F, et al. Phonon-assisted population inversion of a single InGaAs/GaAs quantum dot by pulsed laser excitation. Phys Rev Lett. 2015;114:137401. PubMedCrossrefGoogle Scholar

[26]

Müller M, Bounouar S, Jöns KD, Glässl M, Michler P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat Photonics 2014;8:224. CrossrefGoogle Scholar

[27]

Reiter D, Kuhn T, Glässl M, Axt V. The role of phonons for exciton and biexciton generation in an optically driven quantum dot. J Phys Condens Matter 2014;26:423203. CrossrefGoogle Scholar

[28]

Carmele A, Richter M, Chow WW, Knorr A. Antibunching of thermal radiation by a room-temperature phonon bath: a numerically solvable model for a strongly interacting light-matter-reservoir system. Phys Rev Lett 2010;104:156801. CrossrefGoogle Scholar

[29]

Carmele A, Knorr A, Milde F. Stabilization of photon collapse and revival dynamics by a non-markovian phonon bath. New J Phys 2013;15:105024. CrossrefGoogle Scholar

[30]

Besombes L, Kheng K, Marsal L, Mariette H. Acoustic phonon broadening mechanism in single quantum dot emission. Phys Rev B 2001;63:155307. CrossrefGoogle Scholar

[31]

Borri P, Langbein W, Schneider S, et al. Ultralong dephasing time in ingaas quantum dots. Phys Rev Lett 2001;87:157401. PubMedCrossrefGoogle Scholar

[32]

Galland C, Högele A, Türeci HE, Imamoğlu A. Non-markovian decoherence of localized nanotube excitons by acoustic phonons. Phys Rev Lett 2008;101:067402. PubMedCrossrefGoogle Scholar

[33]

Vagov A, Croitoru M, Axt VM, Kuhn T, Peeters F. Nonmonotonic field dependence of damping and reappearance of rabi oscillations in quantum dots. Phys Rev Lett 2007;98:227403. PubMedCrossrefGoogle Scholar

[34]

Madsen KH, Ates S, Lund-Hansen T, et al. Observation of non-markovian dynamics of a single quantum dot in a micropillar cavity. Phys Rev Lett 2011;106:233601. CrossrefGoogle Scholar

[35]

Carmichael HJ. Statistical methods in quantum optics 1. Berlin, Heidelberg, Springer Science & Business Media, 2009. Google Scholar

[36]

Scully MO, Zubairy MS. Quantum optics. Am J Phys 1999;67:648. CrossrefGoogle Scholar

[37]

Breuer H-P, Petruccione F. The theory of open quantum systems. Oxford, Oxford University Press, 2002. Google Scholar

[38]

Gardiner C, Zoller P, Zoller P. Quantum noise: a handbook of markovian and non- markovian quantum stochastic methods with applications to quantum optics, vol. 56. Berlin, Heidelberg, Springer Science & Business Media, 2004. Google Scholar

[39]

Breuer H-P, Laine E-M, Piilo J, Vacchini B. Colloquium: non-markovian dynamics in open quantum systems. Rev Mod Phys 2016;88:021002. CrossrefGoogle Scholar

[40]

Cerrillo J, Cao J. Non-markovian dynamical maps: numerical processing of open quantum trajectories. Phys Rev Lett 2014;112:110401. CrossrefPubMedGoogle Scholar

[41]

de Vega I, Alonso D. Dynamics of non-markovian open quantum systems. Rev Mod Phys 2017;89:015001. CrossrefGoogle Scholar

[42]

Michler P. Single quantum dots: fundamentals, applications and new concepts, vol. 90. Berlin, Heidelberg, Springer Science & Business Media, 2003. Google Scholar

[43]

Stock E, Dachner M-R, Warming T, et al. Acoustic and optical phonon scattering in a single In(Ga)As quantum Dot. Phys Rev B 2011;83:041304. CrossrefGoogle Scholar

[44]

Strauß M, Carmele A, Schneider J, et al. Wigner time delay induced by a single quantum dot. Phys Rev Lett 2019;122:107401. PubMedCrossrefGoogle Scholar

[45]

Ramsay A, Godden T, Boyle S, et al. Phonon-induced rabi-frequency renormalization of optically driven single InGaAs/GaAs quantum dots. Phys Rev Lett 2010;105:177402. CrossrefPubMedGoogle Scholar

[46]

Kaldewey T, Lüker S, Kuhlmann AV, et al. Demonstrating the decoupling regime of the electron-phonon interaction in a quantum dot using chirped optical excitation. Phys Rev B 2017;95:241306. CrossrefGoogle Scholar

[47]

Bounouar S, Müller M, Barth A, Glässl M, Axt V, Michler P. Phonon-assisted robust and deterministic two-photon biexciton preparation in a quantum dot. Phys Rev B 2015;91:161302. CrossrefGoogle Scholar

[48]

Ardelt P-L, Hanschke L, Fischer KA, et al. Dissipative preparation of the exciton and biexciton in self-assembled quantum dots on picosecond time scales. Phys Rev B 2014;90:241404. CrossrefGoogle Scholar

[49]

Iles-Smith J, Nazir A. Quantum correlations of light and matter through environmental transitions. Optica 2016;3:207–11. CrossrefGoogle Scholar

[50]

Weiler S, Ulhaq A, Ulrich SM, et al. Phonon-assisted incoherent excitation of a quantum dot and its emission properties. Phys Rev B 2012;86:241304. CrossrefGoogle Scholar

[51]

Hohenester U. Cavity quantum electrodynamics with semiconductor quantum dots: role of phonon-assisted cavity feeding. Phys Rev B 2010;81:155303. CrossrefGoogle Scholar

[52]

Monniello L, Tonin C, Hostein R, et al. Excitation-induced dephasing in a resonantly driven InAs/GaAs quantum dot. Phys Rev Lett 2013;111:026403. CrossrefGoogle Scholar

[53]

Ulrich S, Ates S, Reitzenstein S, Löffler A, Forchel A, Michler P. Dephasing of triplet-sideband optical emission of a resonantly driven InAs/GaAs quantum dot inside a microcavity. Phys Rev Lett 2011;106:247402. PubMedCrossrefGoogle Scholar

[54]

Roy C, Hughes S. Phonon-dressed mollow triplet in the regime of cavity quantum electrodynamics: excitation-induced dephasing and nonperturbative cavity feeding effects. Phys Rev Lett 2011;106:247403. PubMedCrossrefGoogle Scholar

[55]

Gardiner C, Zoller P. Quantum noise. Berlin Heidelberg New York, Springer, 1991. Google Scholar

[56]

Bányai L, Koch SW. Semiconductor quantum dots, vol. 2. Singapore, River Edge, NJ, World Scientific, 1993. Google Scholar

[57]

Grundmann M, Stier O, Bimberg D. InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure. Phys Rev B 1995;52:11969–81. CrossrefGoogle Scholar

[58]

Stier O, Grundmann M, Bimberg D. Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory. Phys Rev B 1999;59:5688–701. CrossrefGoogle Scholar

[59]

Schliwa A, Winkelnkemper M, Bimberg D. Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As\GaAs quantum dots. Phys Rev B 2007;76:205324. CrossrefGoogle Scholar

[60]

Chow WW, Jahnke F. On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog. Quant Electron 2013;37:109–84. CrossrefGoogle Scholar

[61]

Haug H Koch SW. Quantum theory of the optical and electronic properties of semiconductors, 5th ed. Singapore, World Scientific Publishing Company, 2009. Google Scholar

[62]

Brandes T. Coherent and collective quantum optical effects in mesoscopic systems. Phys Rep 2005;408:315. CrossrefGoogle Scholar

[63]

Sakaki H. Quantum wires, quantum boxes and related structures: physics, device potentials and structural requirements. Surf Sci 1992;267:623–9. CrossrefGoogle Scholar

[64]

Schwab K, Henriksen E, Worlock J, Roukes ML. Measurement of the quantum of thermal conductance. Nature 2000;404:974. CrossrefPubMedGoogle Scholar

[65]

Gornyi I, Mirlin A, Polyakov D. Interacting electrons in disordered wires: Anderson localization and low-T transport. Phys Rev Lett 2005;95:206603. PubMedCrossrefGoogle Scholar

[66]

Sun C-K, Liang J-C, Yu X-Y. Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields. Phys Rev Lett 2000;84:179. CrossrefPubMedGoogle Scholar

[67]

Lugli P, Goodnick S. Nonequilibrium longitudinal-optical phonon effects in GaAs-AlGaAs quantum wells. Phys Rev Lett 1987;59:716. PubMedCrossrefGoogle Scholar

[68]

Kim D-S, Shah J, Cunningham J, et al. Giant excitonic resonance in time-resolved four-wave mixing in quantum wells. Phys Rev Lett 1992;68:1006. PubMedCrossrefGoogle Scholar

[69]

Gammon D, Rudin S, Reinecke T, Katzer D, Kyono C. Phonon broadening of excitons in GaAs/Al x Ga 1- x As quantum wells. Phys Rev B 1995;51:16785. CrossrefGoogle Scholar

[70]

Richter M, Singh R, Siemens M, Cundiff ST. Deconvolution of optical multidimensional coherent spectra. Sci. Adv. 2018;4:eaar7697. PubMedCrossrefGoogle Scholar

[71]

Singh R, Richter M, Moody G, Siemens ME, Li H, Cundiff ST. Localization dynamics of excitons in disordered semiconductor quantum wells. Phys Rev B 2017;95:235307. CrossrefGoogle Scholar

[72]

Lim J, Ing DJ, Rosskopf J, et al. Signatures of spatially correlated noise and non-secular effects in two-dimensional electronic spectroscopy. J Chem Phys 2017;146:024109. PubMedCrossrefGoogle Scholar

[73]

Wigger D, Schneider C, Gerhardt S, et al. Rabi oscillations of a quantum dot exciton coupled to acoustic phonons: coherence and population readout. Optica 2018;5:1442–50. CrossrefGoogle Scholar

[74]

Cassette E, Pensack RD, Mahler B, Scholes GD. Room-temperature exciton coherence and dephasing in two-dimensional nanostructures. Nat Commun 2015;6:6086. PubMedCrossrefGoogle Scholar

[75]

Liu A, Almeida DB, Bae WK, Padilha LA, Cundiff ST. Vibrational coupling modifies spectral diffusion in core-shell colloidal quantum dots. arXiv preprint arXiv:1806.06112, 2018. Google Scholar

[76]

Suzuki T, Singh R, Moody G, et al. Dephasing of InAs quantum dot *p*-shell excitons studied using two-dimensional coherent spectroscopy. Phys Rev B 2018;98:195304. CrossrefGoogle Scholar

[77]

Christiansen D, Selig M, Berghäuser G, et al. Phonon sidebands in monolayer transition metal dichalcogenides. Phys Rev Lett 2017;119:187402. PubMedCrossrefGoogle Scholar

[78]

Malic E, Knorr A. Graphene and carbon nanotubes: ultrafast optics and relaxation dynamics. Weinheim, John Wiley & Sons, 2013. Google Scholar

[79]

Kira M, Koch SW. Semiconductor quantum optics. Cambridge, Cambridge University Press, 2011. Google Scholar

[80]

Hohenester U, Laucht A, Kaniber M, et al. Phonon-assisted transitions from quantum dot excitons to cavity photons. Phys Rev B 2009;80:201311. CrossrefGoogle Scholar

[81]

Briegel H-J, Dür W, Cirac JI, Zoller P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys Rev Lett 1998;81:5932–5. CrossrefGoogle Scholar

[82]

Kimble HJ. The quantum internet. Nature 2008;453:1023. PubMedCrossrefGoogle Scholar

[83]

Mukamel S. Principles of nonlinear optical spectroscopy, vol. 29. New York, Oxford University Press, 1995. Google Scholar

[84]

Axt VM, Mukamel S. Nonlinear optics of semiconductor and molecular nanostructures; a common perspective. Rev Mod Phys 1998;70:145–74. CrossrefGoogle Scholar

[85]

Warburton RJ. Single spins in self-assembled quantum dots. Nat Mater 2013;12:483. CrossrefPubMedGoogle Scholar

[86]

Matthiesen C, Vamivakas AN, Atatüre M. Subnatural linewidth single photons from a quantum dot. Phys Rev Lett 2012;108:093602. CrossrefPubMedGoogle Scholar

[87]

May V, Kühn O. Charge and energy transfer dynamics in molecular systems. Weinheim, John Wiley & Sons, 2008. Google Scholar

[88]

Bourgain R, Pellegrino J, Jennewein S, et al. Direct measurement of the wigner time delay for the scattering of light by a single atom. Opt Lett 2013;38:1963–5. CrossrefPubMedGoogle Scholar

[89]

Sondermann M, Leuchs G. The phase shift induced by a single atom in free space. J Eur Opt Soc – Rapid 2013;8. DOI: 10.2971/jeos.2013.13052. Google Scholar

[90]

Palatchi C, Dahlstrm JM, Kheifets AS, et al. Atomic delay in helium, neon, argon and krypton. J Phys B At Mol Opt Phys 2014;47:245003. CrossrefGoogle Scholar

[91]

Kira M, Koch S. Many-body correlations and excitonic effects in semiconductor Spectroscopy. Prog Quantum Electron 2006;30:155–296. CrossrefGoogle Scholar

[92]

Čížek J. On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules. In: LeFebvre R, Moser C, eds. Advances in Chemical Physics. Hoboken, NJ, USA, John Wiley & Sons, Ltd., 1969, 35–89. Google Scholar

[93]

Krummheuer B, Axt VM, Kuhn T. Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots. Phys Rev B 2002;65:195313. CrossrefGoogle Scholar

[94]

Richter M, Carmele A, Sitek A, Knorr A. Few-photon model of the optical emission of semiconductor quantum dots. Phys Rev Lett 2009;103:087407. PubMedCrossrefGoogle Scholar

[95]

Rozbicki E, Machnikowski P. Quantum kinetic theory of phonon-assisted excitation transfer in quantum dot molecules. Phys Rev Lett 2008;100:027401. CrossrefPubMedGoogle Scholar

[96]

Lüker S, Kuhn T, Reiter DE. Phonon impact on optical control schemes of quantum dots: role of quantum dot geometry and symmetry. Phys Rev B 2017;96:245306. CrossrefGoogle Scholar

[97]

Wilson-Rae I, Imamoğlu A. Quantum dot cavity-qed in the presence of strong electron-phonon interactions. Phys Rev B 2002;65:235311. CrossrefGoogle Scholar

[98]

Laussy F, Valle ED, Mnchen T, et al. 9 – Luminescence spectra of quantum dots in microcavities. In: Jahnke F, ed. Quantum Optics with Semiconductor. Oxford, Woodhead Publishing, 2012, 293–331. Google Scholar

[99]

Laussy FP, Laucht A, del Valle E, Finley JJ, Villas-Bôas JM. Luminescence spectra of quantum dots in microcavities. III. Multiple quantum dots. Phys Rev B 2011;84:195313. CrossrefGoogle Scholar

[100]

del Valle E. Microcavity quantum electrodynamics. Saarbrcken, VDM Verlag, 2010. Google Scholar

[101]

del Valle E, Laussy FP. Mollow triplet under incoherent pumping. Phys Rev Lett 2010;105:233601. PubMedCrossrefGoogle Scholar

[102]

Kreinberg S, Grběsić T, Strauß M, et al. Quantum-optical spectroscopy of a two-level system using an electrically driven micropillar laser as a resonant excitation source. Light Sci Appl 2018;7:Article number: 41. PubMedGoogle Scholar

[103]

McCutcheon DPS, Dattani NS, Gauger EM, Lovett BW, Nazir A. Quantum dot rabi rotations beyond the weak exciton-phonon coupling regime. Phys Rev B 2011;84:081305. Google Scholar

[104]

Manson R, Roy-Choudhury K, Hughes S. Polaron master equation theory of pulse-driven phonon-assisted population inversion and single-photon emission from quantum-dot excitons. Phys Rev B 2016;93:155423. CrossrefGoogle Scholar

[105]

Kabuss J, Carmele A, Richter M, Chow WW, Knorr A. Inductive equation of motion approach for a semiconductor qd-qed: Coherence induced control of photon statistics. Phys Status Sol B 2011;248:872–8. CrossrefGoogle Scholar

[106]

Axt V, Herbst M, Kuhn T. Coherent control of phonon quantum beats. Superlattices Microstruct 1999;26:117–28. CrossrefGoogle Scholar

[107]

Kabuss J, Carmele A, Richter M, Knorr A. Microscopic equation-of-motion approach to the multiphonon assisted quantum emission of a semiconductor quantum dot. Phys Rev B 2011;84:125324. CrossrefGoogle Scholar

[108]

Glässl M, Vagov A, Lüker S, et al. Long-time dynamics and stationary nonequilibrium of an optically driven strongly confined quantum dot coupled to phonons. Phys Rev B 2011;84:195311. CrossrefGoogle Scholar

[109]

Schollwöck U. The density-matrix renormalization group in the age of matrix product states. Ann Phys 2011;326:96–192. CrossrefGoogle Scholar

[110]

Caldeira AO, Leggett AJ. Path integral approach to quantum brownian motion. Phys A Stat Mech Appl 1983;121:587–616. CrossrefGoogle Scholar

[111]

Vidal G. Phys Rev Lett 2004;93:040502. PubMedCrossrefGoogle Scholar

[112]

del Pino J, Schröder FAYN, Chin AW, Feist J, Garcia-Vidal FJ. Tensor network simulation of non-markovian dynamics in organic polaritons. Phys Rev Lett 2018;121:227401. CrossrefPubMedGoogle Scholar

[113]

Strathearn A, Kirton P, Kilda D, Keeling J, Lovett BW. Efficient non-markovian quantum dynamics using time-evolving matrix product operators. Nat Commun 2018;9:3322. CrossrefPubMedGoogle Scholar

[114]

Droenner L, Naumann NL, Schöll E, Knorr A, Carmele A. Quantum Pyragas control: selective control of individual photon probabilities. Phys Rev A 2019;99:023840. CrossrefGoogle Scholar

[115]

Makri N. Quantum dissipative dynamics: a numerically exact methodology. J Phys Chem A 1998;102:4414–27. CrossrefGoogle Scholar

[116]

Cygorek M, Barth AM, Ungar F, Vagov A, Axt VM. Nonlinear cavity feeding and unconventional photon statistics in solid-state cavity qed revealed by many-level real-time path-integral calculations. Phys Rev B 2017;96:201201. CrossrefGoogle Scholar

[117]

Hopfmann C, Musiał A, Strauß M, et al. Compensation of phonon-induced renormalization of vacuum rabi splitting in large quantum dots: towards temperature-stable strong coupling in the solid state with quantum dot-micropillars. Phys Rev B 2015;92:245403. CrossrefGoogle Scholar

[118]

Jackson JD. Classical electrodynamics. New York, John Wiley & Sons, 2012. Google Scholar

[119]

Allen L, Eberly JH. Optical resonance and two-level atoms, vol. 28. New York, Dover Publication, Courier Corporation, 1987. Google Scholar

[120]

Gardiner C. Stochastic methods, vol. 4. Berlin, Springer, 2009. Google Scholar

[121]

Jakubczyk T, Delmonte V, Fischbach S, et al. ACS Photonics 2016;3:2461–6. PubMedCrossrefGoogle Scholar

[122]

Fras F, Mermillod Q, Nogues G, et al. Impact of phonons on dephasing of individual excitons in deterministic quantum dot microlenses. Nat Photonics 2016;10:155. Google Scholar

[123]

Madelung O. Introduction to solid-state theory, vol. 2. Berlin, Heidelberg, Springer Science & Business Media, 2012. Google Scholar

[124]

Pullerits T, Monshouwer R, van Mourik F, van Grondelle R. Temperature dependence of electron-vibronic spectra of photosynthetic systems. Computer simulations and comparison with experiment. Chem Phys 1995;194:395–407. CrossrefGoogle Scholar

[125]

Cohen-Tannoudji C, Guéry-Odelin D. Advances in atomic physics: an overview. Singapore, World Scientific Publishing Co. Pte. Ltd., 2011. Google Scholar

[126]

Gardiner C, Zoller P. The quantum world of ultra-cold atoms and light book II: the physics of quantum-optical devices. Singapore, World Scientific, 2015, 1–524. Google Scholar

[127]

McCutcheon DP, Nazir A. Quantum dot rabi rotations beyond the weak exciton–phonon coupling regime. New J Phys 2010;12:113042. CrossrefGoogle Scholar

[128]

Kabuss J, Werner S, Hoffmann A, Hildebrandt P, Knorr A, Richter M. Theory of time-resolved raman scattering and fluorescence emission from semiconductor quantum dots. Phys Rev B 2010;81:075314. CrossrefGoogle Scholar

[129]

Carmele A, Knorr A, Richter M. Photon statistics as a probe for exciton correlations in coupled nanostructures. Phys Rev B 2009;79:035316. CrossrefGoogle Scholar

[130]

Ramsay AJ, Gopal AV, Gauger EM, et al. Damping of exciton rabi rotations by acoustic phonons in optically excited InGaAs/GaAs quantum dots. Phys Rev Lett 2010;104:017402. CrossrefPubMedGoogle Scholar

[131]

Glässl M, Croitoru MD, Vagov A, Axt VM, Kuhn T. Influence of the pulse shape and the dot size on the decay and reappearance of rabi rotations in laser driven quantum dots. Phys Rev B 2011;84:125304. CrossrefGoogle Scholar

[132]

Machnikowski P, Jacak L. Resonant nature of phonon-induced damping of rabi oscillations in quantum dots. Phys Rev B 2004;69:193302. CrossrefGoogle Scholar

[133]

Krügel A, Axt VM, Kuhn T. Transition from jaynes-cummings to autler-townes ladder in a quantum dot–microcavity system. Phys Rev B 2006;73:035302. Google Scholar

[134]

Reiter DE. Time-resolved pump-probe signals of a continuously driven quantum dot affected by phonons. Phys Rev B 2017;95:125308. CrossrefGoogle Scholar

[135]

Naumann NL, Droenner L, Chow WW, Kabuss J, Carmele A. Solid-state-based analog of optomechanics. JOSA B 2016;33:1492–501. CrossrefGoogle Scholar

[136]

Droenner L, Naumann NL, Kabuss J, Carmele A. Collective enhancements in many-emitter phonon lasing. Phys Rev A 2017;96:043805. CrossrefGoogle Scholar

[137]

Kabuss J, Carmele A, Brandes T, Knorr A. Optically driven quantum dots as source of coherent cavity phonons: a proposal for a phonon laser scheme. Phys Rev Lett 2012;109:054301. CrossrefPubMedGoogle Scholar

[138]

Kepesidis KV, Bennett SD, Portolan S, Lukin MD, Rabl P. Phonon cooling and lasing with nitrogen-vacancy centers in diamond. Phys Rev B 2013;88:064105. CrossrefGoogle Scholar

[139]

Czerniuk T, Wigger D, Akimov AV, et al. Picosecond control of quantum dot laser emission by coherent phonons. Phys Rev Lett 2017;118:133901. PubMedCrossrefGoogle Scholar

[140]

Richter M, Knorr A. A time convolution less density matrix approach to the nonlinear optical response of a coupled system–bath complex. Ann Phys 2010; 325:711–47. CrossrefGoogle Scholar

[141]

Stauber T, Zimmermann R, Castella H. Electron-phonon interaction in quantum dots: a solvable model. Phys Rev B 2000;62:7336–43. CrossrefGoogle Scholar

[142]

Heitz R, Mukhametzhanov I, Stier O, Madhukar A, Bimberg D. Enhanced polar exciton-lo-phonon interaction in quantum dots. Phys Rev Lett 1999;83:4654–7. CrossrefGoogle Scholar

[143]

Heitz R, Born H, Guffarth F, et al. Existence of a phonon bottleneck for excitons in quantum dots. Phys. Rev. B 2001;64:241305. CrossrefGoogle Scholar

[144]

Droenner L, Finsterhölzl R, Heyl M, Carmele A. Stabilizing a discrete time crystal against dissipation. arXiv preprint arXiv:1902.04986, 2019. Google Scholar

[145]

Leggett AJ, Chakravarty S, Dorsey AT, Fisher MPA, Garg A, Zwerger W. Dynamics of the dissipative two-state system. Rev Mod Phys 1987;59:1. CrossrefGoogle Scholar

[146]

Vagov A, Croitoru M, Axt V, Kuhn T, Peeters F. High pulse area undamping of rabi oscillations in quantum dots coupled to phonons. Phys Status Sol B 2006;243:2233–40. CrossrefGoogle Scholar

[147]

Vagov A, Croitoru M, Axt V, Machnikowski P, Kuhn T. Dynamics of quantum dots with strong electron phonon coupling: Correlation expansion vs. path integrals. Phys Status Sol B 2011;248:839–42. CrossrefGoogle Scholar

[148]

Dousse A, Lanco L, Suffczyński J, et al. Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography. Phys Rev Lett 2008;101:267404. CrossrefGoogle Scholar

[149]

Gschrey M, Gericke F, Schüßler A, et al. In situ electron-beam lithography of deterministic single-quantum-dot mesa-structures using low-temperature cathodoluminescence spectroscopy. Appl Phys Lett 2013;102:251113. CrossrefGoogle Scholar

[150]

Sotier F, Thomay T, Hanke T, et al. Femtosecond few-fermion dynamics and deterministic single-photon gain in a quantum dot. Nat Phys 2009;5:352. CrossrefGoogle Scholar

[151]

Flagg EB, Muller A, Robertson J, et al. Resonantly driven coherent oscillations in a solid-state quantum emitter. Nat Phys 2009;5:203. CrossrefGoogle Scholar

[152]

Laussy FP, Del Valle E, Tejedor C. Strong coupling of quantum dots in microcavities. Phys Rev Lett 2008;101:083601. PubMedCrossrefGoogle Scholar

[153]

Kasprzak J, Reitzenstein S, Muljarov EA, et al. Up on the jaynes–cummings ladder of a quantum-dot/microcavity system. Nat Mater 2010;9:304. CrossrefPubMedGoogle Scholar

[154]

Kavokin A. Microcavities, 21. New York, Oxford University Press Inc., 2017. Google Scholar

[155]

Lodahl P, Mahmoodian S, Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev Mod Phys 2015;87:347–400. CrossrefGoogle Scholar

[156]

Schneebeli L, Kira M, Koch SW. Characterization of strong light-matter coupling in semiconductor quantum-dot microcavities via photon-statistics spectroscopy. Phys Rev Lett 2008;101:097401. PubMedCrossrefGoogle Scholar

[157]

Hopfmann C, Carmele A, Musiał, et al. Transition from jaynes-cummings to autler-townes ladder in a quantum dot–microcavity system. Phys. Rev. B 2017;95:035302. CrossrefGoogle Scholar

[158]

Lounis B, Orrit M. Single-photon sources. Rep Prog Phys 2005;68:1129. CrossrefGoogle Scholar

[159]

Ding X, He Y, Duan Z-C, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys Rev Lett 2016;116:020401. CrossrefGoogle Scholar

[160]

Somaschi N, Giesz V, De Santis L, et al. Near-optimal single-photon sources in the solid state. Nat Photonics 2016;10:340. CrossrefGoogle Scholar

[161]

Iles-Smith J, McCutcheon DP, Nazir A, Mørk J. Phonon scattering inhibits simultaneous near-unity efficiency and indistinguishability in semiconductor single-photon sources. Nat Photonics 2017;11:521. CrossrefGoogle Scholar

[162]

Calic M, Gallo P, Felici M, et al. Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities. Phys Rev Lett 2011;106:227402. PubMedCrossrefGoogle Scholar

[163]

Kaer P, Nielsen TR, Lodahl P, Jauho A-P, Mørk J. Non-markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot–cavity system. Phys Rev Lett 2010;104:157401. CrossrefGoogle Scholar

[164]

Hughes S, Yao P, Milde F, et al. Influence of electron-acoustic phonon scattering on off-resonant cavity feeding within a strongly coupled quantum-dot cavity system. Phys Rev B 2011;83:165313. CrossrefGoogle Scholar

[165]

Winger M, Volz T, Tarel G, et al. Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot–cavity system. Phys Rev Lett 2009;103:207403. CrossrefPubMedGoogle Scholar

[166]

Carmele A, Kabuss J, Chow WW. Highly detuned rabi oscillations for a quantum dot in a microcavity. Phys Rev B 2013;87:041305. CrossrefGoogle Scholar

[167]

Thoma A, Schnauber P, Gschrey M, et al. Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent hong-ou-mandel experiments. Phys Rev Lett 2016;116:033601. CrossrefPubMedGoogle Scholar

[168]

Rempe G, Walther H, Klein N. Observation of quantum collapse and revival in a one-atom maser. Phys Rev Lett 1987;58:353–6. CrossrefGoogle Scholar

[169]

Eberly JH, Narozhny NB, Sanchez-Mondragon JJ. Periodic spontaneous collapse and revival in a simple quantum model. Phys Rev Lett 1980;44:1323–6. CrossrefGoogle Scholar

[170]

Hong CK, Ou ZY, Mandel L. Measurement of subpicosecond time intervals between two photons by interference. Phys Rev Lett 1987;59:2044–6. PubMedCrossrefGoogle Scholar

[171]

Galperin YM, Altshuler BL, Bergli J, Shantsev DV. Non-gaussian low-frequency noise as a source of qubit decoherence. Phys Rev Lett 2006;96:097009. CrossrefPubMedGoogle Scholar

[172]

Laikhtman BD. General theory of spectral diffusion and echo decay in glasses. Phys Rev B 1985;31:490–504. CrossrefGoogle Scholar

[173]

Eberly JH, Wódkiewicz K, Shore BW. Noise in strong laser-atom interactions: phase telegraph noise. Phys Rev A 1984;30:2381–9. CrossrefGoogle Scholar

[174]

Liu J, Konthasinghe K, Davanço M, et al. Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: the role of nanofabrication. Phys Rev Appl 2018;9:064019. CrossrefGoogle Scholar

[175]

Glässl M, Sörgel L, Vagov A, Croitoru MD, Kuhn T, Axt VM. Interaction of a quantum-dot cavity system with acoustic phonons: Stronger light-matter coupling can reduce the visibility of strong coupling effects. Phys Rev B 2012;86:035319. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.