[1]

Bohm D, Weinstein M. The self-oscillations of a charged particle. Phys Rev 1948;74:1789–98. CrossrefGoogle Scholar

[2]

Goedecke GH. Classically radiationless motions and possible implications for quantum theory. Phys Rev 1964;135:B281–8. CrossrefGoogle Scholar

[3]

Pearle P. When can a classical electron accelerate without radiating? Found Phys 1978;8:879–91. CrossrefGoogle Scholar

[4]

Abbott TA, Griffiths DJ. Acceleration without radiation. Am J Phys 1985;53:1203–11. CrossrefGoogle Scholar

[5]

Davidson MP. Quantum wave equations and non-radiating electromagnetic sources. Ann Phys 2007;322:2195–210. CrossrefGoogle Scholar

[6]

Nemkov NA, Basharin AA, Fedotov VA. Nonradiating sources, dynamic anapole, and Aharonov-Bohm effect. Phys Rev B 2017;95:165134. CrossrefGoogle Scholar

[7]

Rybin MV, Koshelev KL, Sadrieva ZF, et al. High-*Q* supercavity modes in subwavelength dielectric resonators. Phys Rev Lett 2017;119:243901. PubMedCrossrefGoogle Scholar

[8]

Maier S. Plasmonics: fundamentals and applications. New York: Springer, 2007. Google Scholar

[9]

Kivshar Y. All-dielectric meta-optics and non-linear nanophotonics. Natl Sci Rev 2018;5:144–58. CrossrefGoogle Scholar

[10]

Costescu A, Radescu EE. Induced toroid structures and toroid polarizabilities. Phys Rev D 1987;35:3496–9. CrossrefGoogle Scholar

[11]

Afanasiev GN, Dubovik VM. Some remarkable charge-current configurations. Phys Part Nuclei 1998;29:366–91. CrossrefGoogle Scholar

[12]

Papasimakis N, Fedotov VA, Savinov V, Raybould TA, Zheludev NI. Electromagnetic toroidal excitations in matter and free space. Nat Mater 2016;15:263–71. CrossrefPubMedGoogle Scholar

[13]

Fedotov VA, Rogacheva A, Savinov V, Tsai D, Zheludev NI. Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials. Sci Rep 2013;3:2967. CrossrefPubMedGoogle Scholar

[14]

Miroshnichenko AE, Evlyukhin AB, Yu YF, et al. Nonradiating anapole modes in dielectric nanoparticles. Nat Commun 2015;6:8069. CrossrefPubMedGoogle Scholar

[15]

Kim S-H, Oh SS, Kim K-J, et al. Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons. Phys Rev B 2015;91:035116. CrossrefGoogle Scholar

[16]

Basharin AA, Kafesaki M, Economou EN, et al. Dielectric metamaterials with toroidal dipolar response. Phys Rev X 2015;5:011036. Google Scholar

[17]

Liu W, Zhang J, Lei B, Hu H, Miroshnichenko AE. Invisible nanowires with interfering electric and toroidal dipoles. Opt Lett 2015;40:2293–6. PubMedCrossrefGoogle Scholar

[18]

Tasolamprou AC, Tsilipakos O, Kafesaki M, Soukoulis CM, Economou EN. Toroidal eigenmodes in all-dielectric metamolecules. Phys Rev B 2016;94:205433. CrossrefGoogle Scholar

[19]

Evlyukhin AB, Fischer T, Reinhardt C, Chichkov BN. Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles. Phys Rev B 2016;94:205434. CrossrefGoogle Scholar

[20]

Feng S, Halterman K, Overfelt PL, Elson JM, Lindsay GA, Roberts MJ. Resonant-induced transparency and coupled modes in layered metamaterials. Appl Phys A 2007;87:235–44. CrossrefGoogle Scholar

[21]

Chen P-Y, Soric J, Alù A. Invisibility and cloaking based on scattering cancellation. Adv Mater 2012;24:OP281–304. PubMedGoogle Scholar

[22]

Wang KX, Yu Z, Sandhu S, Liu V, Fan S. Condition for perfect antireflection by optical resonance at material interface. Optica 2014;1:388–95. CrossrefGoogle Scholar

[23]

Rybin MV, Filonov DS, Belov PA, Kivshar YS, Limonov MF. Switching from visibility to invisibility via Fano resonances: theory and experiment. Scientific Reports 2015;5:8774. Article. PubMedCrossrefGoogle Scholar

[24]

von Neumann J, Wigner E. On some peculiar discrete eigenvalues. Phys Z 1929;30:465–7. Google Scholar

[25]

Fonda L. Bound states embedded in the continuum and the formal theory of scattering. Ann Phys 1963;22:123–32. CrossrefGoogle Scholar

[26]

Ursell F. Trapping modes in the theory of surface waves. In: Mathematical proceedings of the Cambridge Philosophical Society, vol. 47. Cambridge, Cambridge University Press, 1951, pp. 347–58. Google Scholar

[27]

Cumpsty NA, Whitehead D. The excitation of acoustic resonances by vortex shedding. J Sound Vib 1971;18:353–69. CrossrefGoogle Scholar

[28]

Marinica DC, Borisov AG, Shabanov SV. Bound states in the continuum in photonics. Phys Rev Lett 2008;100:183902. PubMedCrossrefGoogle Scholar

[29]

Bulgakov EN, Sadreev AF. Bound states in the continuum in photonic waveguides inspired by defects. Phys Rev B 2008;78:075105. CrossrefGoogle Scholar

[30]

Plotnik Y, Peleg O, Dreisow F, et al. Experimental observation of optical bound states in the continuum. Phys Rev Lett 2011;107:183901. CrossrefPubMedGoogle Scholar

[31]

Foley JM, Young SM, Phillips JD. Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating. Phys Rev B 2014;89:165111. CrossrefGoogle Scholar

[32]

Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kanté B. Lasing action from photonic bound states in continuum. Nature 2017;541:196. CrossrefPubMedGoogle Scholar

[33]

Liu Y, Zhou W, Sun Y. Optical refractive index sensing based on high-*Q* bound states in the continuum in free-space coupled photonic crystal slabs. Sensors 2017;17:1861. CrossrefGoogle Scholar

[34]

Bulgakov EN, Sadreev AF. Robust bound state in the continuum in a nonlinear microcavity embedded in a photonic crystal waveguide. Opt Lett 2014;39:5212–5. CrossrefGoogle Scholar

[35]

Bulgakov EN, Sadreev AF. Bound states in the continuum with high orbital angular momentum in a dielectric rod with periodically modulated permittivity. Phys Rev A 2017;96:013841. CrossrefGoogle Scholar

[36]

Koshelev K, Sychev S, Sadrieva Z, Bogdanov A, Iorsh I. Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum. Phys Rev B 2018;98:161113. CrossrefGoogle Scholar

[37]

Sadrieva ZF, Sinev IS, Koshelev KL, et al. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness. ACS Photonics 2017;4:723–7. CrossrefGoogle Scholar

[38]

Belyakov MA, Balezin MA, Sadrieva ZF, et al. Experimental observation of symmetry protected bound state in the continuum in a chain of dielectric disks. arXiv preprint arXiv:1806.01932 (2018). Google Scholar

[39]

Rybin M, Kivshar Y. Supercavity lasing. Nature 2017;541:164. CrossrefPubMedGoogle Scholar

[40]

Zel’Dovich IB. Electromagnetic interaction with parity violation. Soviet J Exp Theor Phys 1958;6:1184. Google Scholar

[41]

Ho CM, Scherrer RJ. Anapole dark matter. Phys Lett B 2013;722:341–6. CrossrefGoogle Scholar

[42]

Dubovik V, Tugushev V. Toroid moments in electrodynamics and solid-state physics. Phys Rep 1990;187:145–202. CrossrefGoogle Scholar

[43]

Afanasiev GN, Stepanovsky YP. The electromagnetic field of elementary time-dependent toroidal sources. J Phys A: Math Gen 1995;28:4565. CrossrefGoogle Scholar

[44]

Wei L, Xi Z, Bhattacharya N, Urbach HP. Excitation of the radiationless anapole mode. Optica 2016;3:799–802. CrossrefGoogle Scholar

[45]

Totero Gongora JS, Favraud G, Fratalocchi A. Fundamental and high-order anapoles in all-dielectric metamaterials via Fano-Feshbach modes competition. Nanotechnology 2017;28:104001. PubMedCrossrefGoogle Scholar

[46]

Lalanne P, Yan W, Vynck K, Sauvan C, Hugonin J-P. Light interaction with photonic and plasmonic resonances. Laser Photonics Rev 2018;12:1700113. CrossrefGoogle Scholar

[47]

Baryshnikova K, Smirnova D, Lukyanchuk B, Kivshar Y. Optical anapoles: concepts and applications. Adv Opt Mater 2019; 1801350-(13). doi.org/10.1002/adom.201801350. Google Scholar

[48]

Hsu CW, Zhen B, Stone AD, Joannopoulos JD, Soljačić, M. Bound states in the continuum. Nat Rev Mater 2016;1:16048. CrossrefGoogle Scholar

[49]

Gentry CM, Popović MA. Dark state lasers. Opt Lett 2014;39:4136–9. CrossrefPubMedGoogle Scholar

[50]

Hodaei H, Hassan AU, Hayenga WE, et al. Dark-state lasers: mode management using exceptional points. Opt Lett 2016;41:3049–52. CrossrefPubMedGoogle Scholar

[51]

Friedrich H, Wintgen D. Interfering resonances and bound states in the continuum. Phys Rev A 1985;32:3231–42. CrossrefGoogle Scholar

[52]

Bonnet-Bendhia A-S, Starling F. Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem. Math Method Appl Sci 1994;17:305–38. CrossrefGoogle Scholar

[53]

Paddon P, Young JF. Two-dimensional vector-coupled-mode theory for textured planar waveguides. Phys Rev B 2000;61:2090. CrossrefGoogle Scholar

[54]

Pacradouni V, Mandeville WJ, Cowan AR, Paddon P, Young JF, Johnson SR. Photonic band structure of dielectric membranes periodically textured in two dimensions. Phys Rev B 2000;62:4204. CrossrefGoogle Scholar

[55]

Ochiai T, Sakoda K. Dispersion relation and optical transmittance of a hexagonal photonic crystal slab. Phys Rev B 2001;63:125107. CrossrefGoogle Scholar

[56]

Yablonskii A, Muljarov E, Gippius N, Tikhodeev S, Ishihara T. Optical properties of polaritonic crystal slab. Physica Status Solidi (a) 2002;190:413–9. CrossrefGoogle Scholar

[57]

Tikhodeev SG, Yablonskii A, Muljarov E, Gippius NA, Ishihara T. Quasiguided modes and optical properties of photonic crystal slabs. Phys Rev B 2002;66:045102. CrossrefGoogle Scholar

[58]

Fan S, Joannopoulos JD. Analysis of guided resonances in photonic crystal slabs. Phys Rev B 2002;65:235112. CrossrefGoogle Scholar

[59]

Shipman SP, Venakides S. Resonant transmission near nonrobust periodic slab modes. Phys Rev E 2005;71:026611. CrossrefGoogle Scholar

[60]

Fox J. Symposium on optical and acoustical micro-electronics, New York, NY, April 16–18, 1974, proceedings. In Symposium on Optical and Acoustical Micro-Electronics (1975). Google Scholar

[61]

Yablonskii AL, Muljarov EA, Gippius NA, Tikhodeev SG, Fujita T, Ishihara T. Polariton effect in distributed feedback microcavities. J Phys Soc Japan 2001;70:1137–44. CrossrefGoogle Scholar

[62]

Christ A, Tikhodeev S, Gippius N, Kuhl J, Giessen H. Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys Rev Lett 2003;91:183901. CrossrefGoogle Scholar

[63]

Lee J, Zhen B, Chua S-L, et al. Observation and differentiation of unique high-*Q* optical resonances near zero wave vector in macroscopic photonic crystal slabs. Phys Rev Lett 2012;109:067401. PubMedCrossrefGoogle Scholar

[64]

Hsu CW, Zhen B, Lee J, et al. Observation of trapped light within the radiation continuum. Nature 2013;499:188. PubMedCrossrefGoogle Scholar

[65]

Bulgakov EN, Sadreev AF. Transfer of spin angular momentum of an incident wave into orbital angular momentum of the bound states in the continuum in an array of dielectric spheres. Phys Rev A 2016;94:033856. CrossrefGoogle Scholar

[66]

Bulgakov EN, Maksimov DN. Light enhancement by quasi-bound states in the continuum in dielectric arrays. Opt Exp 2017;25:14134–47. CrossrefGoogle Scholar

[67]

Bulgakov E, Sadreev A. Trapping of light with angular orbital momentum above the light cone. Adv EM 2017;6:1–10. Google Scholar

[68]

Bulgakov EN, Sadreev AF. Nearly bound states in the radiation continuum in a circular array of dielectric rods. Phys Rev A 2018;97:033834. CrossrefGoogle Scholar

[69]

Ni L, Jin J, Peng C, Li Z. Analytical and statistical investigation on structural fluctuations induced radiation in photonic crystal slabs. Opt Express 2017;25:5580–93. PubMedCrossrefGoogle Scholar

[70]

Chen HL, Wang G, Lee RK. Nearly complete survival of an entangled biphoton through bound states in continuum in disordered photonic lattices. Opt Express 2018;26:33205–14. CrossrefPubMedGoogle Scholar

[71]

Jin J, Yin X, Ni L, Soljačić M, Zhen B, Peng C. Topologically enabled ultra-high-*Q* guided resonances robust to out-of-plane scattering. 2018. arXiv preprint arXiv:1812.00892. Google Scholar

[72]

Zhen B, Hsu CW, Lu L, Stone AD, Soljačić M. Topological nature of optical bound states in the continuum. Phys Rev Lett 2014;113:257401. PubMedCrossrefGoogle Scholar

[73]

Bulgakov EN, Maksimov DN. Topological bound states in the continuum in arrays of dielectric spheres. Phys Rev Lett 2017;118:267401. PubMedCrossrefGoogle Scholar

[74]

Bahari B, Vallini F, Lepetit T, et al. Integrated and steerable vortex lasers. arXiv preprint arXiv:1707.00181. 2017. Google Scholar

[75]

Doeleman HM, Monticone F, den Hollander W, Alù A, Koenderink AF. Experimental observation of a polarization vortex at an optical bound state in the continuum. Nat Photonics 2018;12:397–401. CrossrefGoogle Scholar

[76]

Zhang Y, Chen A, Liu W, et al. Observation of polarization vortices in momentum space. Phys Rev Lett 2018;120:186103. PubMedCrossrefGoogle Scholar

[77]

Guo Y, Xiao M, Fan S. Topologically protected complete polarization conversion. Phys Rev Lett 2017;119:167401. CrossrefPubMedGoogle Scholar

[78]

Koshelev K, Lepeshov S, Liu M, Bogdanov A, Kivshar Y. Asymmetric metasurfaces with high-*Q* resonances governed by bound states in the continuum. Phys Rev Lett 2018;121:193903. PubMedCrossrefGoogle Scholar

[79]

Silveirinha MG. Trapping light in open plasmonic nanostructures. Phys Rev A 2014;89:023813. CrossrefGoogle Scholar

[80]

Monticone F, Alu A. Embedded photonic eigenvalues in 3D nanostructures. Phys Rev Lett 2014;112:213903. CrossrefGoogle Scholar

[81]

Wiersig J. Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities. Phys Rev Lett 2006;97:253901. CrossrefPubMedGoogle Scholar

[82]

Taghizadeh A, Chung I.-S. Quasi bound states in the continuum with few unit cells of photonic crystal slab. Appl Phys Lett 2017;111:031114. CrossrefGoogle Scholar

[83]

Bogdanov AA, Koshelev KL, Kapitanova PV, et al. Bound states in the continuum and Fano resonances in the strong mode coupling regime. Adv Photonics 2019;1:016001. Google Scholar

[84]

Koshelev K, Bogdanov A, Kivshar Y. Meta-optics and bound states in the continuum. Sci Bull 2018. doi: doi.org/10.1016/j.scib.2018.12.003. Google Scholar

[85]

Gomis-Bresco J, Artigas D, Torner L. Anisotropy-induced photonic bound states in the continuum. Nat Photonics 2017;11:232. CrossrefGoogle Scholar

[86]

Mukherjee S, Gomis-Bresco J, Pujol-Closa P, Artigas D, Torner L. Topological properties of bound states in the continuum in geometries with broken anisotropy symmetry. Phys Rev A 2018;98:063826. CrossrefGoogle Scholar

[87]

Pichugin K, Sadreev A. Self-induced light trapping in nonlinear Fabry-Perot resonators. Phys Lett A 2016;380:3570–74. CrossrefGoogle Scholar

[88]

Yuan L, Lu YY. Strong resonances on periodic arrays of cylinders and optical bistability with weak incident waves. Phys Rev A 2017;95:023834. CrossrefGoogle Scholar

[89]

Krasikov SD, Bogdanov AA, Iorsh IV. Nonlinear bound states in the continuum of a one-dimensional photonic crystal slab. Phys Rev B 2018;97:224309. CrossrefGoogle Scholar

[90]

Ni L, Wang Z, Peng C, Li Z. Tunable optical bound states in the continuum beyond in-plane symmetry protection. Phys Rev B 2016;94:245148. CrossrefGoogle Scholar

[91]

Timofeev IV, Maksimov DN, Sadreev AF. Optical defect mode with tunable *Q* factor in a one-dimensional anisotropic photonic crystal. Phys Rev B 2018;97:024306. CrossrefGoogle Scholar

[92]

Hsu CW, Zhen B, Chua S-L, Johnson SG, Joannopoulos JD, Soljačić M. Bloch surface eigenstates within the radiation continuum. Light Sci Appl 2013;2:e84. CrossrefGoogle Scholar

[93]

Tasolamprou AC, Koschny T, Kafesaki M, Soukoulis CM. Near-infrared and optical beam steering and frequency splitting in air-holes-in-silicon inverse photonic crystals. ACS Photonics 2017;4:2782–8. PubMedCrossrefGoogle Scholar

[94]

Fan K, Shadrivov IV, Padilla WJ. Dynamic bound states in the continuum. Optica 2019;6:169–73. CrossrefGoogle Scholar

[95]

Lannebère S, Silveirinha MG. Optical meta-atom for localization of light with quantized energy. Nat Commun 2015;6:8766. CrossrefPubMedGoogle Scholar

[96]

Liberal I, Engheta N. Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities. Sci Adv 2016;2:e1600987. CrossrefPubMedGoogle Scholar

[97]

Li L, Zhang J, Wang C, Zheng N, Yin H. Optical bound states in the continuum in a single slab with zero refractive index. Phys Rev A 2017;96:013801. CrossrefGoogle Scholar

[98]

Minkov M, Williamson IA, Xiao M, Fan S. Zero-index bound states in the continuum. Phys Rev Lett 2018;121:263901. CrossrefPubMedGoogle Scholar

[99]

Jiang X, Tang J, Li Z, et al. Enhancement of photonic spin hall effect via bound states in the continuum. J Phys D: Appl Phys 2018;52:045401. Google Scholar

[100]

Totero Gongora JS, Miroshnichenko AE, Kivshar YS, Fratalocchi A. Anapole nanolasers for mode-locking and ultrafast pulse generation. Nat Commun 2017;8:15535. PubMedCrossrefGoogle Scholar

[101]

Terekhov PD, Babicheva VE, Baryshnikova KV, Shalin AS, Karabchevsky A, Evlyukhin AB. Multipole analysis of dielectric metasurfaces composed of nonspherical nanoparticles and lattice invisibility effect. Phys Rev B 2019;99:045424. CrossrefGoogle Scholar

[102]

Sayanskiy A, Kupriianov AS, Xu S, et al. Controlling high-*Q* trapped modes in polarization-insensitive all-dielectric metasurfaces. arXiv preprint arXiv:1811.11396. 2018. Google Scholar

[103]

Mubeen S, Lee J, Singh N, Krämer S, Stucky GD, Moskovits M. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nanotech 2013;8:247–51. CrossrefGoogle Scholar

[104]

Tian Y, Pelayo García de Arquer F, Dinh C-T, et al. Enhanced solar-to-hydrogen generation with broadband epsilon-near-zero nanostructured photocatalysts. Adv Mat 2017;29:1701165. CrossrefGoogle Scholar

[105]

Wang P, Krasavin AV, Nasir ME, Dickson W, Zayats AV. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials. Nat Nanotechnol 2018;13:159–64. PubMedCrossrefGoogle Scholar

[106]

Hess O, Pendry JB, Maier SA, Oulton RF, Hamm JM, Tsakmakidis KL. Active nanoplasmonic metamaterials. Nat Mater 2012;11:573–84. PubMedCrossrefGoogle Scholar

[107]

Yang Y, Zenin VA, Bozhevolnyi SI. Anapole-assisted strong field enhancement in individual all-dielectric nanostructures. ACS Photonics 2018;5:1960–6. CrossrefGoogle Scholar

[108]

Liu S.-D, Wang Z.-X, Wang W.-J, Chen J.-D, Chen Z.-H. High *Q*-factor with the excitation of anapole modes in dielectric split nanodisk arrays. Opt Express 2017;25:22375–87. CrossrefPubMedGoogle Scholar

[109]

Haus HA. Waves and fields in optoelectronics. Englewood Cliffs, NJ: Prentice-Hall, 1984. Google Scholar

[110]

Basharin AA, Chuguevsky V, Volsky N, Kafesaki M, Economou EN. Extremely high *Q*-factor metamaterials due to anapole excitation. Phys Rev B 2017;95:035104. CrossrefGoogle Scholar

[111]

Mocella V, Romano S. Giant field enhancement in photonic resonant lattices. Phys Rev B 2015;92:155117. CrossrefGoogle Scholar

[112]

Yoon JW, Song SH, Magnusson R. Critical field enhancement of asymptotic optical bound states in the continuum. Scientific Rep 2015;5:18301. Google Scholar

[113]

Chen W, Chen Y, Liu W. Subwavelength high-*Q* kerker supermodes with unidirectional radiations. arXiv preprint arXiv:1808.05539. 2018. Google Scholar

[114]

Wei E, Liu AY, Chew WC. Dissipative quantum electromagnetics. IEEE J Multiscale Multiphys Comput Tech 2018;3:198–213. CrossrefGoogle Scholar

[115]

Ospanova AK, Stenishchev IV, Basharin AA. Anapole mode sustaining silicon metamaterials in visible spectral range. Laser Photonics Rev 2018;12:1800005. CrossrefGoogle Scholar

[116]

Grinblat G, Li Y, Nielsen MP, Oulton RF, Maier SA. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett 2016;16:4635–40. PubMedCrossrefGoogle Scholar

[117]

Grinblat G, Li Y, Nielsen MP, Oulton RF, Maier SA. Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk. ACS Nano 2017;11:953–60. CrossrefGoogle Scholar

[118]

Shibanuma T, Grinblat G, Albella P, Maier SA. Efficient third harmonic generation from metal–dielectric hybrid nanoantennas. Nano Lett 2017;17:2647–51. PubMedCrossrefGoogle Scholar

[119]

Xu L, Rahmani M, Kamali KZ, et al. Boosting third-harmonic generation by a mirror-enhanced anapole resonator. Light Sci Appl 2018;7:44. CrossrefPubMedGoogle Scholar

[120]

Timofeeva M, Lang L, Timpu F, et al. Anapoles in free-standing iii–v nanodisks enhancing second-harmonic generation. Nano Lett 2018;18:3695–702. CrossrefPubMedGoogle Scholar

[121]

Wang T, Zhang X. Improved third-order nonlinear effect in graphene based on bound states in the continuum. Photonics Res 2017;5:629–39. CrossrefGoogle Scholar

[122]

Wang T, Zhang S. Large enhancement of second harmonic generation from transition-metal dichalcogenide monolayer on grating near bound states in the continuum. Opt Express 2018;26:322–37. CrossrefPubMedGoogle Scholar

[123]

Grinblat G, Li Y, Nielsen MP, Oulton RF, Maier SA. Degenerate four-wave mixing in a multiresonant germanium nanodisk. ACS Photonics 2017;4:2144–9. CrossrefGoogle Scholar

[124]

Pichugin KN, Sadreev AF. Frequency comb generation by symmetry-protected bound state in the continuum. JOSA B 2015;32:1630–6. CrossrefGoogle Scholar

[125]

Carletti L, Koshelev K, De Angeslis C, Kivshar Y. Giant nonlinear response at the nanoscale driven by bound states in the continuum. Phys Rev Lett 2018;121:033903. CrossrefPubMedGoogle Scholar

[126]

Poddubny AN, Smirnova DA. Nonlinear generation of quantum-entangled photons from high-*Q* states in dielectric nanoparticles. arXiv preprint arXiv:1808.04811. 2018. Google Scholar

[127]

Kaelberer T, Fedotov V, Papasimakis N, Tsai D, Zheludev N. Toroidal dipolar response in a metamaterial. Science 2010;330:1510–2. CrossrefGoogle Scholar

[128]

Gupta M, Savinov V, Xu N, et al. Sharp toroidal resonances in planar terahertz metasurfaces. Adv Mater 2016;28:8206–11. CrossrefPubMedGoogle Scholar

[129]

Dong Z-G, Zhu J, Rho J, et al. Optical toroidal dipolar response by an asymmetric double-bar metamaterial. Appl Phys Lett 2012;101:144105. CrossrefGoogle Scholar

[130]

Liu Z, Du S, Cui A, et al. High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials. Adv Mater 2017;29:1606298. CrossrefGoogle Scholar

[131]

Huang Y-W, Chen WT, Wu PC, et al. Design of plasmonic toroidal metamaterials at optical frequencies. Opt Express 2012;20:1760–8. CrossrefPubMedGoogle Scholar

[132]

Li J, Zhang Y, Jin R, Wang Q, Chen Q, Dong Z. Excitation of plasmon toroidal mode at optical frequencies by angle-resolved reflection. Opt Lett 2014;39:6683–6. CrossrefPubMedGoogle Scholar

[133]

Xu S, Sayanskiy A, Kupriianov AS, et al. Experimental observation of toroidal dipole modes in all-dielectric metasurfaces. Adv Opt Mater 2018:1801166. CrossrefGoogle Scholar

[134]

Sayanskiy A, Danaeifar M, Kapitanova P, Miroshnichenko AE. All-dielectric metalattice with enhanced toroidal dipole response. Adv Opt Mater 2018;6:1800302. CrossrefGoogle Scholar

[135]

Tuz VR, Khardikov VV, Kivshar YS. All-dielectric resonant metasurfaces with a strong toroidal response. ACS Photonics 2018;5:1871–6. CrossrefGoogle Scholar

[136]

Sun G, Zhang X, Zhu Y. Strong field enhancement with the anapole mode in split dielectric nanocuboid metasurfaces. In: 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 1–2. Xuzhou, China, IEEE, 2018. Google Scholar

[137]

Algorri J, Zografopoulos D, Ferraro A, et al. Anapole modes in hollow nanocuboid dielectric metasurfaces for refractometric sensing. Nanomaterials 2019;9:30. Google Scholar

[138]

Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors. Sensors Actuators B Chem 1999;54:3–15. CrossrefGoogle Scholar

[139]

Mazzone V, Totero Gongora JS, Fratalocchi A. Near-field coupling and mode competition in multiple anapole systems. Appl Sci 2017;7:542–51. CrossrefGoogle Scholar

[140]

Bulgakov EN, Sadreev AF. Fibers based on propagating bound states in the continuum. arXiv preprint arXiv:1804.06626. 2018. Google Scholar

[141]

Bulgakov E, Maksimov D, Semina P, Skorobogatov S. Propagating bound states in the continuum in dielectric gratings. JOSA B 2018;35:1218–22. CrossrefGoogle Scholar

[142]

Hu Z, Lu YY. Propagating bound states in the continuum at the surface of a photonic crystal. J Opt Soc Am B 2017;34:1878–83. CrossrefGoogle Scholar

[143]

Yuan L, Lu YY. Propagating Bloch modes above the lightline on a periodic array of cylinders. J Phys B At Mol Opt Phys 2017;50:05LT01. CrossrefGoogle Scholar

[144]

Bulgakov EN, Sadreev AF. Propagating bloch bound states with orbital angular momentum above the light line in the array of dielectric spheres. JOSA A 2017;34:949–52. CrossrefGoogle Scholar

[145]

Bulgakov EN, Sadreev AF, Maksimov DN. Light trapping above the light cone in one-dimensional arrays of dielectric spheres. Appl Sci 2017;7:147. CrossrefGoogle Scholar

[146]

Bulgakov EN, Maksimov DN. Bound states in the continuum and polarization singularities in periodic arrays of dielectric rods. Phys Rev A 2017;96:063833. CrossrefGoogle Scholar

[147]

Polishchuk IY, Gozman MI, Anastasiev AA, Polishchuk YI, Solov’ov SV, Tsyvkunova EA, et al. Guided modes in the plane array of optical waveguides. Phys Rev A 2017;95:053847. CrossrefGoogle Scholar

[148]

Bulgakov EN, Sadreev AF. Light trapping above the light cone in a one-dimensional array of dielectric spheres. Phys Rev A 2015;92:023816. CrossrefGoogle Scholar

[149]

Bulgakov EN, Maksimov DN. Optical response induced by bound states in the continuum in arrays of dielectric spheres. J Opt Soc Am B 2018;35:2443–52. CrossrefGoogle Scholar

[150]

Han H-L, Li H, Lü H-B, Liu X. Trapped modes with extremely high quality factor in a circular array of dielectric nanorods. Opt Lett 2018;43:5403–6. CrossrefGoogle Scholar

[151]

Tittl A, Leitis A, Liu M, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 2018;360:1105–9. CrossrefPubMedGoogle Scholar

[152]

Vabishchevich PP, Liu S, Sinclair MB, Keeler GA, Peake GM, Brener I. Enhanced second-harmonic generation using broken symmetry iii–v semiconductor Fano metasurfaces. ACS Photonics 2018;5:1685–90. CrossrefGoogle Scholar

[153]

Tuz VR, Khardikov VV, Kupriianov AS, et al. High-quality trapped modes in all-dielectric metamaterials. Opt Express 2018;26:2905–16. CrossrefPubMedGoogle Scholar

[154]

Fedotov V, Rose M, Prosvirnin S, Papasimakis N, Zheludev N. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys Rev Lett 2007;99:147401. PubMedCrossrefGoogle Scholar

[155]

Forouzmand A, Mosallaei H. All-dielectric c-shaped nanoantennas for light manipulation: tailoring both magnetic and electric resonances to the desire. Adv Opt Mater 2017;5:1700147. CrossrefGoogle Scholar

[156]

Lim WX, Singh R. Universal behaviour of high-*Q* Fano resonances in metamaterials: terahertz to near-infrared regime. Nano Convergence 2018;5:5. PubMedCrossrefGoogle Scholar

[157]

Singh R, Al-Naib IAI, Yang Y, et al. Observing metamaterial induced transparency in individual Fano resonators with broken symmetry. Appl Phys Lett 2011;99:201107. CrossrefGoogle Scholar

[158]

Hu J, Lang T, Hong Z, Shen C, Shi G. Comparison of electromagnetically induced transparency performance in metallic and all-dielectric metamaterials. J Lightwave Technol 2018;36:2083–93. CrossrefGoogle Scholar

[159]

He X, Wang L, Wang J-M, Tian X-H, Jiang J-X, Geng Z-X. Electromagnetically induced transparency in planar complementary metamaterial for refractive index sensing applications. J Phys D Appl Phys 2013;46:365302. CrossrefGoogle Scholar

[160]

Liu S, Vaskin A, Addamane S, et al. Light-emitting metasurfaces: simultaneous control of spontaneous emission and far-field radiation. Nano Lett 2018;18:6906–14. CrossrefPubMedGoogle Scholar

[161]

Hirose K, Liang Y, Kurosaka Y, Watanabe A, Sugiyama T, Noda S. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat Photonics 2014;8:406. CrossrefGoogle Scholar

[162]

Ha ST, Fu YH, Emani NK, et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat Nanotechnol 2018;13:1042–7. PubMedCrossrefGoogle Scholar

[163]

Cheben P, Schmidt JH, Atwater HA, Smith DR. Subwavelength integrated photonics. Nature 2018;560:565–72. CrossrefPubMedGoogle Scholar

[164]

Kita DM, Michon J, Johnson SG, Hu J. Are slot and subwavelength grating waveguides better than strip waveguides for sensing? Optica 2018;5:1046–54. CrossrefGoogle Scholar

[165]

Han B, Li X, Sui C, Diao J, Jing X, Hong Z. Analog of electromagnetically induced transparency in an e-shaped all-dielectric metasurface based on toroidal dipolar response. Opt Mater Express 2018;8:2197–207. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.