[1]

Kock WE. Metal-lens antennas. Proc IRE 1946;34:828–36. CrossrefGoogle Scholar

[2]

Torres V, Pacheco-Peña V, Rodríguez-Ulibarri P, et al. Terahertz epsilon-near-zero graded-index lens. Opt Express 2013;219:156–66. Google Scholar

[3]

Torres V, Orazbayev B, Pacheco-Peña V, et al. Experimental demonstration of a millimeter-wave metalic ENZ lens based on the energy squeezing principle. IEEE Trans Antennas Propag 2015;63:231–9. CrossrefGoogle Scholar

[4]

Pacheco-Peña V, Engheta N, Kuznetsov SA, Gentselev A, Beruete M. Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies. Phys Rev Appl 2017;8:034036-1–10. Google Scholar

[5]

Vesseur EJR, Coenen T, Caglayan H, Engheta N, Polman A. Experimental verification of n=0 structures for visible light. Phys Rev Lett 2013;110:013902. PubMedCrossrefGoogle Scholar

[6]

Zhang S, Fan W, Panoiu NC, Malloy KJ, Osgood RM, Brueck SRJ. Experimental demonstration of near-infrared negative-index metamaterials. Phys Rev Lett 2005;95:137404-1–4. Google Scholar

[7]

Lee SH, Choi M, Kim T-T. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat Mater 2012;11:936–41. PubMedCrossrefGoogle Scholar

[8]

Solymar L, Shamonina E. Waves in metamaterials. New York: Oxford University Press, 2009. Google Scholar

[9]

Chen HT, Padilla WJ, Zide JMO, Gossard AC, Taylor AJ, Averitt RD. Active terahertz metamaterial devices. Nature 2006;444:597–600. CrossrefPubMedGoogle Scholar

[10]

Della Giovampaola C, Engheta N. Digital metamaterials. Nat Mater 2014;13:1115–21. PubMedCrossrefGoogle Scholar

[11]

Pacheco-Peña V, Orazbayev B, Torres V, Beruete M, Navarro-Cía M. Ultra-compact planoconcave zoned metallic lens based on the fishnet metamaterial. Appl Phys Lett 2013;103:183507. CrossrefGoogle Scholar

[12]

Moitra P, Yang Y, Anderson Z, Kravchenko II, Briggs DP, Valentine J. Realization of an all-dielectric zero-index optical metamaterial. Nat Photonics 2013;7:1–5. Google Scholar

[13]

Liberal I, Engheta N. Near-zero refractive index photonics. Nat Photonics 2017;11:149–58. CrossrefGoogle Scholar

[14]

Maas R, Parsons J, Engheta N, Polman A. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat Photonics 2013;7:907–12. CrossrefGoogle Scholar

[15]

Dolling G, Enkrich C, Wegener M, Soukoulis CM, Linden S. Simultaneous negative phase and group velocity of light in a metamaterial. Science 2006;312:892–4. CrossrefGoogle Scholar

[16]

Marqués R, Martín F, Sorolla M. Metamaterials with negative parameters: theory, design and microwave applications. Hoboken NJ: Wiley, 2008. Google Scholar

[17]

Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett 2000;85:3966–9. PubMedCrossrefGoogle Scholar

[18]

Liberal I, Li Y, Engheta N. Reconfigurable epsilon-near-zero metasurfaces via photonic doping. Nanophotonics 2018;7:1117–27. CrossrefGoogle Scholar

[19]

Liberal I, Engheta N. The rise of near-zero-index technologies. Science 2017;358:1540–1. PubMedCrossrefGoogle Scholar

[20]

Shafiei F, Monticone F, Le KQ, et al. A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat Nanotechnol 2013;8:95–9. CrossrefPubMedGoogle Scholar

[21]

Rodríguez-Ulibarri P, Kuznetsov SA, Beruete M. Wide angle terahertz sensing with a cross-dipole frequency selective surface. Appl Phys Lett 2016;108:111104. CrossrefGoogle Scholar

[22]

Kabashin AV, Evans P, Pastkovsky S, et al. Plasmonic nanorod metamaterials for biosensing. Nat Mater 2009;8:867–71. PubMedCrossrefGoogle Scholar

[23]

Demetriadou A, Hao Y. Slim Luneburg lens for antenna applications. Opt Express 2011;19:19925–34. CrossrefPubMedGoogle Scholar

[24]

Soric JC, Engheta N, MacI S, AAlu S. Omnidirectional metamaterial antennas based on ε- near-zero channel matching. IEEE Trans Antennas Propag 2013;61:33–44. CrossrefGoogle Scholar

[25]

Orazbayev B, Beruete M, Navarro-Cía M. Wood zone plate fishnet metalens. EPJ Appl Metamaterials 2015;2:8. CrossrefGoogle Scholar

[26]

Lier E, Werner DH, Scarborough CP, Wu Q, Bossard JA. An octave-bandwidth negligible-loss radiofrequency metamaterial. Nat Mater 2011;10:216–22. CrossrefPubMedGoogle Scholar

[27]

Pacheco-Peña V, Torres V, Orazbayev B, et al. Mechanical 144 GHz beam steering with all-metallic epsilon-near-zero lens antenna. Appl Phys Lett 2014;105:243503. CrossrefGoogle Scholar

[28]

Ourir A, De Lustrac A. Metamaterial-based phased array for directional beam steering. Microw Opt Technol Lett 2009;51:2653–6. CrossrefGoogle Scholar

[29]

Pacheco-Peña V, Torres V, Beruete M, Navarro-Cia M, Engheta N. ε-near-zero (ENZ) graded index quasi-optical devices: steering and splitting millimeter waves. J Opt 2014;16:094009. CrossrefGoogle Scholar

[30]

Hashemi MRM, Yang SH, Wang T, Sepúlveda N, Jarrahi M. Electronically-controlled beam-steering through vanadium dioxide metasurfaces. Sci Rep 2016;6:1–8. Google Scholar

[31]

Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N. Performing mathematical operations with metamaterials. Sci (New York, NY) 2014;343:160–4. CrossrefGoogle Scholar

[32]

Fante RI. Transmission of electromagnetic waves into time-varying media. IEEE Trans Antennas Propag 1971;3:417–24. Google Scholar

[33]

Morgenthaler F. Velocity modulation of electromagnetic waves. IRE Trans Microw Theory Tech 1958;6:167–72. CrossrefGoogle Scholar

[34]

Caloz C, Deck-Léger Z-L. Spacetime metamaterials. arXiv, 2019.arXiv:1905.00560v2. Google Scholar

[35]

Huidobro PA, Galiffi E, Guenneau S, Craster RV, Pendry JB. Fresnel drag in space-time modulated metamaterials. Proc Natl Acad Sci 2019:1–6. Google Scholar

[36]

Akbarzadeh A, Chamanara N, Caloz C. Inverse prism based on temporal discontinuity and spatial dispersion. Opt Lett 2018;43:3297–300. CrossrefPubMedGoogle Scholar

[37]

Preble SF, Xu Q, Lipson M. Changing the colour of light in a silicon resonator. Nat Photonics 2007;1:293–6. CrossrefGoogle Scholar

[38]

Torrent D, Poncelet O, Batsale JC. Nonreciprocal thermal material by spatiotemporal modulation. Phys Rev Lett 2018;120:125501. PubMedCrossrefGoogle Scholar

[39]

Nassar H, Xu XC, Norris AN, Huang GL. Modulated phononic crystals: non-reciprocal wave propagation and Willis materials. J Mech Phys Solids 2017;101:10–29. CrossrefGoogle Scholar

[40]

Estep NA, Sounas DL, Soric J, Alu A. Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops. Nat Phys 2014;10:923–7. CrossrefGoogle Scholar

[41]

Zurita-Sánchez JR, Halevi P, Cervantes-González JC. Reflection and transmission of a wave incident on a slab with a time-periodic dielectric function (t). Phys Rev A – At Mol Opt Phys 2009;79:1–13. Google Scholar

[42]

Martínez-Romero JS, Becerra-Fuentes OM, Halevi P. Temporal photonic crystals with modulations of both permittivity and permeability. Phys Rev A 2016;93:1–9. Google Scholar

[43]

Bacot V, Labousse M, Eddi A, Fink M, Fort E. Time reversal and holography with spacetime transformations. Nat Phys 2016;12:972–7. CrossrefGoogle Scholar

[44]

Vezzoli S, Bruno V, DeVault C, et al. Optical time reversal from time-dependent Epsilon-Near-Zero media. Phys Rev Lett 2018;120:43902. CrossrefGoogle Scholar

[45]

Sivan Y, Pendry JB. Theory of wave-front reversal of short pulses in dynamically tuned zero-gap periodic systems. Phys Rev A – At Mol Opt Phys 2011;84:1–16. Google Scholar

[46]

Salem MA, Caloz C. Wave propagation in periodic temporal slabs. In: 2015 9th European Conference on Antennas and Propagation (EuCAP), 2015. https://ieeexplore.ieee.org/document/7228592. Google Scholar

[47]

Salem MA, Caloz C. Temporal photonic crystals: Causality versus periodicity. In: Proceedings of the 2015 International Conference on Electromagnetics in Advanced Applications, ICEAA 2015, 2015;1:490–3. DOI: 10.1109/ICEAA.2015.7297162. Google Scholar

[48]

Lerosey G, De Rosny J, Tourin A, Derode A, Montaldo G, Fink M. Time reversal of electromagnetic waves. Phys Rev Lett 2004;92:193904. PubMedCrossrefGoogle Scholar

[49]

Shapere A, Wilczek F. Classical time crystals. Phys Rev Lett 2012;109:160402-1–4. Google Scholar

[50]

Wilczek F. Quantum time crystals. Phys Rev Lett 2012;109:160401-1–5. Google Scholar

[51]

Zhang J, Hess PW, Kyprianidis A, et al. Observation of a discrete time crystal. Nature 2017;543:217–20. PubMedCrossrefGoogle Scholar

[52]

Choi S, Choi J, Landig R, et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 2017;543:221–5. CrossrefGoogle Scholar

[53]

Cortes CL, Newman W, Molesky S, Jacob Z. Quantum nanophotonics using hyperbolic metamaterials. J Opt 2012;14:1–15. Google Scholar

[54]

Chern R-L. Spatial dispersion and nonlocal effective permittivity for periodic layered metamaterials. Opt Express 2013;21:16514. PubMedCrossrefGoogle Scholar

[55]

Afinogenov BI, Popkova AA, Bessonov VO, Lukyanchuk B, Fedyanin AA. Phase matching with Tamm plasmons for enhanced second- and third-harmonic generation. Phys Rev B 2018;97:1–5. Google Scholar

[56]

Sihvola A. Electromagnetic mixing formulas and applications. Herts, United Kingdom: The institution of Electrical Engineers (IET), 1999. Google Scholar

[57]

Belov PA, Hao Y. Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime. Phys Rev B – Condens Matter Mater Phys 2006;73:1–4. Google Scholar

[58]

Nielsen RB, Thoreson MD, Chen W, et al. Toward superlensing with metal–dielectric composites and multilayers. Appl Phys B 2010;100:93–100. CrossrefGoogle Scholar

[59]

Maas R, van de Groep J, Polman A. Planar metal/dielectric single-periodic multilayer ultraviolet flat lens. Optica 2016;3:592. CrossrefGoogle Scholar

[60]

Plansinis BW. Donaldson WR, Agrawal GP. What is the temporal analog of reflection and refraction of optical beams? Phys Rev Lett 2015;115:1–5. Google Scholar

[61]

Xiao Y, Maywar DN, Agrawal GP. Reflection and transmission of electromagnetic waves at temporal boundary. Opt Lett 2014;39:577. Google Scholar

[62]

Chumak AV, Tiberkevich VS, Karenowska AD, et al. All-linear time reversal by a dynamic artificial crystal. Nat Commun 2010;1:141–5. PubMedCrossrefGoogle Scholar

[63]

Pacheco-Peña V, Kiasat Y, Edwards B, Engheta N. Salient features of temporal and spatio-temporal metamaterials. In: 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), 2018:524–6. DOI: 10.1109/ICEAA.2018.8520356. Google Scholar

[64]

Qin S, Xu Q, Wang YE. Nonreciprocal components with distributedly modulated capacitors. IEEE Trans Microw Theory Tech 2014;62:2260–72. CrossrefGoogle Scholar

[65]

Lee K, Son J, Park J, et al. Linear frequency conversion via sudden merging of meta-atoms in time-variant metasurfaces. Nat Photonics 2018;12:765–73. CrossrefGoogle Scholar

[66]

Koutserimpas TT, Fleury R. Electromagnetic waves in a time periodic medium with step-varying refractive index. IEEE Trans Antennas Propag 2018;66:5300–7. CrossrefGoogle Scholar

[67]

Abu El-Haija AJ. Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique. J Appl Phys 2003;93:2590–4. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.