[1]

Brune M, Schmidt-Kaler F, Maali A, et al. Quantum rabi oscillation: a direct test of field quantization in a cavity. Phys Rev Lett 1996;76:1800–3. CrossrefGoogle Scholar

[2]

Meekhof DM, Monroe C, King BE, Itano WM, Wineland DJ. Generation of nonclassical motional states of a trapped atom. Phys Rev Lett 1996;76:1796–9. PubMedCrossrefGoogle Scholar

[3]

Kockum AF, Miranowicz A, De Liberato S, Savasta S, Nori F. Ultrastrong coupling between light and matter. Nat Rev Phys 2019;1:19. CrossrefGoogle Scholar

[4]

Forn-Daz P, Lamata L, Rico E, Kono J, Solano E. Ultrastrong coupling regimes of light-matter interaction. Rev Mod Phys 2019;91:025005. CrossrefWeb of ScienceGoogle Scholar

[5]

Anappara AA, De Liberato S, Tredicucci A, et al. Signatures of the ultrastrong light-matter coupling regime. Phys Rev B 2009;79:201303. CrossrefWeb of ScienceGoogle Scholar

[6]

Askenazi B, Vasanelli A, Todorov Y, et al. Midinfrared ultrastrong light-matter coupling for thz thermal emission. ACS Photonics 2017;4:2550–5. Web of ScienceCrossrefGoogle Scholar

[7]

Bayer A, Pozimski M, Schambeck S, et al. Terahertz light-matter interaction beyond unity coupling strength. Nano Lett 2017;17:6340–4. CrossrefPubMedWeb of ScienceGoogle Scholar

[8]

Wang H, Wang H-Y, Chen Q-D, et al. Hybrid-state dynamics of dye molecules and surface plasmon polaritons under ultrastrong coupling regime. Laser Photonics Rev 2018;12:1700176. CrossrefWeb of ScienceGoogle Scholar

[9]

Yoshihara F, Fuse T, Ashhab S, Kakuyanagi K, Saito S, Semba K. Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime. Nat Phys 2017;13:44. CrossrefWeb of ScienceGoogle Scholar

[10]

Benz F, Schmidt MK, Dreismann A, et al. Single-molecule optomechanics in “picocavities”. Science 2016;354:726–9. PubMedCrossrefWeb of ScienceGoogle Scholar

[11]

Tame MS, McEnery KR, Özdemir SK, Lee J, Maier SA, Kim MS. Quantum plasmonics. Nat Phys 2013;9:329. Web of ScienceCrossrefGoogle Scholar

[12]

Xu D, Xiong X, Wu L, et al. Quantum plasmonics: new opportunity in fundamental and applied photonics. Adv Opt Photonics 2018;10:703–56. Web of ScienceCrossrefGoogle Scholar

[13]

Zhou Z-K, Liu J, Bao Y, et al. Quantum plasmonics get applied. Prog Quant Electron 2019;65:1–20. CrossrefGoogle Scholar

[14]

Yang X, Hu X, Yang H, Gong Q. Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities. Nanophotonics 2017;6:365. Web of ScienceGoogle Scholar

[15]

Fakonas JS, Lee H, Kelaita YA, Atwater HA. Two-plasmon quantum interference. Nat Photonics 2014;8:317. CrossrefWeb of ScienceGoogle Scholar

[16]

Chikkaraddy R, De Nijs B, Benz F, et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 2016;535:127. PubMedWeb of ScienceCrossrefGoogle Scholar

[17]

Santhosh K, Bitton O, Chuntonov L, Haran G. Vacuum rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat Commun 2016;7:ncomms11823. Web of ScienceCrossrefGoogle Scholar

[18]

Liu R, Zhou Z-K, Yu Y-C, et al. Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit. Phys Rev Lett 2017;118:237401. CrossrefPubMedWeb of ScienceGoogle Scholar

[19]

Gonzalez-Tudela A, Martin-Cano D, Moreno E, et al. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys Rev Lett 2011;106:020501. Web of SciencePubMedCrossrefGoogle Scholar

[20]

Li M, Zou C-L, Ren X-F, et al. Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide. Nano Lett 2015;15:2380–4. Web of ScienceCrossrefGoogle Scholar

[21]

Holtfrerich MW, Dowran M, Davidson R, Lawrie BJ, Pooser RC, Marino AM. Toward quantum plasmonic networks. Optica 2016;3:985–8. CrossrefWeb of ScienceGoogle Scholar

[22]

Lei DY, Fernández-Domnguez AI, Sonnefraud Y, et al. Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy. ACS Nano 2012;6:1380–6. CrossrefWeb of SciencePubMedGoogle Scholar

[23]

Chikkaraddy R, Zheng X, Benz F, et al. How ultranarrow gap symmetries control plasmonic nanocavity modes: from cubes to spheres in the nanoparticle-on-mirror. ACS Photonics 2017;4:469–75. Web of ScienceCrossrefGoogle Scholar

[24]

Baumberg JJ, Aizpurua J, Mikkelsen MH, Smith DR. Extreme nanophotonics from ultrathin metallic gaps. Nat Mater 2019;18:668–78. CrossrefPubMedWeb of ScienceGoogle Scholar

[25]

Hoang TB, Akselrod GM, Mikkelsen MH. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett 2015;16:270–5. PubMedWeb of ScienceGoogle Scholar

[26]

Luo Y, Shepard GD, Ardelean JV, et al. Deterministic coupling of site-controlled quantum emitters in monolayer wse 2 to plasmonic nanocavities. Nat Nanontechnol 2018;13:1137. CrossrefGoogle Scholar

[27]

Leng H, Szychowski B, Daniel M-C, Pelton M. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons. Nat Commun 2018;9:4012. CrossrefWeb of SciencePubMedGoogle Scholar

[28]

Kleemann ME, Chikkaraddy R, Alexeev EM, et al. Strong-coupling of WSe_{2} in ultra-compact plasmonic nanocavities at room temperature. Nat Commun 2017;8:1296. Web of ScienceCrossrefPubMedGoogle Scholar

[29]

Chen X, Chen Y-H, Qin J, et al. Mode modification of plasmonic gap resonances induced by strong coupling with molecular excitons. Nano Lett 2017;17:3246–51. PubMedWeb of ScienceCrossrefGoogle Scholar

[30]

Lo TW, Zhang Q, Qiu M, et al. Thermal redistribution of exciton population in monolayer transition metal dichalcogenides probed with plasmon-exciton coupling spectroscopy. ACS Photonics 2019;6:411–21. Web of ScienceCrossrefGoogle Scholar

[31]

Hensen M, Heilpern T, Gray SK, Pfeiffer W. Strong coupling and entanglement of quantum emitters embedded in a nanoantenna-enhanced plasmonic cavity. ACS Photonics 2017;5:240–8. Web of ScienceGoogle Scholar

[32]

Song T, Chen Z, Zhang W, et al. Compounding plasmon-exciton strong coupling system with gold nanofilm to boost rabi splitting. Nanomaterials 2019;9:564. Web of ScienceCrossrefGoogle Scholar

[33]

Kongsuwan N, Xiong X, Bai P, et al. Quantum plasmonic immunoassay sensing. Nano Lett 2019;19:5853–61. CrossrefWeb of SciencePubMedGoogle Scholar

[34]

Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B 1972;6:4370. CrossrefGoogle Scholar

[35]

Antosiewicz TJ, Apell SP, Shegai T. Plasmon–exciton interactions in a core-shell geometry: from enhanced absorption to strong coupling. ACS Photonics 2014;1:454–63. CrossrefWeb of ScienceGoogle Scholar

[36]

Zeilinger A. Experiment and the foundations of quantum physics. Rev Mod Phys 1999;71:S288. CrossrefGoogle Scholar

[37]

Hillery M, Bužek V, Berthiaume A. Quantum secret sharing. Phys Rev A 1999;59:1829. CrossrefGoogle Scholar

[38]

Zhou Y, Yu J, Yan Z, et al. Quantum secret sharing among four players using multipartite bound entanglement of an optical field. Phys Rev Lett 2018;121:150502. CrossrefWeb of SciencePubMedGoogle Scholar

[39]

Bouwmeester D, Pan J-W, Mattle K, Eibl M, Weinfurter H, Zeilinger A. Experimental quantum teleportation. Nature 1997;390:575. CrossrefGoogle Scholar

[40]

Ren J-G, Xu P, Yong H-L, et al. Ground-to-satellite quantum teleportation. Nature 2017;549:70. CrossrefWeb of SciencePubMedGoogle Scholar

[41]

Yin J, Cao Y, Li Y-H, et al. Satellite-based entanglement distribution over 1200 kilometers. Science 2017;356: 1140–4. CrossrefPubMedWeb of ScienceGoogle Scholar

[42]

Wengerowsky S, Joshi SK, Steinlechner F, Hübel H, Ursin R. An entanglement-based wavelength-multiplexed quantum communication network. Nature 2018;564:225. CrossrefPubMedWeb of ScienceGoogle Scholar

[43]

Kimble HJ. The quantum internet. Nature 2008;453:1023. PubMedCrossrefGoogle Scholar

[44]

Wang S, Li S, Chervy T, et al. Coherent coupling of WS_{2} monolayers with metallic photonic nanostructures at room temperature. Nano Lett 2016;16:4368–74. CrossrefPubMedWeb of ScienceGoogle Scholar

[45]

Todisco F, De Giorgi M, Esposito M, et al. Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation. ACS Photonics 2017;5:143–50. Web of ScienceGoogle Scholar

[46]

Horodecki R, Horodecki P, Horodecki M, Horodecki K. Quantum entanglement. Rev Mod Phys 2009;81:865–942. CrossrefWeb of ScienceGoogle Scholar

[47]

Yan W, Faggiani R, Lalanne P. Rigorous modal analysis of plasmonic nanoresonators. Phys Rev B 2018;97:205422. Web of ScienceCrossrefGoogle Scholar

[48]

Parkins S, Aoki T. Microtoroidal cavity qed with fiber overcoupling and strong atom-field coupling: a single-atom quantum switch for coherent light fields. Phys Rev A 2014;90:053822. Web of ScienceCrossrefGoogle Scholar

[49]

Clark BD, Jacobson CR, Lou M, et al. Aluminum nanocubes have sharp corners. ACS Nano 2019;13:9682–91. CrossrefPubMedWeb of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.