[1]

Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004;306:666–9. CrossrefPubMedGoogle Scholar

[2]

Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005;438:197–200. PubMedCrossrefGoogle Scholar

[3]

Tománek D, Wentzcovitch RM, Louie SG, Cohen ML. Calculation of electronic and structural properties of BC 3. Phys Rev B 1998;37:3134–6. Google Scholar

[4]

Polyakov SN, Denisov VN, Mavrin BN, et al. Formation of boron-carbon nanosheets and bilayers in boron-doped diamond: origin of metallicity and superconductivity. Nanoscale Res Lett 2016;11:1–9. Google Scholar

[5]

Li S-S, Zhang C-W, Ji W-X, Li F, Wang P-J. Tunable electronic properties induced by a defect-substrate in graphene/BC_{3} heterobilayers. Phys Chem Chem Phys 2014;16:22861–6. CrossrefPubMedGoogle Scholar

[6]

Xu L, Dai Z, Sui P, Sun Y, Wang W. Electronic properties of fluorinated/semi-fluorinated boron–carbon monolayer: a first-principles study. Comp Mater Sci 2015;99:343–7. CrossrefGoogle Scholar

[7]

Hussain T, Searles DJ, Takahashi K. Reversible hydrogen up take by BN and BC_{3} monolayers functionalized with small Fe clusters: a route to effective energy storage. J Phys Chem A 2016;120:2009–13. CrossrefGoogle Scholar

[8]

Hansson A, Mota FDB, Rivelino R. Unusual electronic properties and transmission in hexagonal SiB monolayers. Phys Chem Chem Phys 2014;16:14473–8. CrossrefPubMedGoogle Scholar

[9]

Şahin H, Cahangirov S, Topsakal M, et al. Monolayer honeycomb structures of group-IV elements and III–V binary compounds: first-principles calculations. Phys Rev B 2009;80:155453. CrossrefGoogle Scholar

[10]

Adamska L, Sadasivam S, Foley IV JJ, Darancet P, Sharifzadeh S. First-principles investigation of borophene as a monolayer transparent conductor. J Phys Chem C 2018;122:4037–45. CrossrefGoogle Scholar

[11]

Adamska L, Sharifzadeh S. Fine-tuning the optoelectronic properties of freestanding borophene by strain. ACS Omega 2017;2:8290–9. PubMedCrossrefGoogle Scholar

[12]

Dai J, Zhao Y, Wu X, Yang J, Zeng XC. Exploration of structures of two-dimensional boron–silicon compounds with sp_{2} silicon. J Phys Chem Lett 2013;4:561–7. PubMedCrossrefGoogle Scholar

[13]

Ding Y, Wang Y. Density functional theory study of the silicene-like SiX and XSi3 (X=B, C, N, Al, P) honeycomb lattices: the various buckled structures and versatile electronic properties. J Phys Chem C 2013;117:18266–78. CrossrefGoogle Scholar

[14]

Aizawa T, Suehara S, Otani S. Two-dimensional silicon boride on ZrB2(0001). Phys Rev Mater 2019;3:014005. CrossrefGoogle Scholar

[15]

Low T, Chaves A, Caldwell JD, et al. Polaritons in layered two-dimensional materials. Nat Mat 2017;16:182–94. CrossrefGoogle Scholar

[16]

Mubeen S, Lee J, Singh N, Kramer S, Stucky GD, Moskovits M. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nanotechnol 2013;8:247–51. PubMedCrossrefGoogle Scholar

[17]

Zheng BY, Zhao H, Manjavacas A, McClain M, Nordlander P, Halas NJ. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat Commun 2015;6:7797. CrossrefGoogle Scholar

[18]

Sheldon MT, van de Groep J, Brown AM, Polman A, Atwater HA. Plasmoelectric potentials in metal nanostructures. Science 2014;346:828–31. CrossrefPubMedGoogle Scholar

[19]

Marimuthu A, Zhang J, Linic S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 2013;339:1590–3. PubMedCrossrefGoogle Scholar

[20]

Brandt NC, Keller EL, Frontiera RR. Ultrafast surface-enhanced raman probing of the role of hot electrons in plasmon-driven chemistry. J Phys Chem Lett 2016;7:3179–85. PubMedCrossrefGoogle Scholar

[21]

Knight MW, Sobhani H, Nordlander P, Halas NJ. Photodetection with active optical antennas. Science 2011;332:702–4. CrossrefPubMedGoogle Scholar

[22]

Naik GV, Welch AJ, Briggs JA, Solomon ML, Dionne JA. Hot-carrier–mediated photon upconversion in metal-decorated quantum wells. Nano Lett 2017;17:4583–7. PubMedCrossrefGoogle Scholar

[23]

Brongersma ML, Halas NJ, Nordlander P. Plasmon-induced hot carrier science and technology. Nat Nanotechnol 2015;10:25–34. PubMedCrossrefGoogle Scholar

[24]

Pfeiffer W, Kennerknecht C, Merschdorf M. Electron dynamics in supported metal nanoparticles: relaxation and charge transfer studied by time-resolved photoemission. Appl Phys A Mater Sci Proc 2004;78:1011–28. CrossrefGoogle Scholar

[25]

Harutyunyan H, Martinson AB, Rosenmann D, et al. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat Nanotechnol 2015;10:770–4. CrossrefPubMedGoogle Scholar

[26]

Hsu CP, Georgievskii Y, Marcus RA. Time-dependent fluorescence spectra of large molecules in polar solvents. J Phys Chem A 1998;102:2658–66. CrossrefGoogle Scholar

[27]

Cai Y, Liu JG, Tauzin LJ, et al. Photoluminescence of gold nanorods: Purcell effect enhanced emission from hot carriers. ACS Nano 2018;122:976–85. Google Scholar

[28]

Barati F, Grossnickle M, Su S, Lake RK, Aji V, Gabor NM. Hot carrier–enhanced interlayer electron–hole pair multiplication in 2D semiconductor heterostructure photocells. Nat Nanotech 2017;12:1134–9. CrossrefGoogle Scholar

[29]

Zhang L, Gogna R, Burg W, Tutuc E, Deng H. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat Commun 2018;9:713. CrossrefPubMedGoogle Scholar

[30]

Chen YJ, Cain JD, Stanev TK, Dravid VP, Stern NP. Valley-polarized exciton–polaritons in a monolayer semiconductor. Nat Photonics 2017;11:431–5. CrossrefGoogle Scholar

[31]

Kumar A, Low T, Fung KH, Avouris P, Fang NX. Tunable light–matter interaction and the role of hyperbolicity in graphene–hBN system. Nano Lett 2015;15:3172–80. PubMedCrossrefGoogle Scholar

[32]

Gonze X, Lee C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B 1997;55:10355–68. CrossrefGoogle Scholar

[33]

Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 2009;21:395502. PubMedCrossrefGoogle Scholar

[34]

Hybertsen MS, Louie SG. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys Rev B Condens Matter 1986;34:5390–413. PubMedCrossrefGoogle Scholar

[35]

Rohlfing M, Louie SG. Electron–hole excitations and optical spectra from first principles. Phys Rev B 2000;62:4927. CrossrefGoogle Scholar

[36]

Deslippe J, Samsonidze G, Strubbe DA, et al. A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput Phys Commun 2012;183:1269–89. CrossrefGoogle Scholar

[37]

Martin RM, Reining L, Ceperley DM. Interacting electrons. Cambridge, United Kingdom: Cambridge University Press, 2016. Google Scholar

[38]

Strinati G. Application of the Green’s functions method to the study of the optical properties of semiconductors. Riv Nuovo Cimento 1988;11:1–86. CrossrefGoogle Scholar

[39]

Birch F. Finite elastic strain of cubic crystals. Phys Rev 1947;71:809–24. CrossrefGoogle Scholar

[40]

Murnaghan FD. The compressibility of media under extreme pressures. Proc Natl Acad Sci USA 1944;30:244–7. CrossrefGoogle Scholar

[41]

Albrecht S, Reining L, Del Sole R, Onida G. Ab initio calculation of excitonic effects in the optical spectra of semiconductors. Phys Rev Lett 1998;80:4510–13. CrossrefGoogle Scholar

[42]

Rohlfing M, Louie SG. Electron–hole excitations and optical spectra from first principles. Phys Rev B 2000;62:4927–44. CrossrefGoogle Scholar

[43]

Shi G, Kioupakis E. Electronic and optical properties of nanoporous silicon for solar-cell applications. ACS Photonics 2015;2:208–15. CrossrefGoogle Scholar

[44]

Yang L, Spataru CD, Louie SG, Chou MY. Enhanced electron–hole interaction and optical absorption in a silicon nanowire. Phys Rev B 2007;75:201304. CrossrefGoogle Scholar

[45]

Bruno M, Palummo M, Marini A, Del Sole R, Ossicini S. From Si nanowires to porous silicon: the role of excitonic effects. Phys Rev Lett 2007;98:036807. PubMedCrossrefGoogle Scholar

[46]

Fei Z, Rodin AS, Andreev GO, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 2012;487:82. PubMedCrossrefGoogle Scholar

[47]

Maranganti R, Sharma P. Atomistic determination of flexoelectric properties of crystalline dielectrics. Phys Rev B 2009;80:054109. CrossrefGoogle Scholar

[48]

Sarma SD, Hwang EH. Screening and transport in 2D semiconductor systems at low temperatures. Sci Rep 2015;5:16655. CrossrefPubMedGoogle Scholar

[49]

Zhang D, Jia T, Dong R, Chen D. Temperature-dependent photoluminescence emission from unstrained and strained gase nanosheets. Materials 2017;10:1282. CrossrefGoogle Scholar

[50]

Luo Y, Liu N, Hone JC, Strauf S. Single photon emission in WSe_{2} up 160 K by quantum yield control. 2D Mater 2019;6:035017. CrossrefGoogle Scholar

[51]

Bernardi M, Mustafa J, Neaton JB, Louie SG. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat Commun 2015;6:7044. CrossrefPubMedGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.