1

Politi A, Cryan MJ, Rarity JG, Yu S, O’Brien JL. Silica-on-silicon waveguide quantum circuits. Science 2008;320:646–9. Google Scholar

2

O’Brien JL, Furusawa A, Vucčkovicć J. Photonic quantum technologies. Nat Photon 2009;3:687–95.Google Scholar

3

Ladd TD, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien JL. Quantum computers. Nature 2010;464:45–53. Google Scholar

4

Metcalf BJ, Thomas-Peter N, Spring JB, Kundys D, Broome MA, Humphreys PC, Jin X-M, Barbieri M, Kolthammer WS, Gates JC, Smith BJ, Langford NK, Smith PGR, Walmsley IA. Multiphoton quantum interference in a multiport integrated photonic device. Nat Commun 2013;4:1356. Google Scholar

5

Matthews JCF, Politi A, Stefanov A, OBrien JL. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat Photon 2009;3:346E50. Google Scholar

6

Politi A, Matthews JCF, OBrien JL. Shorâs quantum factoring algorithm on a photonic chip. Science 2009;325:1221. Google Scholar

7

Peruzzo A, Lobino M, Matthews JCF, Matsuda N, Politi A, Poulios K, Zhou X-Q, Lahini Y, Ismail N, Wörhoff K, Bromberg Y, Silberberg Y, Thompson MG, O’Brien JL. Quantum walks of correlated photons. Science 2010;329:1500–3. Google Scholar

8

Crespi A, Osellame R, Ramponi R, Giovannetti V, Fazio R, Sansoni L, De Nicola F, Sciarrino F, Mataloni P. Anderson localization of entangled photons in an integrated quantum walk. Nat Photon 2013;7:322–8. Google Scholar

9

Broome MA, Fedrizzi A, Rahimi-Keshari S, Dove J, Aaronson S, Ralph TC, White AG. Photonic boson sampling in a tunable circuit. Science 2013;339:794–8. Google Scholar

10

Spring JB, Metcalf BJ, Humphreys PC, Kolthammer WS, Jin X-M, Barbieri M, Datta A, Thomas-Peter N, Langford NK, Kundys D, Gates JC, Smith BJ, Smith PGR, Walmsley IA. Boson sampling on a photonic chip. Science 2013;339:798–801. Google Scholar

11

Tillmann M, Dakić B, Heilmann R, Nolte S, Szameit A, Walther P. Experimental boson sampling. Nat Photon 2013;7:540–4.Google Scholar

12

Crespi A, Osellame R, Ramponi R, Brod DJ, Galvão EF, Spagnolo N, Vitelli C, Maiorino E, Mataloni P, Sciarrino F. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat Photon 2013;7:545–9.Google Scholar

13

Spagnolo N, Vitelli C, Bentivegna M, Brod DJ, Crespi A, Flamini F, Giacomini S, Milani G, Ramponi R, Mataloni P, Osellame R, Galvão EF, Sciarrino F. Experimental validation of photonic boson sampling. Nat Photon 2014;8:615–20. Google Scholar

14

Bentivegna M, Spagnolo N, Vitelli C, Flamini F, Viggianiello N, Latmiral L, Mataloni P, Brod DJ, Galvão EF, Crespi A, Ramponi R, Osellame R, Sciarrino F. Experimental scattershot boson sampling. Sci Adv 2015;1:3. Google Scholar

15

Sharping JE, Lee KF, Foster MA, Turner AC, Schmidt BS, Lipson M, Gaeta AL, Kumar P. Generation of correlated photons in nanoscale silicon waveguide quantum circuits. Opt Express 2006;14:12388–93. Google Scholar

16

Takesue H, Tokura Y, Fukuda H, Tsuchizawa T, Watanabe T, Yamada K, Itabashi S. Entanglement generation using silicon wire waveguide. Appl Phys Lett 2007;91:201108. Google Scholar

17

Carolan L, Harrold C, Sparrow C, Martín-López E, Russell NJ, Silverstone JW, Shadbolt PJ, Matsuda N, Oguma M, Itoh M, Marshall GD, Thompson MG, Matthews JCF, Hashimoto T, O’Brien JL, Laing A. Universal linear optics. Science 2015;349:711. Google Scholar

18

Harris NC, Steinbrecher GR, Mower J, Lahini Y, Prabhu M, Baehr-Jones T, Hochberg M, Lloyd S, Englund D. Bosonic transport simulations in a large-scale programmable nanophotonic processor. arxiv:1507.06406 [quant-ph]. Google Scholar

19

Takesue H, Matsuda N, Kuramochi E, Munro WJ, Notomi M. An on-chip coupled resonator optical waveguide single-photon buffer. Nat Comm 2013;4:2725. Google Scholar

20

Sprengers JP, Gaggero A, Sahin D, Jahanmirinejad S, Frucci G, Mattioli F, Leoni R, Beetz J, Lermer M, Kamp M, Höfling S, Sanjines R, Fiore A. Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl Phys Lett 2011;99:18110. Google Scholar

21

Pernice WH, Schuck C, Minaeva O, Li M, Goltsman GN, Sergienko AV, Tang HX. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat Commun 2012;3:1325.Google Scholar

22

Sahin D, Gaggero A, Zhou Z, Jahanmirinejad S, Mattioli F, Leoni R, Beetz J, Lermer M, Kamp M, Höfling S, Fiore A. Waveguide photon-number-resolving detectors for quantum photonic integrated circuits. Appl Phys Lett 2013;103:111116.Google Scholar

23

Najafi F, Mower J, Harris N, Bellei F, Dane A, Lee C, Kharel P, Marsili F, Assefa S, Berggren KK, Englund D. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat Commun 2015;6:5873. Google Scholar

24

Honjo T, Inoue K, Takahashi H. Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer. Opt Lett 2004;29:2797–9. Google Scholar

25

Nambu Y, Hatanaka T, Nakamura K. BB84 quantum key distribution system based on silica-based planar lightwave circuits. Jpn J Appl Phys 2004;43:L1109–10.Google Scholar

26

Takesue H, Inoue K. Generation of 1.5-Gm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers. Phys Rev A 2005;72:041804(R). Google Scholar

27

Kawachi M. Silica waveguides on silicon and their application to integrated-optic components. Opt Quantum Electron 1990;22:391E16. Google Scholar

28

Takahashi H. High performance planar lightwave circuit devices for large capacity transmission. Opt Express 2011;19:B173–80. Google Scholar

29

Spring JB, Salter PS, Metcalf BJ, Humphreys PC, Moore M, Thomas-Peter N, Barbieri M, Jin X-M, Langford NK, Steven Kolt-hammer W, Booth MJ, Walmsley IA. On-chip low loss heralded source of pure single photons. Opt Express 2013;21:13522. Google Scholar

30

Spring JB, Salter P, Mennea P, Metcalf B, Humphreys PC, Moore M, Gates JC, Thomsa-Peter N, Barbieri M, Jin X-M, Langford NK, Kolthammer SW, Smith PG, Booth M, Smith BJ, Walmsley IA. Quantum interference of multiple on-chip heralded sources of pure single photons. Quantum Information and Measurements 2014, paper QW1B, 2014.Google Scholar

31

Yan Z, Duan Y, Helt LG, Ams M, Withford MJ, Steel MJ. Generation of heralded single photons beyond 1100 nm by spontaneous four-wave mixing in a damage-stressed femtosecond laser written waveguide. Appl Phys Lett 2015;107:231106. Google Scholar

32

Psaila ND, Thomson RR, Bookey HT, Shen S, Chiodo N, Osellame R, Cerullo G, Jha A, Kar AK. Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide. Opt Express 2007;15:15776–81. Google Scholar

33

Agrawal GP, Nonlinear fiber optics, 3rd ed. Academic, 2011. Google Scholar

34

Gisin N, Ribordy G, Tittel W, Zbinden H. Quantum cryptography. Rev Mod Phys 2002;74:145–95. Google Scholar

35

Knill E, Laflamme R, Milburn GJ. A scheme for efficient quantum computation with linear optics. Nature 2001;409:46E2.Google Scholar

36

Pittman TB, Jacobs BC, Franson JD. Probabilistic quantum logic operations using polarization beam splitters. Phys Rev A 2001;64:062311.Google Scholar

37

Walther P, Resch KJ, Rudolph T, Schenck E, Weinfurter H, Vedral V, Aspelmeyer M, Zeilinger A. Experimental one-way quantum computing. Nature 2005;434:169–76.Google Scholar

38

Kok P, Munro WJ, Nemoto K, Ralph TC, Dowling JP, Milburn GJ. Linear optical quantum computing with photonic qubits. Rev Mod Phys 2007;79:135–74. Google Scholar

39

Kwiat PG, Mattle K, Weinfurter H, Zeilinger A, Sergienko AV, Shih Y. New high-intensity source of polarization-entangled photon pairs. Phys Rev Lett 1995;75:4337–41. Google Scholar

40

Kwiat PG, Waks E, White AG, Appelbaum I, Eberhard PH. Ultrabright source of polarization-entangled photons. Phys Rev A 1999;60:R773. Google Scholar

41

Yamada K. Silicon photonic wire waveguides: fundamentals and applications. Silicon Photon II 2011;119:1–29. Google Scholar

42

Lim HC, Yoshizawa A, Tsuchida H, Kikuchi K. Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide. Opt Express 2008;16:12460–8. Google Scholar

43

Takesue H, Fukuda H, Tsuchizawa T, Watanabe T, Yamada K, Tokura Y, Itabashi S. Generation of polarization entangled photon pairs using silicon wire waveguide. Opt Express 2008;16:5721–7.Google Scholar

44

Suhara T, Nakaya G, Kawashima J, Fujimura M. Quasi-phase-matched waveguide devices for generation of postselection-free polarization entangled twin photons. IEEE Photon Technol Lett 2009;21:1096–8.Google Scholar

45

Martin A, Issautier A, Herrmann H, Sohler W, Ostrowsky DB, Alibart O, Tanzilli S. A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength. New J Phys 2010;12:103005.Google Scholar

46

Arahira S, Namekata N, Kishimoto T, Yaegashi H, Inoue S. Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded 𝒳^{(2)} processes in a periodically poled LiNbO_{3} ridge waveguide. Opt Express 2011;19:16032–43. Google Scholar

47

Matsuda N, Le Jeannic H, Fukuda H, Tsuchizawa T, Munro WJ, Shimizu K, Yamada K, Tokura Y, Takesue H. A monolithically integrated polarization entangled photon pair source on a silicon chip. Sci Rep 2012;2:817. Google Scholar

48

Fukuda H, YamadaK, Tsuchizawa T, Watanabe T, Shinojima H, Itabashi S. Polarization rotator based on silicon wire waveguides. Opt Express 2008;16:2628–35. Google Scholar

49

Fukuda H, Yamada K, Tsuchizawa T, Watanabe T, Shinojima H, Itabashi S. Silicon photonic circuit with polarization diversity. Opt Express 2008;16:4872–80. Google Scholar

50

Leuthold J, Koos C, Freude W. Nonlinear silicon photonics. Nat Photon 2010;4:535–44. Google Scholar

51

Zhang L, Agrawal A, Kimerling LC, Michel J. Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared. Nanophotonics 2014;3:247E68. Google Scholar

52

Clemmen S, Phan Huy K, Bogaerts W, Baets RG, Emplit Ph, Massar S. Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. Opt Exp 2009;17:16558–70. Google Scholar

53

Takesue H. Entangled photon pair generation using silicon wire waveguides. EIEEE J Sel Top Quant 2012;18:1722E732. Google Scholar

54

Harada K, Takesue H, Fukuda H, Tsuchizawa T, Watanabe T, Yamada K, Tokura Y, Itabashi S. Generation of high-purity entangled photon pairs using silicon wire waveguide. Opt Express 2008;16:20368–73. Google Scholar

55

Fukuda H, Yamada K, Shoji T, Takahashi M, Tsuchizawa T, Watanabe T, Takahashi J, Itabashi S. Four-wave mixing in silicon wire waveguides. Opt Express 2005;13:4629–37. Google Scholar

56

Foster MA, Turner AC, Sharping JE, Schmidt BS, Lipson M, Gaeta AL. Broad-band optical parametric gain on a silicon photonic chip. Nature 2006;441:960E63. Google Scholar

57

James DFV, Kwiat PG, Munro WJ, White AG. Measurement of qubits. Phys Rev A 2001;64:052312. Google Scholar

58

Modlawska J, Grudka A. Increasing singlet fraction with entanglement swapping. Phys Rev A 2008;78:032321. Google Scholar

59

Badziag P, Horodecki M, Horocecki P, Horodecki R. Local environment can enhance fidelity of quantum teleportation. Phys Rev A 2000;62:012311. Google Scholar

60

Olislager L, Safioui J, Clemmen S, Huy KP, Bogaerts W, Baets R, Emplit P, Massar S. Silicon-on-insulator integrated source of polarization-entangled photons. Opt Lett 2013;38:1960–2. Google Scholar

61

Lv N, Zhang W, Guo Y, Zhou Q, Huang Y, Peng J. 1.5 [m polarization entanglement generation based on birefringence in silicon wire waveguides. Opt Lett 2013;38:2873–6. Google Scholar

62

Orieux A, Eckstein A, Lematre A, Filloux P, Favero I, Leo G, Coudreau T, Keller A, Milman P, Ducci S. Direct bell states generation on a III-V semiconductor chip at room temperature. Phys Rev Lett 2013;110:160502. Google Scholar

63

Horn RT, Kolenderski P, Kang D, Abolghasem P, Scarcella C, Frera AD, Tosi A, Helt LG, Zhukovsky SV, Sipe JE, Weihs G, Helmy AS, Jennewein T. Inherent polarization entanglement generated from a monolithic semiconductor chip. Sci Rep 2013:3;2314.Google Scholar

64

Vallés A, Hendrych M, Svozilík J, Machulka R, Abolghasem P, Kang D, Bijlani BJ, Helmy AS, Torres JP. Generation of polarization-entangled photon pairs in a Bragg reflection waveguide. Opt Express 2013;21:10841–9.Google Scholar

65

Kang D, Kim M, He H, Helmy AS. Two polarization-entangled sources from the same semiconductor chip. Phys Rev A 2015;92:013821.Google Scholar

66

Kang D, Anirban A, Hemly AS. Monolithic semiconductor chips as a source for broadband wavelength-multiplexed polarization entangled photons. arXiv:1511.00903 [quant-ph]. Google Scholar

67

Hayat A, Ginzburg P, Orenstein M. Observation of two-photon emission from semiconductors. Nat Photon 2008;2:238–41. Google Scholar

68

Boitier F, Orieux A, Autebert C, Lematre A, Galopin E, Man-quest C, Sirtori C, Favero I, Leo G, Ducci S. Electrically injected photon-pair source at room temperature. Phys Rev Lett 2014;112:183901. Google Scholar

69

Bonneau D, Lobino M, Jiang P, Natarajan CM, Tanner MG, Hadfield RH, Dorenbos SN, Zwiller V, Thompson MG, O’Brien JL. Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices. Phys Rev Lett 2012;108:053601. Google Scholar

70

Sansoni L, Sciarrion F, Vallone G, Mataloni P, Crespi A, Ramponi R, Osellame R. Polarization and entangled state measurement on a chip. Phys Rev Lett 2010;105:200503. Google Scholar

71

Crespi A, Ramponi R, Osellame R, Sansoni L, Bongianni I, Sciarrino F, Vallone G, Mataloni P. Integrated photonic quantum gates for polarization qubits. Nat Commun 2011;2:566.Google Scholar

72

Corrielli G, Crespi A, Geremia R, Ramponi R, Sansoni L, Santinelli A, Mataloni P, Sciarrino F, Osellame R. Rotated waveplates in integrated waveguide optics. Nat Commun 2014;5:4249. Google Scholar

73

Migdall AL, Branning D, Castelletto S. Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys Rev A 2002;66:053805. Google Scholar

74

Ma X.-S, Zotter S, Kofler J, Jennewein T, Zeilinger A. Experimental generation of single photons via active multiplexing. Phys Rev A 2011;83:043814.Google Scholar

75

Collins MJ, Xiong C, Rey IH, Vo TD, He J, Shahnia S, Reardon C, Krauss TF, Steel MJ, Clark AS, Eggleton BJ. Integrated spatial multiplexing of heralded single-photon sources. Nat Commun 2013;4:2582.Google Scholar

76

Xiong C, Vo TD, Collins MJ, Li J, Krauss TF, Steel MJ, Clark AS, Eggleton BJ. Bidirectional multiplexing of heralded single photons from a silicon chip. Opt Lett 2013;38:5176–9. Google Scholar

77

Pittman TB, Jacobs BC, Franson JD. Single photons on pseudodemand from stored parametric down-conversion. Phys Rev A 2002;66:042303. Google Scholar

78

Notomi M, Yamada K, Shinya A, Takahashi J, Takahashi C, Yokohama I. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys Rev Lett 2001;87:253902. Google Scholar

79

Krauss TF. Slow light in photonic crystal waveguides. J Phys D Appl Phys 2007;40:2666–70. Google Scholar

80

Baba T. Slow light in photonic crystals. Nature Photon 2008;2:465–73. Google Scholar

81

Monat C, de Sterke M, Eggleton BJ. Slow light enhanced nonlinear optics in periodic structures. J Opt 2010;12:104003. Google Scholar

82

Xiong C, Monat C, Clark AS, Grillet C, Marshall GD, Steel MJ, Li J, O’Faolain L, Krauss TF, Rarity JG, Eggleton BJ. Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide. Opt Lett 2011;36:3413–5. Google Scholar

83

Xiong C, Collins MJ, Steel MJ, Krauss TF, Eggleton BJ, Clark AS. Photonic crystal waveguide sources of photons for quantum communication applications. IEEE J Sel Top Quant 2015; 21:1–10. Google Scholar

84

Yariv A, Xu Y, Lee RK, Scherer A. Coupled-resonator optical waveguide: a proposal and analysis. Opt Express 1999;24:711–3. Google Scholar

85

Davanço M, Ong JR, Shehata AB, Tosi A, Agha I, Assefa S, Xia F, Green WMJ, Mookherjea S, Srinivasan K. Appl Phys Lett 2012;100:261104. Google Scholar

86

Matsuda N, Kato T, Harada K, Takesue H, Kuramochi E, Taniyama H, Notomi M. Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide. Opt Express 2011;19:19861–74. Google Scholar

87

Notomi M, Kuramochi E, Tanabe T. Large-scale arrays of ultrahigh-Q coupled nanocavities. Nat Photon 2008;2:741–7. Google Scholar

88

Kuramochi E, Notomi M, Mitsugi S, Shinya A, Tanabe T, Watanabe T. Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect. Appl Phys Lett 2006;88:041112. Google Scholar

89

Matsuda N, Kuramochi E, Takesue H, Notomi M. Dispersion and light transport characteristics of large-scale photonic-crystal coupled nanocavity arrays. Opt Lett 2014;39:2290–3. Google Scholar

90

Matsuda N, Takesue H, Shimizu K, Tokura Y, Kuramochi E, Notomi M. Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides. Opt Express 2013;21:8596–604. Google Scholar

91

Takesue H, Matsuda N, Kuramochi E, Notomi M. Entangled photons from on-chip slow light. Sci Rep 2014;4:3913. Google Scholar

92

Mookherjea S, Park JS, Yang S-H, Bandaru PR. Nat Photon 2008;2:90. Google Scholar

93

Xia F, Sekaric L, Vlasov Y. Nat Photon 2007;1:65. Google Scholar

94

Cooper ML, Gupta G, Schneider MA, Green WMJ, Assefa S, Xia F, Gifford DK, Mookherjea S. Opt Lett 2010;35:3030. Google Scholar

95

Luo X, Poon AW. Opt Express 2009;17:23617. Google Scholar

96

Cooper ML, Gupta G, Schneider MA, Green WMJ, Assefa S, Xia F, Vlasov YA, Mookherjea S. Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides. Opt Express 2010;18:26505. Google Scholar

97

Sapienza L, Thyrrestrup H, Stobbe S, Garcia PD, Smolka S, Lodahl P. Cavity quantum electrodynamics with anderson-localized modes. Science 2010;327:1352–5. Google Scholar

98

Lian J, Sokolov S, Yüce E, Combrié S, De Rossi A, Mosk AP. Dispersion of coupled mode-gap cavities. Opt Lett 2015;40:4488–91. Google Scholar

99

Caselli N, Riboli F, La China F, Gerardino A, Li L, Linfield EH, Pagliano F, Fiore A, Intonti F, Gurioli M. Tailoring the photon hopping by nearest and next-nearest-neighbour interaction in photonic arrays. ACS Photonics 2015;2:565–71. Google Scholar

100

Zou XY, Wang LJ, Mandel L. Violation of classical probability in parametric down-conversion. Opt Commun 1991;84:351–4. Google Scholar

101

Franson JD. Bell inequality for position and time. Phys Rev Lett 1989;62:2205E208. Google Scholar

102

Kuzmich A, Bowen WP, Boozer AD, Boca A, Chou CW, Duan L-M, Kimble HJ. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 2003;423:731–4. Google Scholar

103

Meany T, Ngah LA, Collins MJ, Clark AS, Williams RJ, Eggleton BJ, Steel MJ, Withford MJ, Alibart O, Tanzilli S. Hybrid photonic circuit for multiplexed heralded single photons. Laser Photonics Rev 2014;8:L42–6. Google Scholar

104

Silverstone JW, Bonneau D, Ohira K, Suzuki N, Yoshida H, Iizuka N, Ezaki M, Natarajan CM, Tanner MG, Hadfield RH, Zwiller V, Marshall GD, Rarity JG, O’Brien JL, Thompson MG. On-chip quantum interference between silicon photon-pair sources. Naure Photon 2014;8:104–8.Google Scholar

105

Jöns KD, Rengstl U, Oster M, Hargart F, Heldmaier M, Bounouar S, Ulrich SM, Jetter M, Michler P. Monolithic on-chip integration of semiconductor waveguides, beamsplitters and single-photon sources. arXiv:1403.7174 [quant-ph].Google Scholar

106

Prtljaga N, Coles RJ, O’Hara J, Royall B, Clarke E, Fox AM, Skolnick MS. Monolithic integration of a quantum emitter with a compact on-chip beam-splitter. Appl Phys Lett 2014;104:231107.Google Scholar

107

Harris NC, Grassani D, Simbula A, Pant M, Galli M, Baehr-Jones T, Hochberg M, Englund D, Bajoni D, Galland C. Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems. Phys Rev X 2014;4:041047.Google Scholar

108

Silverstone JW, Santagati R, Bonneau D, Strain MJ, Sorel M, O’Brien JL, Thompson MG. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Nat Commun 2015;6:7948. Google Scholar

109

Murray E, Ellis DJP, Meany T, Floether FF, Lee JP, Griffiths JP, Jones GAC, Farrer I, Ritchie DA, Bennett AJ, Shields AJ. Quantum photonics hybrid integration platform. Appl Phys Lett 2015;107:171108. Google Scholar

110

Bonneau D, Engin E, Ohira K, Suzuki N, Yoshida H, Iizuka N, Ezaki M, Natarajan CM, Tanner MG, Hadfield RH, Dorenbos SN, Zwiller V, O’Brien JL, Thompson MG. Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. New J Phys 2012;14:045003. Google Scholar

111

Wang J, Santamato A, Jiang P, Bonneau D, Engin E, Silverstone JW, Lermer M, Beetz J, Kamp M, Höfling S, Tanner MG, Natarajan CM, Hadfield RH, Dorenbos SN, Zwiller V, O’Brien JL, Thompson MG. Gallium arsenide (GaAs) quantum photonic waveguide circuits. Opt Commun 2014;327:49–55. Google Scholar

112

Smith BJ, Kundys D, Thomas-Peter N, Smith PGR, Walmsley IA. Phase-controlled integrated photonic quantum circuits. Opt Express 2009;17:13516–25. Google Scholar

113

Sohma S, Watanabe T, Ooba N, Itoh M, Shibata T, Takahashi H. Silica-based PLC type 32E2 optical matrix switch. ECOC 2006;1–2. Google Scholar

114

Hibino Y. Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs. IEEE J Sel Top Quant 2002;8:1090–101. Google Scholar

115

Matsuda N, Shimizu R, Mitsumori Y, Kosaka H, Edamatsu K. Observation of optical-fibre Kerr nonlinearity at the single-photon level. Naure Photon 2009;3:95–8. Google Scholar

116

Matsuda N, Karkus P, Nishi H, Tsuchizawa T, Munro WJ, Takesue H, Yamada K. On-chip generation and demultiplexing of quantum correlated photons using a silicon-silica monolithic photonic integration platform. Opt. Express 2014;22:22831–40. Google Scholar

117

Nishi H, Tsuchizawa T, Watanabe T, Shinojima H, Park S, Kou R, Yamada K, Itabashi S. Monolithic integration of a silica-based arrayed waveguide grating filter and silicon variable optical attenuators based on p-i-n carrier-injection structure. Appl Phys Express 2010;3:102203. Google Scholar

118

Tsuchizawa T, Yamada K, Watanabe T, Sungbong P, Nishi H, Kou R, Shinojima H, Itabashi S. Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications. IEEE J Sel Top Quant 2011;17:516–25. Google Scholar

119

Hiraki T, Nishi H, Tsuchizawa T, Kou R, Fukuda H, Takeda K, Ishikawa Y, Wada K, Yamada K. Si-Ge-silica monolithic integration platform and its application to a 22-Gb/s 16-ch WDM receiver. Photonics J IEEE 2013;5:4500407. Google Scholar

120

Yoshino K, Fujiwara M, Tanaka A, Takahashi S, Nambu Y, Tomita A, Miki S, Yamashita T, Wang Z, Sasaki M, Tajima A. High-speed wavelength-division multiplexing quantum key distribution system. Opt Lett 2012;37:223–5. Google Scholar

121

Schaeff C, Polster R, Lapkiewicz R, Fickler R, Ramelow S, Zeilinger A. Scalable fiber integrated source for higher-dimensional path-entangled photonic quNits. Opt Express 2012;20:16145–53. Google Scholar

122

Schaeff C, Polster R, Huber M, S. Ramelow and Zeilinger A. Experimental access to higher-dimensional entangled quantum systems using integrated optics. Optica 2015;2:523–9. Google Scholar

123

Yamazaki H, Yamada T, Goh T, Sakamaki Y, Kaneko A. 64 QAM modulator with a hybrid configuration of silica PLCs and LiNbO_{3} phase modulators. IEEE Photon Technol Lett 2010;22:344–6. Google Scholar

124

Takesue H. Entangling time-bin qubits with a switch. Phys Rev A 2014;89:062328. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.