Jump to ContentJump to Main Navigation
Show Summary Details
In This Section


Managing Editor: Sorger, Volker

6 Issues per year

IMPACT FACTOR 2016: 4.492

5-year IMPACT FACTOR: 5.723

In co-publication with Science Wise Publishing

Open Access
See all formats and pricing
In This Section

Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion

Prineha Narang
  • Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena CA 91125 USA
  • Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena CA 91125 USA
/ Ravishankar Sundararaman
  • Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena CA 91125 USA
/ Harry A. Atwater
  • Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena CA 91125 USA
  • Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena CA 91125 USA
Published Online: 2016-06-11 | DOI: https://doi.org/10.1515/nanoph-2016-0007


Surface plasmons provide a pathway to efficiently absorb and confine light in metallic nanostructures, thereby bridging photonics to the nano scale. The decay of surface plasmons generates energetic ‘hot’ carriers, which can drive chemical reactions or be injected into semiconductors for nano-scale photochemical or photovoltaic energy conversion. Novel plasmonic hot carrier devices and architectures continue to be demonstrated, but the complexity of the underlying processes make a complete microscopic understanding of all the mechanisms and design considerations for such devices extremely challenging.Here,we review the theoretical and computational efforts to understand and model plasmonic hot carrier devices.We split the problem into three steps: hot carrier generation, transport and collection, and review theoretical approaches with the appropriate level of detail for each step along with their predictions.We identify the key advances necessary to complete the microscopic mechanistic picture and facilitate the design of the next generation of devices and materials for plasmonic energy conversion.


  • [1] John Pendry. Playing tricks with light. Science, 285(5434):1687-1688, 09 1999.

  • [2] William L. Barnes, Alain Dereux, and Thomas W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424(6950):824-830, 08 2003.

  • [3] Jon A. Schuller, Edward S. Barnard, Wenshan Cai, Young Chul Jun, Justin S. White, and Mark L. Brongersma. Plasmonics for extreme light concentration and manipulation. Nat Mater, 9(3):193-204, 03 2010.

  • [4] Stefan Alexander Maier. Plasmonics: fundamentals and applications. Springer Science and Business Media, 2007.

  • [5] E. Altewischer, M. P. van Exter, and J. P. Woerdman. Plasmonassisted transmission of entangled photons. Nature, 418(6895):304-306, 07 2002.

  • [6] Dmitri K. Gramotnev and Sergey I. Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat Photon, 4(2):83-91, 02 2010.

  • [7] D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin. Quantum optics with surface plasmons. Phys. Rev. Lett., 97:053002, Aug 2006. [Crossref]

  • [8] A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 450(7168):402-406, 11 2007.

  • [9] Darrick E. Chang, Anders S. Sorensen, Eugene A. Demler, and Mikhail D. Lukin. A single-photon transistor using nanoscale surface plasmons. Nat Phys, 3(11):807-812, 11 2007.

  • [10] D.C. Marinica, A.K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov. Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Letters, 12(3):1333-1339, 2012. [Crossref]

  • [11] Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev. Exciton-plasmon-photon conversion in plasmonic nanostructures. Physical Review Letters, 99(13):136802-, 09 2007. [Crossref]

  • [12] Z. Fang. Graphene-antenna sandwich photodetector. Nano Lett., 12:3808-3813, 2012. [Crossref]

  • [13] Zheyu Fang, Yumin Wang, Zheng Liu, Andrea Schlather, Pulickel M. Ajayan, Frank H. L. Koppens, Peter Nordlander, and Naomi J. Halas. Plasmon-induced doping of graphene. ACS Nano, 6(11):10222-10228, 2014/08/28 2012.

  • [14] Vincenzo Giannini, Antonio I. Fernández-Domínguez, Susannah C. Heck, and Stefan A. Maier. Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters. Chemical Reviews, 111(6):3888-3912, 2014/08/28 2011.

  • [15] H. Chalabi, D. Schoen, and M. Brongersma. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett., 14:1374-1380, 2014. [Crossref]

  • [16] Harry A. Atwater and Albert Polman. Plasmonics for improved photovoltaic devices. Nat Mater, 9(3):205-213, 03 2010.

  • [17] Eric W. McFarland and Jing Tang. A photovoltaic device structure based on internal electron emission. Nature, 421(6923):616-618, 02 2003.

  • [18] Giuliana Di Martino, Yannick Sonnefraud, Stéphane Kéna- Cohen, Mark Tame, Şahin K. Özdemir, M. S. Kim, and Stefan A. Maier. Quantum statistics of surface plasmon polari tons in metallic stripe waveguides. Nano Letters, 12(5):2504-2508, 2014/10/20 2012.

  • [19] G. Di Martino, Y. Sonnefraud, M. S. Tame, S. Kéna-Cohen, F. Dieleman, Ş. K. Özdemir, M. S. Kim, and S. A. Maier. Observation of quantum interference in the plasmonic hong-oumandel effect. Phys. Rev. Applied, 1:034004, Apr 2014. [Crossref]

  • [20] James S. Fakonas, Hyunseok Lee, Yousif A. Kelaita, and Harry A. Atwater. Two-plasmon quantum interference. Nat Photon, 8(4):317-320, 04 2014.

  • [21] M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim. Quantum plasmonics. Nat Phys, 9(6):329-340, 06 2013. [Crossref]

  • [22] M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. S. Kim. Single-photon excitation of surface plasmon polaritons. Physical Review Letters, 101(19):190504-, 11 2008. [Crossref]

  • [23] D. Ballester, M. S. Tame, C. Lee, J. Lee, and M. S. Kim. Longrange surface-plasmon-polariton excitation at the quantum level. Physical Review A, 79(5):053845-, 05 2009. [Crossref]

  • [24] S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett., 97:017402, 2006. [Crossref]

  • [25] Pascal Anger, Palash Bharadwaj, and Lukas Novotny. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett., 96:113002, Mar 2006. [Crossref]

  • [26] R. D. Artuso and G. W. Bryant. Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects. Phys. Rev. B, 82:195419, 2010. [Crossref]

  • [27] Shaunak Mukherjee, Florian Libisch, Nicolas Large, Oara Neumann, Lisa V. Brown, Jin Cheng, J. Britt Lassiter, Emily A. Carter, Peter Nordlander, and Naomi J. Halas. Hot electrons do the impossible: Plasmon-induced dissociation of h2 on au. Nano Letters, 13(1):240-247, 2013/07/23 2012. [Crossref]

  • [28] Yukina Takahashi and Tetsu Tatsuma. Solid state photovoltaic cells based on localized surface plasmon-induced charge separation. Applied Physics Letters, 99(18):182110-3, 10 2011. [Crossref]

  • [29] Fuming Wang and Nicholas A. Melosh. Plasmonic energy collection through hot carrier extraction. Nano Letters, 11(12):5426-5430, 2013/07/23 2011.

  • [30] P. James Schuck. Nanoimaging: Hot electrons go through the barrier. Nat Nano, 8(11):799-800, 11 2013. [Crossref]

  • [31] Syed Mubeen, Joun Lee, Nirala Singh, Stephan Kramer, Galen D. Stucky, and Martin Moskovits. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nano, 8(4):247-251, 04 2013. [Crossref]

  • [32] Suljo Linic, Phillip Christopher, and David B. Ingram. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater, 10(12):911-921, 12 2011. [Crossref]

  • [33] S. Mubeen, G. Hernandez-Sosa, D. Moses, J. Lee, and M. Moskovits. Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett., 11:5548-5552, 2011. [Crossref]

  • [34] J. Adleman, D. Boyd, D. Goodwin, and D. Psaltis. Heterogenous catalysis mediated by plasmon heating. Nano Lett., 9:4417-4423, 2009. [Crossref]

  • [35] K. Awazu. Plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc., 130:1676-1680, 2008. [Crossref]

  • [36] L. Brus. Noble metal nanocrystals: Plasmon electron transfer photochemistry and single-molecule raman spectroscopy. Acc. Chem. Res., 41:1742-1749, 2008. [Crossref]

  • [37] S. Buntin, L. Richter, R. Cavanagh, and D. King. Optically driven surface reactions: Evidence for the role of hot electrons. Phys. Rev. Lett., 61:1321-1324, 1988. [Crossref]

  • [38] P. Christopher, D. B. Ingram, and S. Linic. Enhancing photochemical activity of semiconductor nanoparticles with optically active ag nanostructures: Photochemistry mediated by ag surface plasmons. J. Phys. Chem. C, 19:9173-9177, 2010. [Crossref]

  • [39] P. Christopher, H. Xin, and S. Linic. Visible light enhanced catalytic oxidation reactions on plasmonic ag nanostructures. Nature Chem., 3:467-472, 2011.

  • [40] J-J. Chen, J. C. S. Wu, P. C. Wu, and D. P. Tsai. Plasmonic photocatalyst for h2 evolution in photocatalytic water splitting. J. Phys. Chem. C, 115:210-216, 2011. [Crossref]

  • [41] S. K. Cushing. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc, 134:15033-15041, 2012. [Crossref]

  • [42] S. K. Cushing and N. Q. Wu. Plasmon-enhanced solar energy harvesting. Interface, 22:63-67, 2013.

  • [43] C. Frischkorn and M. Wolf. Femtochemistry at metal surfaces: Nonadiabatic reaction dynamics. Chem. Rev., 106:4207-4233, 2006. [Crossref]

  • [44] Cesar Clavero. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photon, 8(2):95-103, 02 2014. [Crossref]

  • [45] Martin Moskovits. The case for plasmon-derived hot carrier devices. Nat Nano, 10(1):6-8, 01 2015. [Crossref]

  • [46] Mark L. Brongersma, Naomi J. Halas, and Peter Nordlander. Plasmon-induced hot carrier science and technology. Nat Nano, 10(1):25-34, 01 2015.

  • [47] Viktoriia E. Babicheva, Sergei V. Zhukovsky, Renat Sh. Ikhsanov, Igor E. Protsenko, Igor V. Smetanin, and Alexander Uskov. Hot electron photoemission from plasmonic nanostructures: The role of surface photoemission and transition absorption. ACS Photonics, 07 2015.

  • [48] Hui Zhang and Alexander O. Govorov. Optical generation of hot plasmonic carriers in metal nanocrystals: The effects of shape and field enhancement. The Journal of Physical Chemistry C, 118(14):7606-7614, 2014. [Crossref]

  • [49] Bob Y. Zheng, Hangqi Zhao, Alejandro Manjavacas, Michael McClain, Peter Nordlander, and Naomi J. Halas. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat Commun, 6, 07 2015.

  • [50] Zubin Jacob and Vladimir M. Shalaev. Plasmonics goes quantum. Science, 334(6055):463-464, 10 2011.

  • [51] Denis Jacquemin, Benedetta Mennucci, and Carlo Adamo. Excited-state calculations with td-dft: from benchmarks to simulations in complex environments. Physical Chemistry Chemical Physics, 13(38):16987-16998, 2011. [Crossref]

  • [52] J D Whitfield, M-H Yung, D G Tempel, S Boixo, and A Aspuru- Guzik. Computational complexity of time-dependent density functional theory. New Journal of Physics, 16(8):083035, 2014. [Crossref]

  • [53] P. Song, P. Nordlander, and S. Gao. Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport. J Chem Phys, 134(7):074701, Feb 2011.

  • [54] J. Zuloaga, E. Prodan, and P. Nordlander. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett., 9(2):887-891, Feb 2009. [Crossref]

  • [55] A. Manjavacas, F. J. Garcia de Abajo, and P. Nordlander. Quantum plexcitonics: strongly interacting plasmons and excitons. Nano Lett., 11(6):2318-2323, Jun 2011. [Crossref]

  • [56] Ruben Esteban, Andrei G. Borisov, Peter Nordlander, and Javier Aizpurua. Bridging quantum and classical plasmonics with a quantum-corrected model. Nat Commun, 3:825, 05 2012. [Crossref]

  • [57] Jun Yan, Karsten W. Jacobsen, and Kristian S. Thygesen. Conventional and acoustic surface plasmons on noble metal surfaces: A time-dependent density functional theory study. Phys. Rev. B, 86:241404, Dec 2012. [Crossref]

  • [58] Christine M. Aikens, Shuzhou Li, and George C. Schatz. From discrete electronic states to plasmons: Tddft optical absorption properties of ag n ( n = 10, 20, 35, 56, 84, 120) tetrahedral clusters. The Journal of Physical Chemistry C, 112(30):11272-11279, 07 2008.

  • [59] Nicola Durante, Alessandro Fortunelli, Michel Broyer, and Mauro Stener. Optical properties of au nanoclusters from td-dft calculations. The Journal of Physical Chemistry C, 115(14):6277-6282, 2013/11/11 2011.

  • [60] Gyun-Tack Bae and Christine M. Aikens. Time-dependent density functional theory studies of optical properties of au nanoparticles: Octahedra, truncated octahedra, and icosahedra. The Journal of Physical Chemistry C, 09 2015.

  • [61] P. Bharadwaj, B. Deutsch, and L. Novotny. Optical antennas. Adv. Opt. Photon., 1:438-483, 2009. [Crossref]

  • [62] L. Landau. On the vibration of the electronic plasma. J. Phys. USSR, 10, 1946.

  • [63] Alexander O. Govorov, Hui Zhang, and Yurii K. Gun’ko. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. The Journal of Physical Chemistry C, 117(32):16616-16631, 2013/11/11 2013.

  • [64] Alejandro Manjavacas, Jun G. Liu, Vikram Kulkarni, and Peter Nordlander. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano, 8(8):7630-7638, 2014/08/28 2014. [Crossref]

  • [65] A. O. Govorov, H. Zhang, H. V. Demir, and Y. K. Gun’ko. Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nano Today, 9:85-101, 2014. [Crossref]

  • [66] Ravishankar Sundararaman, Prineha Narang, Adam S. Jermyn, William A. Goddard III, and Harry A. Atwater. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun., 5:5788, 2014. [Crossref]

  • [67] Ana M. Brown, Ravishankar Sundararaman, Prineha Narang, III William A. Goddard, and Harry A. Atwater. Nonradiative plasmon decay and hot carrier dynamics: Effects of phonons, surfaces, and geometry. ACS Nano, 10:957, 2016.

  • [68] M. Bernardi, J. Mustafa, J.B. Neaton, and S.G. Louie. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat. Commun., In press, 2015.

  • [69] Jesse Noffsinger, Emmanouil Kioupakis, Chris G. Van de Walle, Steven G. Louie, and Marvin L. Cohen. Phononassisted optical absorption in silicon from first principles. Phys. Rev. Lett., 108:167402, Apr 2012. [Crossref]

  • [70] Emmanouil Kioupakis, Patrick Rinke, André Schleife, Friedhelm Bechstedt, and Chris G. Van de Walle. Free-carrier absorption in nitrides from first principles. Phys. Rev. B, 81:241201, Jun 2010. [Crossref]

  • [71] Carlo Jacoboni. Theory of Electron Transport in Semiconductors. Springer Series in Solid-State Sciences. Springer-Verlag Berlin Heidelberg, 2010.

  • [72] F. Chen and N. J. Tao. Electron transport in single molecules: From benzene to graphene. Accounts of Chemical Research, 42(3):429-438, 2009. PMID: 19253984.

  • [73] R Landauer. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM Journal of Research and Development, 1(3):223-231, 1957. [Crossref]

  • [74] A Nitzan and MA Ratner. Electron transport in molecular wire junctions. SCIENCE, 300(5624):1384-1389, MAY 30 2003.

  • [75] The Boltzmann Equation and Its Applications. Applied Mathematical Sciences. Springer New York, 1988.

  • [76] Carlo Jacoboni and Lino Reggiani. The monte carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys., 55:645-705, Jul 1983.

  • [77] Gregory V. Hartland. Optical studies of dynamics in noble metal nanostructures. Chemical Reviews, 111(6):3858-3887, 06 2011.

  • [78] Hayk Harutyunyan, Alex B. F. Martinson, Daniel Rosenmann, Larousse Khosravi Khorashad, Lucas V. Besteiro, Alexander O. Govorov, and Gary P. Wiederrecht. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat Nano, 10(9):770-774, 09 2015. [Crossref]

  • [79] Florian Ladstädter, Ulrich Hohenester, Peter Puschnig, and Claudia Ambrosch-Draxl. First-principles calculation of hotelectron scattering in metals. Phys. Rev. B, 70:235125, Dec 2004. [Crossref]

  • [80] Zhibin Lin, Leonid V. Zhigilei, and Vittorio Celli. Electronphonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B, 77:075133, Feb 2008.

  • [81] A. Brown, R. Sundararaman, P. Narang, W. A. Goddard III, and H. A. Atwater. Ab initio phonon coupling and optical response of hot electrons in plasmonic metals. preprint: arXiv:1602.00625

  • [82] Ashutosh Giri, John T. Gaskins, Brian M. Foley, Ramez Cheaito, and Patrick E. Hopkins. Experimental evidence of excited electron number density and temperature effects on electron-phonon coupling in gold films. Journal of Applied Physics, 117(4):-, 2015.

  • [83] N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée. Nonequilibrium electron dynamics in noble metals. Phys. Rev. B, 61:16956-16966, Jun 2000. [Crossref]

  • [84] E. Carpene. Ultrafast laser irradiation of metals: Beyond the two-temperature model. Phys. Rev. B, 74:024301, Jul 2006. [Crossref]

  • [85] Talin Avanesian and Phillip Christopher. Adsorbate specificity in hot electron driven photochemistry on catalytic metal surfaces. The Journal of Physical Chemistry C, 118(48):28017-28031, 2014. [Crossref]

  • [86] Hamidreza Chalabi, David Schoen, and Mark L. Brongersma. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Letters, 14(3):1374-1380, 2014. PMID: 24502677.

  • [87] A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates. J. Appl. Phys., 115:134301, 2014. [Crossref]

  • [88] K. Wu, J. Chen, J. R. McBride, and T. Lian. Efficient hotelectron transfer by a plasmon-induced interfacial chargetransfer transition. Science, 349(6248):632-635, 08 2015.

  • [89] Suljo Linic, Umar Aslam, Calvin Boerigter, and Matthew Morabito. Photochemical transformations on plasmonic metal nanoparticles. Nat Mater, 14(6):567-576, 06 2015. [Crossref]

  • [90] R. H. Fowler. The analysis of photoelectric sensitivity curves for clean metals at various temperatures. Physical Review, 38(1):45-56, 07 1931. [Crossref]

  • [91] V. L. Dalal. Simple model for internal photoemission. J. Appl. Phys., 42:2274-2279, 1971. [Crossref]

  • [92] Mark W. Knight, Heidar Sobhani, Peter Nordlander, and Naomi J. Halas. Photodetection with active optical antennas. Science, 332(6030):702-704, 05 2011.

  • [93] Mark W. Knight, Yumin Wang, Alexander S. Urban, Ali Sobhani, Bob Y. Zheng, Peter Nordlander, and Naomi J. Halas. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Letters, 13(4):1687-1692, 2013/07/23 2013.

  • [94] D. Peters. An infrared detector utilizing internal photoemission. Proc. IEEE, 55:704-705, 1967. [Crossref]

  • [95] A Sobhani. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nature Commun., 4:1643, 2013. [Crossref]

  • [96] D. G. Busch and W. Ho. Direct observation of the crossover from single to multiple excitations in femtosecond surface photochemistry. Phys. Rev. Lett., 77:1338-1341, 1996. [Crossref]

  • [97] Dietrich Menzel and Robert Gomer. Desorption from metal surfaces by low-energy electrons. The Journal of Chemical Physics, 41(11):3311-3328, 1964. [Crossref]

  • [98] D. N. Denzler, C. Frischkorn, C. Hess, M. Wolf, and G. Ertl. Electronic excitation and dynamic promotion of a surface reaction. Phys. Rev. Lett., 91:226102, 2003. [Crossref]

  • [99] R. A. Wolkow and M. Moskovits. Enhanced photochemistry on silver surfaces. J. Chem. Phys., 87:5858-5869, 1987.

  • [100] S. Mubeen. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nature Nanotechnol, 8:247-251, 2013. [Crossref]

  • [101] S. Linic, P. Christopher, and D. B. Ingram. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater., 10:911-921, 2011. [Crossref]

  • [102] W. J. Youngblood. Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J. Am. Chem. Soc., 131:926-927, 2009. [Crossref]

  • [103] X. Zhang. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled förster resonance energy transfer. ACS Nano, 8:1273-1283, 2014. [Crossref]

  • [104] Takashi Fuse, Toshiaki Fujino, Jeong-Tak Ryu, Mitsuhiro Katayama, and Kenjiro Oura. Electron-stimulated desorption of hydrogen from h/si(001)-1×1 surface studied by time of-flight elastic recoil detection analysis. Surface Science, 420(1):81-86, 1 1999.

  • [105] J. W. Gadzuk, L. J. Richter, S. A. Buntin, D. S. King, and R. R. Cavanagh model applied to no/pt(111). Surf.Sci., 235:317-333, 1990 [Crossref]

  • [106] J. W. Gadzuk. Hot-electron femtochemistry at surfaces: on the role of multiple electron processes in desorption. Chem. Phys., 251:87-97, 2000. [Crossref]

  • [107] J-P Gauyacq, A G Borisov, and A K Kazansky. Theoretical study of excited electronic states at surfaces, link with photo-emission and photo-desorption experiments. Journal of Physics: Conference Series, 133(1):012009, 2008.

  • [108] S. R. Hatch, X-Y. Zhu, J. M. White, and A. Campion. Photoinduced pathways to dissociation and desorption of dioxygen on ag(110) and pt(111). J. Phys Chem., 95:1759-1768, 1991. [Crossref]

  • [109] K. Fukutani and Y. Murata. Photoexcited processes at metal and alloy surfaces: electronic structure and adsorption site. Surface Science, 390(1-3):164-173, 11 1997.

  • [110] P. Avouris and R. E. Walkup. Fundamental mechanisms of desorption and fragmentation induced by electronic transitions at surfaces. Annu. Rev. Phys. Chem., 40:173-206, 1989. [Crossref]

  • [111] M. Bonn. Phonon- versus electron-mediated desorption and oxidation of co on ru(0001). Science, 285:1042-1045, 1999.

  • [112] W. D. Mieher and W. Ho. Bimolecular surface photochemistry: mechanisms of co oxidation on pt(111) at 85 k. J. Chem. Phys., 99:9279-9295, 1993.

  • [113] J. A. Misewich, S. Nakabayashi, P. Weigand, M. Wolf, and T. F. Heinz. Anomalous branching ratio in the femtosecond surface chemistry of o2pd(111). Surface Science, 363(1-3):204-213, 8 1996.

  • [114] J. A. Prybyla, T. F. Heinz, J. A. Misewich, M. M. T. Loy, and J. H. Glownia. Desorption induced by femtosecond laser pulses. Phys. Rev. Lett., 64:1537-1540, 1990. [Crossref]

  • [115] W. Ho. Reactions at metal surfaces induced by femtosecond lasers, tunneling electrons and heating. J. Phys. Chem., 100:13050-13060, 1996. [Crossref]

  • [116] P. Christopher, H. Xin, A. Marimuthu, and S. Linic. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nature Mater., 11:1044-1050, 2012.

  • [117] T. Olsen, J. Gavnholt, and J. Schiotz. Hot-electron-mediated desorption rates calculated from excited state potential energy surfaces. Phys. Rev. B, 79:035403, 2009. [Crossref]

  • [118] T. Olsen and J. Schiotz. Origin of power laws for reactions at metal surfaces mediated by hot electrons. Phys. Rev. Lett., 103:238301, 2009. [Crossref]

  • [119] J. Gavnholt, A. Rubio, T. Olsen, K. Thygesen, and J. Schiotz. Hot-electron-assisted femtochemistry at surfaces: A timedependent density functional theory approach. Phys. Rev. B, 79:195405, 2009. [Crossref]

  • [120] Peter Elliott and Neepa T. Maitra. Propagation of initially excited states in time-dependent density-functional theory. Phys. Rev. A, 85:052510, May 2012. [Crossref]

  • [121] Hideyuki Inouye, Koichiro Tanaka, Ichiro Tanahashi, and Kazuyuki Hirao. Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys. Rev. B, 57:11334-11340, May 1998. [Crossref]

  • [122] G. Baffou, R. Quidant, and C. Girard. Heat generation in plasmonic nanostructures: Influence of morphology. Appl. Phys. Lett., 94:153109, 2009. [Crossref]

  • [123] G. Baffou, R. Quidant, and F. J. Garcia de Abajo. Nanoscale control of optical heating in complex plasmonic systems. ACS Nano, 4:709-716, 2010. [Crossref]

  • [124] D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit. Photothermal imaging of nanometer-sized metal particles among scatterers. Science, 297:1160-1163, 2002. [Crossref]

  • [125] Hrvoje Petek, Miles J. Weida, Hisashi Nagano, and Susumu Ogawa. Real-time observation of adsorbate atom motion above a metal surface. Science, 288(5470):1402-1404, 2000.

  • [126] Hrvoje Petek. Photoexcitation of adsorbates on metal surfaces: One-step or three-step. The Journal of Chemical Physics, 137(9), 2012.

  • [127] Matthew J. Kale, Talin Avanesian, Hongliang Xin, Jun Yan, and Phillip Christopher. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate-metal bonds. Nano Letters, 14(9):5405-5412, 09 2014.

  • [128] Run Long and Oleg V Prezhdo. Instantaneous generation of charge-separated state on tio2 surface sensitized with plasmonic nanoparticles. Journal of the American Chemical Society, 136(11):4343-4354, 03 2014.

About the article

Received: 2015-10-22

Accepted: 2016-01-14

Published Online: 2016-06-11

Published in Print: 2016-06-01

Citation Information: Nanophotonics, ISSN (Online) 2192-8614, ISSN (Print) 2192-8606, DOI: https://doi.org/10.1515/nanoph-2016-0007. Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. (CC BY-NC-ND 4.0)

Comments (0)

Please log in or register to comment.
Log in