[1]

Nathan CL, Prashant N, Kevin MM, David JN, Sang-Hyun O. Engineering metallic nanostructures for plasmonics and nanophotonics. Rep Prog Phys 2012;75:036501. Google Scholar

[2]

Hoffmann MC, Monozon BS, Livshits D, Rafailov EU, Turchinovich D. Terahertz electro-absorption effect enabling femtosecond all-optical switching in semiconductor quantum dots. Appl Phys Lett 2010;97:231108. Google Scholar

[3]

Tanoto H, Teng JH, Wu QY, et al. Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer. Nat Photon 2012;6:121–6. Google Scholar

[4]

Ju L, Geng B, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials. Nat Nano 2011;6:630–4. Google Scholar

[5]

Shur M. Plasma wave terahertz electronics. Electron Lett 2010;46:S18–21. Google Scholar

[6]

Upadhyaya P, Pramanik S, Bandyopadhyay S. Optical transitions in a quantum wire with spin-orbit interaction and its applications in terahertz electronics: Beyond zeroth-order theory. Phys Rev B 2008;77:155439. Google Scholar

[7]

Bahramipanah M, Abrishamian MS, Mirtaheri SA, Liu J-M. Ultracompact plasmonic loop–stub notch filter and sensor. Sens Actuator B Chem 2014;194:311–8. Google Scholar

[8]

Mittleman DM. Frontiers in terahertz sources and plasmonics. Nat Photon 2013;7:666–9. Google Scholar

[9]

Williams CR, Andrews SR, Maier SA, Fernandez-Dominguez AI, Martin Moreno L, Garcia-Vidal FJ. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat Photon 2008;2:175–9. Google Scholar

[10]

Fitzgerald AJ, Berry E, Zinovev NN, Walker GC, Smith MA, Chamberlain JM. An introduction to medical imaging with coherent terahertz frequency radiation. Phys Med Biol 2002;47:R67. Google Scholar

[11]

Parrott EPJ, Sun Y, Pickwell-MacPherson E. Terahertz spectroscopy: its future role in medical diagnoses. J Mol Struct 2011;1006:66–76. Google Scholar

[12]

Handley JW, Fitzgerald AJ, Berry E, Boyle RD. Wavelet compression in medical terahertz pulsed imaging. Phys Med Biol 2002;47:3885–92. Google Scholar

[13]

Zimdars D, Valdmanis JA, White JS, et al. Technology and applications of terahertz imaging non-destructive examination: inspection of space shuttle sprayed on foam insulation. AIP Conf Proc 2005;760:570–7. Google Scholar

[14]

Li J, Pi YM. Target detection for terahertz radar networks based on micro-Doppler signatures. Int J Sens Netw 2015;17:115–21. Google Scholar

[15]

Semashkin EN, Artyushkina TV. Operating range and all-weather capability of terahertz (0.1 THz) and gigahertz (3–33.3 GHz) radars on horizontal and oblique tracks. J Opt Technol 2015;82:430–5. Google Scholar

[16]

Zimdars D, White JS, Stuk G, Chernovsky A, Fichter G, Williamson S. Security and non destructive evaluation application of high speed time domain terahertz imaging. In: 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference, IEEE, May 21–26, 2006, pp. 1–2. Google Scholar

[17]

Han SP, Kim N, Lee WH, et al. Real-time imaging of moving living objects using a compact terahertz scanner. Appl Phys Express 2016;9:022501. Google Scholar

[18]

Yasui T, Sawanaka KI, Ihara A, Abraham E, Hashimoto M, Araki T. Real-time terahertz color scanner for moving objects. Opt Express 2008;16:1208–21. Google Scholar

[19]

Xu KK, Zhang ZY, Yu Q, Wen ZY. J Disp Technol 2016;12: 115–21. Google Scholar

[20]

Fukunaga K, Hosako I. Innovative non-invasive analysis techniques for cultural heritage using terahertz technologyTechniques innovantes d’analyse non invasive du patrimoine culturel basées sur les technologies térahertz. C R Phys 2010;11:519–26. Google Scholar

[21]

Fukunaga K, Hosako I, Kohdzuma Y, et al. Terahertz analysis of an East Asian historical mural painting. J Eur Opt Soc Rapid Publ 2010;5:10024. Google Scholar

[22]

Manceau JM, Nevin A, Fotakis C, Tzortzakis S. Terahertz time domain spectroscopy for the analysis of cultural heritage related materials. Appl Phys B 2008;90:365–8. Google Scholar

[23]

Lee JW, Seo MA, Park DJ, et al. Shape resonance omni-directional terahertz filters with near-unity transmittance. Opt Express 2006;14:1253–9. Google Scholar

[24]

Libon IH, Baumgärtner S, Hempel M, et al. An optically controllable terahertz filter. Appl Phys Lett 2000;76: 2821–3. Google Scholar

[25]

Mendis R, Nag A, Chen F, Mittleman DM. A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides. Appl Phys Lett 2010;97:131106. Google Scholar

[26]

Kaliteevski MA, Brand S, Garvie-Cook J, Abram RA, Chamberlain JM. Terahertz filter based on refractive properties of metallic photonic crystal. Opt Express 2008;16:7330–5. Google Scholar

[27]

Lin WH, Wu CJ, Yang TJ, Chang SJ. Terahertz multichanneled filter in a superconducting photonic crystal. Opt Express 2010;18:27155–66. Google Scholar

[28]

Lan F, Yang Z, Qi L, Gao X, Shi Z. Terahertz dual-resonance bandpass filter using bilayer reformative complementary metamaterial structures. Opt Lett 2014;39:1709–12. Google Scholar

[29]

Heshmat B, Pahlevaninezhad H, Pang Y, et al. Nanoplasmonic terahertz photoconductive switch on GaAs. Nano Lett 2012;12:6255–9. Google Scholar

[30]

Rahm M, Li J-S, Padilla WJ. THz wave modulators: a brief review on different modulation techniques. J Infrared Millim Terahertz Waves 2013;34:1–27. Google Scholar

[31]

Choi SB, Kyoung JS, Kim HS, et al. Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film. Appl Phys Lett 2011;98:071105. Google Scholar

[32]

Unlu M, Jarrahi M. Miniature multi-contact MEMS switch for broadband terahertz modulation. Opt Express 2014;22:32245–60. Google Scholar

[33]

Li J, He J, Hong Z. Terahertz wave switch based on silicon photonic crystals. Appl Opt 2007;46:5034–7. Google Scholar

[34]

Gao WL, Shu J, Reichel K, et al. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures. Nano Lett 2014;14:1242–8. Google Scholar

[35]

Liu G, He M, Tian Z, Li J, Liu J. Terahertz surface plasmon sensor for distinguishing gasolines. Appl Opt 2013;52:5695–700. Google Scholar

[36]

Astley V, Reichel K, Mendis R, Mittleman DM. Terahertz microfluidic sensing using a parallel-plate waveguide sensor. J Vis Exp 2012;30:e4304. Google Scholar

[37]

Alves F, Grbovic D, Kearney B, Karunasiri G. Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber. Opt Lett 2012;37:1886–8. Google Scholar

[38]

Hassani A, Skorobogatiy M. Surface plasmon resonance-like integrated sensor at terahertz frequencies for gaseous analytes. Opt Express 2008;16:20206–14. Google Scholar

[39]

Miyamaru F, Hayashi S, Otani C, et al. Terahertz surface-wave resonant sensor with a metal hole array. Opt Lett 2006;31:1118–20. Google Scholar

[40]

Xu KK. Integrated silicon directly modulated light source using p-well in standard CMOS technology. IEEE Sens J 2016;16:6184–91. Google Scholar

[41]

Lee JW, Park TH, Nordlander P, Mittleman DM. Optimum areal coverage for perfect transmission in a periodic metal hole array. Appl Phys Lett 2010;97:261112. Google Scholar

[42]

Lee JW, Seo MA, Kang DH, Khim KS, Jeoung SC, Kim DS. Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets. Phys Rev Lett 2007;99:137401. Google Scholar

[43]

Deng G, Yang J, Yin Z. Broadband terahertz metamaterial absorber based on tantalum nitride. Appl Opt 2017;56:2449–54. Google Scholar

[44]

Gong C, Zhan M, Yang J, et al. Broadband terahertz metamaterial absorber based on sectional asymmetric structures. Sci Rep 2016;6:32466. Google Scholar

[45]

Chowdhury DR, Singh R, Reiten M, et al. A broadband planar terahertz metamaterial with nested structure. Opt Express 2011;19:15817–23. Google Scholar

[46]

Grant J, Ma Y, Saha S, Khalid A, Cumming DR. Polarization insensitive, broadband terahertz metamaterial absorber. Opt Lett 2011;36:3476–8. Google Scholar

[47]

Lee JW, Seo MA, Sohn JY, et al. Invisible plasmonic meta-materials through impedance matching to vacuum. Opt Express 2005;13:10681–7. Google Scholar

[48]

Garcia-Vidal FJ, Moreno E, Porto JA, Martin-Moreno L. Transmission of light through a single rectangular hole. Phys Rev Lett 2005;95:103901. Google Scholar

[49]

Lee JW, Seo MA, Kim DS, Kang JH, Park Q-H. Polarization dependent transmission through asymmetric C-shaped holes. Appl Phys Lett 2009;94:081102. Google Scholar

[50]

Park DJ, Hong JT, Park JK, et al. Resonant transmission of terahertz waves through metallic slot antennas on various dielectric substrates. Curr Appl Phys 2013;13:753–7. Google Scholar

[51]

Seo MA, Lee JW, Kim DS. Dielectric constant engineering with polymethylmethacrylate-graphite metastate composites in the terahertz region. J Appl Phys 2006;99:066103. Google Scholar

[52]

Kyoung J, Seo M, Park H, et al. Giant nonlinear response of terahertz nanoresonators on VO_{2} thin film. Opt Express 2010;18:16452–9. Google Scholar

[53]

Berrier A, Ulbricht R, Bonn M, Rivas JG. Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas. Opt Express 2010;18:23226–35. Google Scholar

[54]

Chen HT, O’Hara JF, Azad AK, et al. Experimental demonstration of frequency-agile terahertz metamaterials. Nat Photonics 2008;2:295–8. Google Scholar

[55]

Stefanovich G, Pergament A, Stefanovich D. Electrical switching and Mott transition in VO_{2}. J Phys: Condensed Matter 2000;12:8837. Google Scholar

[56]

Jeong YG, Bernien H, Kyoung JS, et al. Electrical control of terahertz nano antennas on VO_{2} thin film. Opt Express 2011;19:21211–5. Google Scholar

[57]

Seo MA, Kyoung JS, Park HR, et al. Active terahertz nanoantennas based on VO_{2} phase transition. Nano Lett 2010;10:2064–8. Google Scholar

[58]

Jepsen PU, Fischer BM, Thoman A, et al. Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy. Phys Rev B 2006;74:205103. Google Scholar

[59]

Kats MA, Blanchard R, Genevet P, et al. Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. Opt Lett 2013;38:368–70. Google Scholar

[60]

Wang J, Liu S, Guruswamy S, Nahata A. Reconfigurable terahertz metamaterial device with pressure memory. Opt Express 2014;22:4065–74. Google Scholar

[61]

Madugani R, Yang Y, Ward JM, et al. Terahertz tuning of whispering gallery modes in a PDMS stand-alone, stretchable microsphere. Opt Lett 2012;37:4762–4. Google Scholar

[62]

Lee S, Kim S, Kim TT, et al. Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts. Adv Mater 2012;24:3491–7. Google Scholar

[63]

Amer N, Hurlbut WC, Norton BJ, Lee YS, Etringer SL, Paul BK. Terahertz wave propagation in one-dimensional periodic dielectrics. Appl Opt 2006;45:1857–60. Google Scholar

[64]

Lee JW, Seo MA, Park DJ, et al. Terahertz transparency at Fabry-Perot resonances of periodic slit arrays in a metal plate: experiment and theory. Opt Express 2006;14:12637–43. Google Scholar

[65]

Lee J, Seo M, Park D, et al. Shape resonance omni-directional terahertz filters with near-unity transmittance. Opt Express 2006;14:1253–9. Google Scholar

[66]

Kang JH, Park QH, Lee JW, Seo MA, Kim DS. Perfect transmission of THz waves in structured metals. J Korean Phys Soc 2006;49:881–4. Google Scholar

[67]

Cao H, Nahata A. Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures. Opt Express 2004;12:1004–10. Google Scholar

[68]

Koo S, Kumar MS, Shin J, Kim D, Park N. Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet’s principle for sub-skin-depth regime. Phys Rev Lett 2009;103:263901. Google Scholar

[69]

Seo MA, Park HR, Koo SM, et al. Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit. Nat Photonics 2009;3:152–6. Google Scholar

[70]

Tanoto H, Teng JH, Wu QY, et al. Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission. Sci Rep 2013;3:2824. Google Scholar

[71]

Bahk YM, Choi JW, Kyoung J, Park HR, Ahn KJ, Kim DS. Selective enhanced resonances of two asymmetric terahertz nano resonators. Opt Express 2012;20:25644–53. Google Scholar

[72]

Park HR, Bahk YM, Choe JH, et al. Terahertz pinch harmonics enabled by single nano rods. Opt Express 2011;19:24775–81. Google Scholar

[73]

Feuillet-Palma C, Todorov Y, Vasanelli A, Sirtori C. Strong near field enhancement in THz nano-antenna arrays. Sci Rep 2013;3:1361. Google Scholar

[74]

Park HR, Bahk YM, Ahn KJ, et al. Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas. ACS Nano 2011;5:8340–5. Google Scholar

[75]

Chen X, Park HR, Pelton M, et al. Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves. Nat Commun 2013;4:2361. Google Scholar

[76]

Bahk Y-M, Han S, Rhie J, et al. Ultimate terahertz field enhancement of single nanoslits. Phys Rev B 2017;95:075424. Google Scholar

[77]

Sarychev AK, Shvets G, Shalaev VM. Magnetic plasmon resonance. Phys Rev E Stat Nonlin Soft Matter Phys 2006;73(3 Pt 2):036609. Google Scholar

[78]

Berry CW, Wang N, Hashemi MR, Unlu M, Jarrahi M. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. Nat Comm 2013;4:1622. Google Scholar

[79]

Kim JY, Kang BJ, Bahk YM, et al. Tunnelling current-voltage characteristics of Angstrom gaps measured with terahertz time-domain spectroscopy. Sci Rep 2016;6:29103. Google Scholar

[80]

Bahk YM, Kang BJ, Kim YS, et al. Electromagnetic saturation of angstrom-sized quantum barriers at terahertz frequencies. Phys Rev Lett 2015;115:125501. Google Scholar

[81]

Seo M, Kang J-H, Kim H-S, et al. Observation of terahertz-radiation-induced ionization in a single nano island. Sci Rep 2015;5:10280. Google Scholar

[82]

Iwaszczuk K, Zalkovskij M, Strikwerda AC, Jepsen PU. Nitrogen plasma formation through terahertz-induced ultrafast electron field emission. Optica 2015;2:116–23. Google Scholar

[83]

Jeong Y-G, Paul MJ, Kim S-H, Yee K-J, Kim D-S, Lee Y-S. Large enhancement of nonlinear terahertz absorption in intrinsic GaAs by plasmonic nano antennas. Appl Phys Lett 2013;103:171109. Google Scholar

[84]

Lange C, Maag T, Hohenleutner M, et al. Extremely nonperturbative nonlinearities in GaAs driven by atomically strong terahertz fields in gold metamaterials. Phys Rev Lett 2014;113:227401. Google Scholar

[85]

Han S, Kim J-Y, Kang T, et al. Colossal terahertz nonlinearity in angstrom- and nanometer-sized gaps. ACS Photonics 2016;3:1440–5. Google Scholar

[86]

Kim JY, Kang BJ, Park J, et al. Terahertz quantum plasmonics of nanoslot antennas in nonlinear regime. Nano Lett 2015;15:6683–8. Google Scholar

[87]

Bonod N, Popov E, Gerard D, Wenger J, Rigneault H. Field enhancement in a circular aperture surrounded by a single channel groove. Opt Express 2008;16:2276–87. Google Scholar

[88]

Kang JH, Kim DS, Park QH. Local capacitor model for plasmonic electric field enhancement. Phys Rev Lett 2009;102:093906. Google Scholar

[89]

Novitsky A, Ivinskaya AM, Zalkovskij M, Malureanu R, Jepsen PU, Lavrinenko AV. Non-resonant terahertz field enhancement in periodically arranged nanoslits. J Appl Phys 2012;112:074318. Google Scholar

[90]

Choe JH, Kang JH, Kim DS, Park QH. Slot antenna as a bound charge oscillator. Opt Express 2012;20:6521–6. Google Scholar

[91]

García-Vidal FJ, Martín-Moreno L, Moreno E, Kumar LKS, Gordon R. Transmission of light through a single rectangular hole in a real metal. Phys Rev B 2006;74:153411. Google Scholar

[92]

Shalaby M, Merbold H, Peccianti M, et al. Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays. Appl Phys Lett 2011;99:041110. Google Scholar

[93]

Park SG, Choi Y, Oh YJ, Jeong KH. Terahertz photoconductive antenna with metal nanoislands. Opt Express 2012;20: 25530–5. Google Scholar

[94]

Yang Y, Singh R, Zhang W. Anomalous terahertz transmission in bow-tie plasmonic antenna apertures. Opt Lett 2011;36:2901–3. Google Scholar

[95]

Maksymov IS, Miroshnichenko AE, Kivshar YS. Actively tunable bistable optical Yagi-Uda nanoantenna. Opt Express 2012;20:8929–38. Google Scholar

[96]

Dorfmuller J, Dregely D, Esslinger M, et al. Near-field dynamics of optical Yagi-Uda nanoantennas. Nano Lett 2011;11:2819–24. Google Scholar

[97]

Taminiau TH, Stefani FD, van Hulst NF. Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. Opt Express 2008;16:10858–6. Google Scholar

[98]

Razzari L, Toma A, Shalaby M, et al. Extremely large extinction efficiency and field enhancement in terahertz resonant dipole nanoantennas. Opt Express 2011;19:26088–94. Google Scholar

[99]

Razzari L, Toma A, Clerici M, et al. Terahertz dipole nanoantenna arrays: resonance characteristics. Plasmonics 2013;8:133–8. Google Scholar

[100]

Gacemi D, Mangeney J, Colombelli R, Degiron A. Subwavelength metallic waveguides as a tool for extreme confinement of THz surface waves. Sci Rep 2013;3:1369. Google Scholar

[101]

Toma A, Tuccio S, Prato M, et al. Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots. Nano Lett 2015;15:386–91. Google Scholar

[102]

Jeong J, Rhie J, Jeon W, Hwang CS, Kim DS. High-throughput fabrication of infinitely long 10 nm slit arrays for terahertz applications. J Infrared Millim Terahertz Waves 2015;36:262–8. Google Scholar

[103]

Park SJ, Son BH, Choi SJ, Kim HS, Ahn YH. Sensitive detection of yeast using terahertz slot antennas. Opt Express 2014;22:30467–72. Google Scholar

[104]

Jeong YG, Paul MJ, Kim SH, Yee KJ, Kim DS, Lee YS. Large enhancement of nonlinear terahertz absorption in intrinsic GaAs by plasmonic nano antennas. Appl Phys Lett 2013;103:171109. Google Scholar

[105]

Shu J, Qiu CY, Astley V, Nickel D, Mittleman DM, Xu QF. High-contrast terahertz modulator based on extraordinary transmission through a ring aperture. Opt Express 2011;19:26666–71. Google Scholar

[106]

Park HR, Bahk YM, Choe JH, et al. Terahertz pinch harmonics enabled by single nano rods. Opt Express 2011;19:24775–81. Google Scholar

[107]

Merbold H, Bitzer A, Feurer T. Second harmonic generation based on strong field enhancement in nanostructured THz materials. Opt Express 2011;19:7262–73. Google Scholar

[108]

Dai L, Jiang C. Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating. Opt Express 2009;17:20502–14. Google Scholar

[109]

Werley CA, Fan KB, Strikwerda AC, et al. Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements. Opt Express 2012;20:8551–67. Google Scholar

[110]

Ogut B, Vogelgesang R, Sigle W, Talebi N, Koch CT, van Aken PA. Hybridized metal slit eigenmodes as an illustration of Babinet’s Principle. Acs Nano 2011;5:6701–6. Google Scholar

[111]

Yang J, Cao Q, Zhou CH. Theory for terahertz plasmons of metallic nanowires with sub-skin-depth diameters. Opt Express 2010;18:18550–7. Google Scholar

[112]

Hu D, Wang XK, Feng SF, et al. Ultrathin terahertz planar elements. Adv Opt Mater 2013;1:186–91. Google Scholar

[113]

Iwaszczuk K, Andryieuski A, Lavrinenko A, Zhang XC, Jepsen PU. Terahertz field enhancement to the MV/cm regime in a tapered parallel plate waveguide. Opt Express 2012;20: 8344–55. Google Scholar

[114]

Bulgarevich DS, Watanabe M, Shiwa M. Single sub-wavelength aperture with greatly enhanced transmission. New J Phys 2012;14:053001. Google Scholar

[115]

Gadalla MN, Abdel-Rahman M, Shamim A. Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification. Sci Rep 2014;4:4270. Google Scholar

[116]

Fan F, Xu ST, Wang XH, Chang SJ. Terahertz polarization converter and one-way transmission based on double-layer magneto-plasmonics of magnetized InSb. Opt Express 2016;24:26431–43. Google Scholar

[117]

Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications. Acs Nano 2014;8:1086–101. Google Scholar

[118]

Fan F, Gu WH, Chen S, Wang XH, Chang SJ. State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping. Opt Lett 2013;38:1582–4. Google Scholar

[119]

Panaretos AH, Werner DH. Spoof plasmon radiation using sinusoidally modulated corrugated reactance surfaces. Opt Express 2016;24:2443–56. Google Scholar

[120]

Yu N, Wang QJ, Kats MA, et al. Designer spoof surface plasmon structures collimate terahertz laser beams. Nat Mater 2010;9:730–5. Google Scholar

[121]

Ishikawa A, Zhang S, Genov DA, Bartal G, Zhang X. Deep subwavelength terahertz waveguides using gap magnetic plasmon. Phys Rev Lett 2009;102:043904. Google Scholar

[122]

Chern R-L. Magnetic and surface plasmon resonances for periodic lattices of plasmonic split-ring resonators. Phys Rev B 2008;78:085116. Google Scholar

[123]

Martin-Cano D, Quevedo-Teruel O, Moreno E, Martin-Moreno L, Garcia-Vidal FJ. Waveguided spoof surface plasmons with deep-subwavelength lateral confinement. Opt Lett 2011;36:4635–7. Google Scholar

[124]

Lee SH, Choi J, Kim HD, Choi H, Min B. Ultrafast refractive index control of a terahertz graphene metamaterial. Sci Rep 2013;3:2135. Google Scholar

[125]

Choi M, Lee SH, Kim Y, et al. A terahertz metamaterial with unnaturally high refractive index. Nature 2011;470:369–73. Google Scholar

[126]

Chen HT, Padilla WJ, Zide JM, Gossard AC, Taylor AJ, Averitt RD. Active terahertz metamaterial devices. Nature 2006;444: 597–600. Google Scholar

[127]

Moser HO, Casse BD, Wilhelmi O, Saw BT. Terahertz response of a microfabricated rod–split-ring-resonator electromagnetic metamaterial. Phys Rev Lett 2005;94:063901. Google Scholar

[128]

Wang D, Gu Y, Gong Y, Qiu CW, Hong M. An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface. Opt Express 2015;23:11114–22. Google Scholar

[129]

Shi SF, Zeng B, Han HL, et al. Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures. Nano Lett 2015;15:372–7. Google Scholar

[130]

Takano K, Shibuya K, Akiyama K, Nagashima T, Miyamaru F, Hangyo M. A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region. J Appl Phys 2010;107:024907. Google Scholar

[131]

Sommerfeld A. Mathematische Theorie der Diffraction. Math Ann 1896;47:317–74. Google Scholar

[132]

Sheppard CJ, Lin J, Kou SS. Rayleigh–Sommerfeld diffraction formula in k space. J Opt Soc Am A Opt Image Sci Vis 2013;30:1180–3. Google Scholar

[133]

Marathay AS, McCalmont JE. On the usual approximation used in the Rayleigh–Sommerfeld diffraction theory. J Opt Soc Am A Opt Image Sci Vis 2004;21:510–6. Google Scholar

[134]

Bouwkamp CJ, Casimir HBG. On multipole expansions in the theory of electromagnetic radiation. Physica 1954;20:539–54. Google Scholar

[135]

Bouwkamp CJ. Diffraction theory. Rep Prog Phys 1954;17: 35–100. Google Scholar

[136]

Bethe HA. Theory of diffraction by small holes. Phys Rev 1944;66:163–82. Google Scholar

[137]

Bouwkamp CJ. On the diffraction of electromagnetic waves by small circular disks and holes. Philips Res Rep 1950;5: 401–22. Google Scholar

[138]

Ulrich R. Far-infrared properties of metallic mesh and its complementary structure. Infrared Phys 1967;7:37–55. Google Scholar

[139]

Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998;391:667–9. Google Scholar

[140]

Kim TJ, Thio T, Ebbesen TW, Grupp DE, Lezec HJ. Control of optical transmission through metals perforated with subwavelength hole arrays. Opt Lett 1999;24:256–8. Google Scholar

[141]

Kim DS, Hohng SC, Malyarchuk V, et al. Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. Phys Rev Lett 2003;91:143901. Google Scholar

[142]

Minhas BK, Fan W, Agi K, Brueck SRJ, Malloy KJ. Metallic inductive and capacitive grids: theory and experiment. J Opt Soc Am A 2002;19:1352–9. Google Scholar

[143]

Rivas JG, Schotsch C, Bolivar PH, Kurz H. Enhanced transmission of THz radiation through subwavelength holes. Phys Rev B 2003;68:201306. Google Scholar

[144]

Naweed A, Baumann F, Bailey WA, Karakashian AS, Goodhue WD. Evidence for radiative damping in surface-plasmon-mediated light transmission through perforated conducting films. J Opt Soc Am B 2003;20:2534–8. Google Scholar

[145]

Qu DX, Grischkowsky D. Observation of a new type of THz resonance of surface plasmons propagating on metal-film hole arrays. Phys Rev Lett 2004;93:196804. Google Scholar

[146]

Qu DX, Grischkowsky D, Zhang WL. Terahertz transmission properties of thin, subwavelength metallic hole arrays. Opt Lett 2004;29:896–8. Google Scholar

[147]

Kang JH, Choe JH, Kim DS, Park QH. Substrate effect on aperture resonances in a thin metal film. Opt Express 2009;17:15652–8. Google Scholar

[148]

Gordon R, Brolo A. Increased cut-off wavelength for a subwavelength hole in a real metal. Opt Express 2005;13: 1933–8. Google Scholar

[149]

Bravo-Abad J, Fernandez-Dominguez AI, Garcia-Vidal FJ, Martin-Moreno L. Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes. Phys Rev Lett 2007;99:203905. Google Scholar

[150]

Takakura Y. Optical resonance in a narrow slit in a thick metallic screen. Phys Rev Lett 2001;86:5601–3. Google Scholar

[151]

Delgado V, Marques R. Surface impedance model for extraordinary transmission in 1D metallic and dielectric screens. Opt Express 2011;19:25290–7. Google Scholar

[152]

Galindo V, Wu CP. Numerical solutions for an infinite phased Ar ray of rectangular waveguides with thick walls. IEEE Trans Antenn Propag 1966;14:149–58. Google Scholar

[153]

Sheng P, Stepleman RS, Sanda PN. Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations. Phys Rev B 1982;26:2907–16. Google Scholar

[154]

Garcia-Vidal FJ, Martin-Moreno L, Ebbesen TW, Kuipers L. Light passing through subwavelength apertures. Rev Mod Phys 2010;82:729–87. Google Scholar

[155]

Liu H, Lalanne P. Microscopic theory of the extraordinary optical transmission. Nature 2008;452:728–31. Google Scholar

[156]

Novitsky A, Zalkovskij M, Malureanu R, Lavrinenko A. Microscopic model of the THz field enhancement in a metal nanoslit. Opt Commun 2011;284:5495–500. Google Scholar

[157]

He XY. Numerical analysis of the propagation properties of subwavelength semiconductor slit in the terahertz region. Opt Express 2009;17:15359–71. Google Scholar

[158]

Bell PM, Pendry JB, Moreno LM, Ward AJ. A program for calculating photonic band structures and transmission coefficients of complex structures. Comput Phys Commun 1995;85:306–22. Google Scholar

[159]

Li LF. New formulation of the Fourier modal method for crossed surface-relief gratings. J Opt Soc Am A 1997;14:2758–67. Google Scholar

[160]

Salomon L, Grillot F, Zayats AV, de Fornel F. Near-field distribution of optical transmission of periodic subwavelength holes in a metal film. Phys Rev Lett 2001;86:1110–3. Google Scholar

[161]

Baida FI, Van Labeke D. Near-field distribution of optical transmission of periodic subwavelength holes in a metal film. Phys Rev B 2003;67:155314. Google Scholar

[162]

Bagiante S, Enderli F, Fabianska J, Sigg H, Feurer T. Giant electric field enhancement in split ring resonators featuring nanometer-sized gaps. Sci Rep 2015;5:8051. Google Scholar

[163]

Shalaby M, Hauri CP. Air nonlinear dynamics initiated by ultra-intense lambda-cubic terahertz pulses. Appl Phys Lett 2015;106:181108. Google Scholar

[164]

Leitenstorfer A, Nelson KA, Reimann K, Tanaka K. Focus on nonlinear terahertz studies. New J Phys 2014;16:045016. Google Scholar

[165]

Kampfrath T, Tanaka K, Nelson KA. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat Photonics 2013;7:680–90. Google Scholar

[166]

Hebling J, Yeh K-L, Hoffmann MC, Nelson KA. High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy. IEEE J Sel Top Quant 2008;14:345–53. Google Scholar

[167]

Choi HJ, Baek IH, Kang BJ, et al. Control of terahertz nonlinear transmission with electrically gated graphene metadevices. Sci Rep 2017;7:42833. Google Scholar

[168]

Hwang HY, Fleischer S, Brandt NC, et al. A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses. J Mod Optic 2015;62:1447–9. Google Scholar

[169]

Chen F, Goodfellow J, Liu S, et al. Ultrafast terahertz gating of the polarization and giant nonlinear optical response in BiFeO_{3} thin films. Adv Mater 2015;27:6371–5. Google Scholar

[170]

Lin J, Oh SH, Nguyen HM, Reitich F. Volume polarization holographic recording in thick photopolymer for optical memory. Opt Express 2014;22:14402–10. Google Scholar

[171]

Yasuda H, Hosako I. Terahertz waveguide design for GaSb/AlGaSb quantum cascade laser. Jpn J Appl Phys 2008;47:1632–4. Google Scholar

[172]

Ordal MAB, Bell RJ, Jr., Alexander RW, Long LL, Querry MR. Optical properties of Au, Ni, and Pb at submillimeter wavelengths. Appl Optics 1987;26:744–52. Google Scholar

[173]

Ordal MAB, Bell RJ, Jr., Alexander RW, Jr., Long LL, Querry MR. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl Optics 1985;24:4493–9. Google Scholar

[174]

Azad AKZ, Zhao Y, Zhang W, He M. Effect of dielectric properties of metals on terahertz transmission subwavelength hole arrays. Opt Lett 2006;31:2637–9. Google Scholar

[175]

Singh R, Azad AK, O’Hara JF, Taylor AJ, Zhang W. Effect of metal permittivity on resonant properties of terahertz metamaterials. Opt Lett 2008;33:1506–8. Google Scholar

[176]

Ordal MAL, Long L, Bell RJ, et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Optics 1983;22:1099–120. Google Scholar

[177]

Kang J-H, Park QH. Local enhancement of terahertz waves in structured metals. IEEE T Thz Sci Techn 2016;6: 371–81. Google Scholar

[178]

Adam AJL. Review of near-field terahertz measurement methods and their applications. J Infrared, Millim Terahertz Waves 2011;32:976. Google Scholar

[179]

Adam AJL, Brok JM, Seo MA, et al. Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures. Opt Express 2008;16:7407–17. Google Scholar

[180]

Ahn KJ, Lee KG, Kihm HW, et al. Optical and terahertz near-field studies of surface plasmons in subwavelength metallic slits. New J Phys 2008;10:105003. Google Scholar

[181]

Blanchard F, Doi A, Tanaka T, et al. Real-time terahertz near-field microscope. Opt Express 2011;19:8277–84. Google Scholar

[182]

Giannini V, Berrier A, Maier SA, Sánchez-Gil JA, Rivas JG. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies. Opt Express 2010;18:2797–807. Google Scholar

[183]

Knab JR, Adam AJL, Nagel M, et al. Terahertz near-field vectorial imaging of subwavelength apertures and aperture arrays. Opt Express 2009;17:15072–86. Google Scholar

[184]

Seo MA, Adam AJL, Kang JH, et al. Near field imaging of terahertz focusing onto rectangular apertures. Opt Express 2008;16:20484–9. Google Scholar

[185]

Seo MA, Adam AJL, Kang JH, et al. Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors. Opt Express 2007;15:11781–9. Google Scholar

[186]

Marchand EW, Wolf E. Boundary diffraction wave in the domain of the Rayleigh–Kirchhoff diffraction theory. J Opt Soc Am 1962;52:761–7. Google Scholar

[187]

Spence RD. A note on the Kirchhoff approximation in diffraction theory. J Acoust Soc Am 1949;21:98–100. Google Scholar

[188]

Kyoung JS, Seo MA, Park HR, Ahn KJ, Kim DS. Far field detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism. Opt Commun 2010;283:4907–10. Google Scholar

[189]

Park HR, Koo SM, Suwal OK, et al. High-performance organic charge trap flash memory devices based on ink-jet printed 6,13-bis(triisopropylsilylethynyl) pentacene transistors. Appl Phys Lett 2010;96:213107. Google Scholar

[190]

Park DJ, Choi SB, Ahn YH, et al. Terahertz near-field enhancement in narrow rectangular apertures on metal film. Opt Express 2009;17:12493–501. Google Scholar

[191]

Kang JH, Park QH. Fractional tunnelling resonance in plasmonic media. Sci Rep 2013;3:2423. Google Scholar

[192]

Lee K, Jeong J, Bahk Y-M, et al. Microwave funneling through Sub-10 nm nanogaps. ACS Photonics 2016;3:537–42. Google Scholar

[193]

Suwal OK, Rhie J, Kim N, Kim DS. Nonresonant 10^{4} terahertz field enhancement with 5-nm slits. Sci Rep 2017;7:45638. Google Scholar

[194]

Han S, Bahk YM, Park N, Kim DS. Terahertz field enhancement in asymmetric and tapered nano-gaps. Opt Express 2016;24:2065–71. Google Scholar

[195]

Lu X, Wan R, Wang G, Zhang T, Zhang W. Giant and tunable electric field enhancement in the terahertz regime. Opt Express 2014;22:27001–6. Google Scholar

[196]

Ahn JS, Kang T, Singh DK, et al. Optical field enhancement of nanometer-sized gaps at near-infrared frequencies. Opt Express 2015;23:4897–907. Google Scholar

[197]

Lu W. Tunable broadband optical field enhancement in graphene-based slot waveguide at infrared frequencies. Appl Opt 2016;55:5095–101. Google Scholar

[198]

Garcia-Vidal FJ, Lezec HJ, Ebbesen TW, Martin-Moreno L. Multiple paths to enhance optical transmission through a single subwavelength slit. Phys Rev Lett 2003;90:213901. Google Scholar

[199]

Lee KG, Park QH. Coupling of surface plasmon polaritons and light in metallic nanoslits. Phys Rev Lett 2005;95:103902. Google Scholar

[200]

Gorelick S, Guzenko VA, Vila-Comamala J, David C. Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating. Nanotechnology 2010;21:295303. Google Scholar

[201]

Tseng AA, Kuan C, Chen CD, Ma KJ. Electron beam lithography in nanoscale fabrication: recent development. IEEE Transactions on Electronics Packaging Manufacturing 2003;26:141–9. Google Scholar

[202]

Vieu C, Carcenac F, Pépin A, et al. Electron beam lithography: resolution limits and applications. Appl Surf Sci 2000;164:111–7. Google Scholar

[203]

Perry MD, Stuart BC, Banks PS, Feit MD, Yanovsky V, Rubenchik AM. Ultrashort-pulse laser machining of dielectric materials. J Appl Phys 1999;85:6803–10. Google Scholar

[204]

Meijer J, Du K, Gillner A, et al. Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons. CIRP Annals – Manufacturing Technology 2002;51:531–50. Google Scholar

[205]

Lee JW, Seo MA, Kim DS, et al. Efficient hole injection in organic light-emitting diodes using C60 as a buffer layer for Al reflective anodes. Appl Phys Lett 2006;88:073512. Google Scholar

[206]

Morozov GV, Maev RG, Drake GW. Green’s function analysis of electromagnetic waves in two-layered periodic structures with fluctuations in thickness. Phys Rev E Stat Nonlin Soft Matter Phys 2001;63(5 pt 2):056601. Google Scholar

[207]

Nicorovici NA, McPhedran RC, Petit R. Efficient calculation of the Green’s function for electromagnetic scattering by gratings. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 1994;49:4563–77. Google Scholar

[208]

Lalanne P, Hugonin JP. Numerical performance of finite-difference modal methods for the electromagnetic analysis of one-dimensional lamellar gratings. J Opt Soc Am A Opt Image Sci Vis 2000;17:1033–42. Google Scholar

[209]

Grober RD, Rutherford T, Harris TD. Modal approximation for the electromagnetic field of a near-field optical probe. Appl Opt 1996;35:3488–95. Google Scholar

[210]

Xu KK, Liu SY, Sun WF, et al. Design and fabrication of a monolithic optoelectronic integrated Si CMOS LED based on hot-carrier effect. Ieee J Sel Top Quant 2016;22:2000508. Google Scholar

[211]

Tserkezis C, Maack JR, Liu Z, Wubs M, Mortensen NA. Robustness of the far-field response of nonlocal plasmonic ensembles. Sci Rep 2016;6:28441. Google Scholar

[212]

Girard C, Cuche A, Dujardin E, Arbouet A, Mlayah A. Molecular decay rate near nonlocal plasmonic particles. Opt Lett 2015;40:2116–9. Google Scholar

[213]

Filter R, Bosel C, Toscano G, Lederer F, Rockstuhl C. Nonlocal effects: relevance for the spontaneous emission rates of quantum emitters coupled to plasmonic structures. Opt Lett 2014;39:6118–21. Google Scholar

[214]

Varas A, García-González P, Feist J, García-Vidal FJ, Rubio A. Quantum plasmonics: from jellium models to *ab initio* calculations. Nanophotonics 2016;5:409–26. Google Scholar

[215]

Qian H, Xiao Y, Lepage D, Chen L, Liu Z. Quantum electrostatic model for optical properties of nanoscale gold films. Nanophotonics 2015;4:413–8. Google Scholar

[216]

Raza S, Wubs M, Bozhevolnyi SI, Mortensen NA. Nonlocal study of ultimate plasmon hybridization. Opt Lett 2015;40:839–42. Google Scholar

[217]

Teperik TV, Nordlander P, Aizpurua J, Borisov AG. Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response. Phys Rev Lett 2013;110:263901. Google Scholar

[218]

Xie HY, Ng MY, Chang YC. Analytical solutions to light scattering by plasmonic nanoparticles with nearly spherical shape and nonlocal effect. J Opt Soc Am A Opt Image Sci Vis 2010;27:2411–22. Google Scholar

[219]

Hajisalem G, Min Q, Gelfand R, Gordon R. Effect of surface roughness on self-assembled monolayer plasmonic ruler in nonlocal regime. Opt Express 2014;22:9604–10. Google Scholar

[220]

Wiener A, Duan H, Bosman M, et al. Electron-energy loss study of nonlocal effects in connected plasmonic nanoprisms. Acs Nano 2013;7:6287–96. Google Scholar

[221]

Podolskiy VA, Ginzburg P, Wells B, Zayats AV. Light emission in nonlocal plasmonic metamaterials. Faraday Discuss 2015;178:61–70. Google Scholar

[222]

Toscano G, Raza S, Jauho AP, Mortensen NA, Wubs M. Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response. Opt Express 2012;20:4176–88. Google Scholar

[223]

Tserkezis C, Stefanou N, Wubs M, Mortensen NA. Molecular fluorescence enhancement in plasmonic environments: exploring the role of nonlocal effects. Nanoscale 2016;8:17532–41. Google Scholar

[224]

Huang Q, Bao F, He S. Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement. Opt Express 2013;21:1430–9. Google Scholar

[225]

Wiener A, Fernandez-Dominguez AI, Horsfield AP, Pendry JB, Maier SA. Nonlocal effects in the nanofocusing performance of plasmonic tips. Nano Lett 2012;12:3308–14. Google Scholar

[226]

Shen H, Chen L, Ferrari L, et al. Optical observation of plasmonic nonlocal effects in a 2D superlattice of ultrasmall gold nanoparticles. Nano Lett 2017;17:2234–9. Google Scholar

[227]

Fernandez-Dominguez AI, Wiener A, Garcia-Vidal FJ, Maier SA, Pendry JB. Transformation-optics description of nonlocal effects in plasmonic nanostructures. Phys Rev Lett 2012;108:106802. Google Scholar

[228]

Mortensen NA, Raza S, Wubs M, Sondergaard T, Bozhevolnyi SI. A generalized non-local optical response theory for plasmonic nanostructures. Nat Commun 2014;5:3809. Google Scholar

[229]

McMahon JM, Gray SK, Schatz GC. Optical properties of nanowire dimers with a spatially nonlocal dielectric function. Nano Lett 2010;10:3473–81. Google Scholar

[230]

Raza S, Bozhevolnyi SI, Wubs M, Asger Mortensen N. Nonlocal optical response in metallic nanostructures. J Phys Condens Matter 2015;27:183204. Google Scholar

[231]

Gao Y, Yuan Z, Gao S. Semiclassical approach to plasmon–electron coupling and Landau damping of surface plasmons. J Chem Phys 2011;134:134702. Google Scholar

[232]

Benisti D, Strozzi DJ, Gremillet L, Morice O. Nonlinear Landau damping rate of a driven plasma wave. Phys Rev Lett 2009;103:155002. Google Scholar

[233]

Curtet M, Bonnaud G. Landau damping of an electron plasma wave in a plasma with modulated density. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 1999;60:R5052–5. Google Scholar

[234]

Paredes-Juarez A, Iakushev DA, Flores-Desirena B, Makarov NM, Perez-Rodriguez F. Landau damping of electromagnetic transport via dielectric-metal superlattices. Opt Lett 2015;40:3588–91. Google Scholar

[235]

Takida Y, Nawata K, Suzuki S, Asada M, Minamide H. Nonlinear optical detection of terahertz-wave radiation from resonant tunneling diodes. Opt Express 2017;25:5389–96. Google Scholar

[236]

Yoshida K, Shibata K, Hirakawa K. Terahertz field enhancement and photon-assisted tunneling in single-molecule transistors. Phys Rev Lett 2015;115:138302. Google Scholar

[237]

Ganichev SD, Yassievich IN, Prettl W. Tunneling processes induced by terahertz electric fields. J Biol Phys 2003;29: 327–34. Google Scholar

[238]

Kim G, Suh HH, Lee EH. Green’s-function study of the electron tunneling in a double-barrier heterostructure. Phys Rev B Condens Matter 1995;52:2632–9. Google Scholar

[239]

Li B, Zeng C, Zhao J, Yang J, Hou JG, Zhu Q. Single-electron tunneling spectroscopy of single C_{60} in double-barrier tunnel junction. J Chem Phys 2006;124:64709. Google Scholar

[240]

Bomze Y, Gershon G, Shovkun D, Levitov LS, Reznikov M. Measurement of counting statistics of electron transport in a tunnel junction. Phys Rev Lett 2005;95:176601. Google Scholar

[241]

Lee JW, Seo MA, Kim DS, et al. Fabry–Perot effects in THz time-domain spectroscopy of plasmonic band-gap structures. Appl Phys Lett 2006;88:071114. Google Scholar

[242]

Ward DW, Statz ER, Nelson KA. Fabrication of polaritonic structures in LiNbO3 and LiTaO3 using femtosecond laser machining. Appl Phys A 2007;86:49–54. Google Scholar

[243]

Enkrich C, Pérez-Willard F, Gerthsen D, et al. Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials. Adv Mat 2005;17:2547–9. Google Scholar

[244]

Ocelic N, Hillenbrand R. Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation. Nat Mater 2004;3:606–9. Google Scholar

[245]

Park H-R, Chen X, Nguyen N-C, Peraire J, Oh S-H. Nanogap-enhanced terahertz sensing of 1 nm Thick (λ/106) dielectric films. ACS Photonics 2015;2:417–24. Google Scholar

[246]

Lin C, Chen C, Schneider GJ, et al. Wavelength scale terahertz two-dimensional photonic crystal waveguides. Opt Express 2004;12:5723–8. Google Scholar

[247]

Chen H-T, O’Hara JF, Azad AK, et al. Experimental demonstration of frequency-agile terahertz metamaterials. Nat Photon 2008;2:295–8. Google Scholar

[248]

Singh R, Plum E, Menzel C, et al. Terahertz metamaterial with asymmetric transmission. Phys Rev B 2009;80:153104. Google Scholar

[249]

Lindquist NC, Nagpal P, McPeak KM, Norris DJ, Oh SH. Engineering metallic nanostructures for plasmonics and nanophotonics. Rep Prog Phys 2012;75:036501. Google Scholar

[250]

Park W, Rhie J, Kim NY, Hong S, Kim DS. Sub-10 nm feature chromium photomasks for contact lithography patterning of square metal ring arrays. Sci Rep 2016;6:23823. Google Scholar

[251]

Beesley DJ, Semple J, Krishnan Jagadamma L, et al. Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography. Nat Commun 2014;5:3933. Google Scholar

[252]

Yoshioka K, Minami Y, Shudo K, et al. Terahertz-field-induced nonlinear electron delocalization in Au nanostructures. Nano Lett 2015;15:1036–40. Google Scholar

[253]

Yoshioka K, Katayama I, Minami Y, et al. Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields. Nat Photonics 2016;10:762–5. Google Scholar

[254]

Simmons JG. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J Appl Phys 1963;34:1793–803. Google Scholar

[255]

Fischer BM, Walther M, Jepsen PU. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Phys Med Biol 2002;47:3807. Google Scholar

[256]

King MD, Ouellette W, Korter TM. Noncovalent interactions in paired DNA nucleobases investigated by terahertz spectroscopy and solid-state density functional theory. J Phys Chem A 2011;115:9467–78. Google Scholar

[257]

Nishizawa J-I, Sasaki T, Suto K, et al. THz transmittance measurements of nucleobases and related molecules in the 0.4- to 5.8-THz region using a GaP THz wave generator. Opt Commun 2005;246:229–39. Google Scholar

[258]

Rungsawang R, Ueno Y, Tomita I, Ajito K. Angle-dependent terahertz time-domain spectroscopy of amino acid single crystals. J Phys Chem B 2006;110:21259–63. Google Scholar

[259]

Yamaguchi M, Miyamaru F, Yamamoto K, Tani M, Hangyo M. Terahertz absorption spectra of L, D, and DL-alanine and their application to determination of enantiometric composition. Appl Phys Lett 2005;86:053903. Google Scholar

[260]

Korter TM, Balu R, Campbell MB, Beard MC, Gregurick SK, Heilweil EJ. Terahertz spectroscopy of solid serine and cysteine. Chem Phys Lett 2006;418:65–70. Google Scholar

[261]

Yamamoto K, Tominaga K, Sasakawa H, et al. Terahertz time-domain spectroscopy of amino acids and poly-peptides. Biophys J 2005;89:L22–4. Google Scholar

[262]

Xu J, Plaxco KW, Allen SJ. Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy. Prot Sci 2006;15:1175–81. Google Scholar

[263]

Kim SJ, Born B, Havenith M, Gruebele M. Real-time detection of protein-water dynamics upon protein folding by terahertz absorption spectroscopy. Angewandte Chemie International Edition 2008;47:6486–9. Google Scholar

[264]

Markelz AG, Knab JR, Chen JY, He Y. Protein dynamical transition in terahertz dielectric response. Chem Phys Lett 2007;442:413–7. Google Scholar

[265]

Woodward RM, Wallace VP, Pye RJ, et al. Terahertz pulse imaging of ex vivo basal cell carcinoma. J Invest Dermatol 2003;120:72–8. Google Scholar

[266]

Woodward RM, Wallace VP, Arnone DD, Linfield EH, Pepper M. Terahertz pulsed imaging of skin cancer in the time and frequency domain. J Biol Phys 2003;29:257–9. Google Scholar

[267]

Nakajima S, Hoshina H, Yamashita M, Otani C, Miyoshi N. Terahertz imaging diagnostics of cancer tissues with a chemometrics technique. Appl Phys Lett 2007;90:041102. Google Scholar

[268]

Oh SJ, Kang J, Maeng I, et al. Nanoparticle-enabled terahertz imaging for cancer diagnosis. Opt Express 2009;17: 3469–75. Google Scholar

[269]

Ruth MW, Bryan EC, Vincent PW, et al. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys Med Biol 2002;47:3853. Google Scholar

[270]

Löffler T, Bauer T, Siebert KJ, Roskos HG, Fitzgerald A, Czasch S. Terahertz dark-field imaging of biomedical tissue. Opt Express 2001;9:616–21. Google Scholar

[271]

Mittleman DM, Jacobsen RH, Nuss MC. T-ray imaging. IEEE J Sel Top Quantum Electronics 1996;2:679–92. Google Scholar

[272]

Hu BB, Nuss MC. Imaging with THz waves. Opt Lett 1995;20:1716–8. Google Scholar

[273]

Walther M, Fischer B, Schall M, Helm H, Jepsen PU. Far-infrared vibrational spectra of all-*trans*, 9-*cis* and 13-*cis* retinal measured by THz time-domain spectroscopy. Chem Phys Lett 2000;332:389–95. Google Scholar

[274]

Park H-R, Ahn KJ, Han S, Bahk Y-M, Park N, Kim D-S. Colossal absorption of molecules inside single terahertz nanoantennas. Nano Lett 2013;13:1782–1786. Google Scholar

[275]

Park SJ, Hong JT, Choi SJ, et al. Detection of microorganisms using terahertz metamaterials. Sci Rep 2014;4:4988. Google Scholar

[276]

Lee D-K, Kang J-H, Lee J-S, et al. Highly sensitive and selective sugar detection by terahertz nano-antennas. Sci Rep 2015;5:15459. Google Scholar

[277]

Zhang C, Liang L, Ding L, et al. Highly sensitive and selective sugar detection by terahertz nano-antennas. Appl Phys Lett 2016;108:241105. Google Scholar

[278]

Bui TS, Dao TD, Dang LH, et al. Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules. Sci Rep 2016;6:32123. Google Scholar

[279]

Shih K, Pitchappa P, Manjappa M, Ho CP, Singh R, Lee C. Microfluidic metamaterial sensor: Selective trapping and remote sensing of microparticles. J Appl Phys 2017;121:023102. Google Scholar

[280]

Yahiaoui R, Strikwerda AC, Jepsen PU. Terahertz plasmonic structure with enhanced sensing capabilities. IEEE Sensors Journal 2016;16:2484–8. Google Scholar

[281]

Hu X, Xu G, Wen L, et al. Metamaterial absorber integrated microfluidic terahertz sensors. Laser Photon Rev 2016;10:962–9. Google Scholar

[282]

Lee D-K, Kang J-H, Kwon J, et al. Nano metamaterials for ultrasensitive Terahertz biosensing. Sci Rep 2017;7:8146. Google Scholar

[283]

Xie LJ, Gao WL, Shu J, Ying YB, Kono JC. Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics. Sci Rep 2015;5:8671. Google Scholar

[284]

Xu KK, Snyman LW, Aharoni H. Si light-emitting device in integrated photonic CMOS ICs. Opt Mater 2017;69:274–82. Google Scholar

[285]

Luo L, Ge C, Tao Y, et al. High-eflciency refractive index sensor based on the metallic nanoslit arrays with gain-assisted materials. Nanophotonics 2016;5:139–46. Google Scholar

[286]

Ahn KJ, Bahk Y-M, Kim D-S, Kyoung J, Rotermund F. Ultrasensitive molecular absorption detection using metal slot antenna arrays. Opt Express 2015;23:19047–55. Google Scholar

[287]

Lee D-K, Kim G, Kim C, et al. Ultrasensitive detection of residual pesticides using THz near-field enhancement. IEEE Trans THz Sci Technol 2016;6:389–95. Google Scholar

[288]

Zanchetta G, Lanfranco R, Giavazzi F, Bellini T, Buscaglia M. Emerging applications of label-free optical biosensors. Nanophotonics 2017;6:627–45. Google Scholar

[289]

Chiavaioli F, Baldini F, Tombelli S, Trono C, Giannetti A. Biosensing with optical fiber gratings. Nanophotonics 2017;6:663–79. Google Scholar

[290]

Upadhya PC, Shen YC, Davies AG, Linfield EH. Terahertz time-domain spectroscopy of glucose and uric acid. J Biol Phys 2003;29:117–21. Google Scholar

[291]

Walther M, Fischer BM, Uhd Jepsen P. Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared. Chem Phys 2003;288:261–8. Google Scholar

[292]

Acbas G, Niessen KA, Snell EH, Markelz AG. Optical measurements of long-range protein vibrations. Nat Commun 2014;5:3076. Google Scholar

[293]

Shalaby M, Vicario C, Hauri CP. Demonstration of a low frequency three-dimensional terahertz bullet with extreme brightness. Nat Commun 2015;6:5976. Google Scholar

[294]

Kang BJ, Baek IH, Lee SH, et al. Highly nonlinear organic crystal OHQ-T for efficient ultra-broadband terahertz wave generation beyond 10 THz. Opt Express 2016;24: 11054–61. Google Scholar

[295]

Gaal P, Reimann K, Woerner M, Elsaesser T, Hey R, Ploog KH. Nonlinear Terahertz Response of *n*-Type GaAs. Phys Rev Lett 2006;96:187402. Google Scholar

[296]

Liu RB, Zhu BF. Nonlinear optics of semiconductors under an intense terahertz field. Phys Rev B 2003;68:195206. Google Scholar

[297]

Citrin DS. Toward a semiconductor-based terahertz nonlinear medium. Physica E 2001;11:252–6. Google Scholar

[298]

Shinokita K, Hirori H, Nagai M, Satoh N, Kadoya Y, Tanaka K. Dynamical Franz–Keldysh effect in GaAs/AlGaAs multiple quantum wells induced by single-cycle terahertz pulses. Appl Phys Lett 2010;97:211902. Google Scholar

[299]

Hughes S, Citrin DS. Creation of highly anisotropic wave packets in quantum wells: dynamical Franz-Keldysh effect in the optical and terahertz regimes. Phys Rev B 1999;59:R5288–91. Google Scholar

[300]

Liu WW, Wang B, Ke SL, et al. Enhanced plasmonic nanofocusing of terahertz waves in tapered graphene multilayers. Opt Express 2016;24:14765–80. Google Scholar

[301]

Jessop DS, Kindness SJ, Xiao L, et al. Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz. Appl Phys Lett 2016;108:171101. Google Scholar

[302]

Hong JT, Park DJ, Yim JH, et al. Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices. J Phys Chem Lett 2013;4:3950–7. Google Scholar

[303]

Kang JH, Wang S, Shi ZW, Zhao WY, Yablonovitch E, Wang F. Goos-Hänchen shift and even-odd peak oscillations in edge-reflections of surface polaritons in atomically thin crystals. Nano Lett 2017;17:1768–74. Google Scholar

[304]

Chen JN, Badioli M, Alonso-Gonzalez P, et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 2012;487:77–81. Google Scholar

[305]

Novitsky A, Zalkovskij M, Malureanu R, Jepsen PU, Lavrinenko AV. Optical waveguide mode control by nanoslit-enhanced terahertz field. Opt Lett 2012;37:3903–5. Google Scholar

[306]

Chevalier P, Bouchon P, Greffet JJ, Pelouard JL, Haidar R, Pardo F. Giant field enhancement in electromagnetic Helmholtz nanoantenna. Phys Rev B 2014;90:195412. Google Scholar

[307]

Liu MK, Hwang HY, Tao H, et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 2012;487:345–8. Google Scholar

[308]

Grady NK, Heyes JE, Chowdhury DR, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 2013;340:1304–7. Google Scholar

[309]

Linden S, Enkrich C, Wegener M, Zhou JF, Koschny T, Soukoulis CM. Magnetic response of metamaterials at 100 terahertz. Science 2004;306:1351–3. Google Scholar

[310]

Paradiso N, Yaghobian F, Lange C, et al. Tailored nanoantennas for directional Raman studies of individual carbon nanotubes. Phys Rev B 2015;91:235449. Google Scholar

[311]

Tao H, Landy NI, Bingham CM, Zhang X, Averitt RD, Padilla WJ. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt Express 2008;16: 7181–8. Google Scholar

[312]

Chen HT, Yang H, Singh R, et al. Tuning the resonance in high-temperature superconducting terahertz metamaterials. Phys Rev Lett 2010;105:247402. Google Scholar

[313]

Zhao XG, Zhang JD, Fan KB, et al. Nonlinear terahertz metamaterial perfect absorbers using GaAs [Invited]. Photonics Res 2016;4:A16–21. Google Scholar

[314]

Jiang JL, Zhang X, Zhang W, et al. Polarized low-coherence interferometer based on a matrix CCD and birefringence crystal with a two-dimensional angle. Opt Express 2017;25:16867–78. Google Scholar

[315]

Zhao HL, Ren GJ, Liu F, Xin HP, Bai YB, Yao JQ. Tunable terahertz source via liquid crystal grating coated with electron beam excited graphene: a theoretical analysis. Opt Commun 2017;390:137–9. Google Scholar

[316]

Peres NMR, Bludov YV, Ferreira A, Vasilevskiy MI. Exact solution for square-wave grating covered with graphene: surface plasmon-polaritons in the terahertz range. J Phys-Condens Mat 2013;25:125303. Google Scholar

[317]

Gu XF, Lin IT, Liu JM. Extremely confined terahertz surface plasmon-polaritons in graphene-metal structures. Appl Phys Lett 2013;103:071103. Google Scholar

[318]

Zhao H, Guo Q, Xia F, Wang H. Two-dimensional materials for nanophotonics application. Nanophotonics 2015;4:128–42. Google Scholar

[319]

Okamoto N. Reciprocity of electromagnetic waves scattered by anisotropic composite obstacles. J Appl Phys 1971;42:5465. Google Scholar

[320]

Lee S, Park QH. Dynamic coupling of plasmonic resonators. Sci Rep 2016;6:21989. Google Scholar

[321]

Bahk YM, Park HR, Ahn KJ, et al. Anomalous band formation in arrays of terahertz nanoresonators. Phys Rev Lett 2011;106:013902. Google Scholar

[322]

Aydin K, Cakmak AO, Sahin L, et al. Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture. Phys Rev Lett 2009;102:013904. Google Scholar

[323]

Li WD, Hu J, Chou SY. Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks. Opt Express 2011;19:21098–108. Google Scholar

[324]

Cakmak AO, Aydin K, Colak E, et al. Enhanced transmission through a subwavelength aperture using metamaterials. Appl Phys Lett 2009;95:052103. Google Scholar

[325]

Valdivia-Valero FJ, Nieto-Vesperinas M. Enhanced transmission through subwavelength apertures by excitation of particle localized plasmons and nanojets. Opt Express 2011;19:11545–57. Google Scholar

[326]

Chen L, Wei YM, Zang XF, Zhu YM, Zhuang SL. Excitation of dark multipolar plasmonic resonances at terahertz frequencies. Sci Rep 2016;6:22027. Google Scholar

[327]

Gao H, Cao Q, Zhu MN, Teng D, Shen SY. Nanofocusing of terahertz wave in a tapered hyperbolic metal waveguide. Opt Express 2014;22:32071–81. Google Scholar

[328]

Lin RR, Xu YB, Liu HY, Lan S, Gopal AV. Strong localization of terahertz wave and significant enhancement in electric field achieved in U-shaped resonators with a large aspect ratio. Appl Phys Lett 2013;103:123505. Google Scholar

[329]

Kim N. In S, Lee D, et al. Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm gap. ACS Photonics 2018;5:278–83. Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.