[1]

Vollmer F, Yang L. Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics 2012;1:267–91. PubMedGoogle Scholar

[2]

Aspelmeyer M, Kippenberg TJ, Marquardt F. Cavity optomechanics. Rev Mod Phys 2014;86:1391–452. CrossrefGoogle Scholar

[3]

Lounis B, Orrit M. Single-photon sources. Rep Prog Phys 2005;68:1129–79. CrossrefGoogle Scholar

[4]

Aharonovich I, Englund D, Toth M. Solid-state single-photon emitters. Nat Photonics 2016;10:631–41. CrossrefGoogle Scholar

[5]

Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol 2017;12:1026–39. CrossrefPubMedGoogle Scholar

[6]

Raimond JM, Brune M, Haroche S. Manipulating quantum entanglement with atoms and photons in a cavity. Rev Mod Phys 2001;73:565–82. CrossrefGoogle Scholar

[7]

Purcell EM. Spontaneous emission probabilities at radio frequencies. Phys Rev 1946;69:681. Google Scholar

[8]

Novotny L, Hecht B. Principles of nano-optics. 2nd ed. New York: Cambridge University Press, 2012. Google Scholar

[9]

Sprik R, van Tiggelen BA, Lagendijk A. Optical emission in periodic dielectrics. Europhys Lett 1996;35:265–70. CrossrefGoogle Scholar

[10]

Vollmer F, Arnold S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods 2008;5:591–6. CrossrefPubMedGoogle Scholar

[11]

Hill MT, Gather MC. Advances in small lasers. Nat Photonics 2014;8:908–18. CrossrefGoogle Scholar

[12]

Chang DE, Vuletić V, Lukin MD. Quantum nonlinear optics – photon by photon. Nat Photonics 2014;8:685–94. CrossrefGoogle Scholar

[13]

Lodahl P, Mahmoodian S, Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev Mod Phys 2015;87:347–400. CrossrefGoogle Scholar

[14]

Russell KJ, Liu TL, Cui S, Hu EL. Large spontaneous emission enhancement in plasmonic nanocavities. Nat Photonics 2012;6:459–62. CrossrefGoogle Scholar

[15]

Akselrod GM, Argyropoulos C, Hoang TB, et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat Photonics 2014;8:835–40. CrossrefGoogle Scholar

[16]

Bidault S, Devilez A, Maillard V, et al. Picosecond lifetimes with high quantum yields from single-photon-emitting colloidal nanostructures at room temperature. ACS Nano 2016;10:4806–15. PubMedCrossrefGoogle Scholar

[17]

Chikkaraddy R, de Nijs B, Benz F, et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 2016;535:127–30. CrossrefPubMedGoogle Scholar

[18]

Groß H, Hamm JM, Tufarelli T, Hess O, Hecht B. Near-field strong coupling of single quantum dots. Sci Adv 2018;4:eaar4906. CrossrefPubMedGoogle Scholar

[19]

Somaschi N, Giesz V, De Santis L, et al. Near-optimal single-photon sources in the solid state. Nat Photonics 2016;10:340–5. CrossrefGoogle Scholar

[20]

Reithmaier JP, Sęk G, Löffler A, et al. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 2004;432:197–200. CrossrefGoogle Scholar

[21]

Yoshie T, Scherer A, Hendrickson J, et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 2004;432:200–3. CrossrefGoogle Scholar

[22]

Reinhard A, Volz T, Winger M, et al. Strongly correlated photons on a chip. Nat Photonics 2012;6:93–6. CrossrefGoogle Scholar

[23]

Peter E, Senellart P, Martrou D, et al. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys Rev Lett 2005;95:067401. CrossrefGoogle Scholar

[24]

Srinivasan K, Painter O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system. Nature 2007;450:862–5. PubMedCrossrefGoogle Scholar

[25]

Shopova SI, Blackledge CW, Rosenberger AT. Enhanced evanescent coupling to whispering-gallery modes due to gold nanorods grown on the microresonator surface. Appl Phys B 2008;93:183–7. CrossrefGoogle Scholar

[26]

De Angelis F, Patrini M, Das G, et al. A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules. Nano Lett 2008;8:2321–7. PubMedCrossrefGoogle Scholar

[27]

Barth M, Schietinger S, Fischer S, et al. Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling. Nano Lett 2010;10:891–5. CrossrefPubMedGoogle Scholar

[28]

Santiago-Cordoba MA, Cetinkaya M, Boriskina SV, Vollmer F, Demirel MC. Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity. J Biophotonics 2012;5:629–38. CrossrefGoogle Scholar

[29]

Frimmer M, Koenderink AF. Superemitters in hybrid photonic systems: a simple lumping rule for the local density of optical states and its breakdown at the unitary limit. Phys Rev B 2012;86:235428. CrossrefGoogle Scholar

[30]

Xiao YF, Liu YC, Li BB, Chen YL, Li Y, Gong Q. Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator. Phys Rev A 2012;85:031805. CrossrefGoogle Scholar

[31]

Dantham VR, Holler S, Barbre C, Keng D, Kolchenko V, Arnold S. Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett 2013;13:3347–51. CrossrefPubMedGoogle Scholar

[32]

Zhang T, Belarouci A, Callard S, et al. Far-field and near-field investigation of plasmonic-photonic hybrid laser mode. arXiv 2014;1411.7201:1–12. Google Scholar

[33]

Zhang T, Callard S, Jamois C, Chevalier C, Feng D, Belarouci A. Plasmonic-photonic crystal coupled nanolaser. Nanotechnology 2014;25:315201. PubMedCrossrefGoogle Scholar

[34]

Hong Y, Ahn W, Boriskina SV, Zhao X, Reinhard BM. Directed assembly of optoplasmonic hybrid materials with tunable photonic-plasmonic properties. J Phys Chem Lett 2015;6:2056–64. PubMedCrossrefGoogle Scholar

[35]

Doeleman HM, Verhagen E, Koenderink AF. Antenna-cavity hybrids: matching polar opposites for Purcell enhancements at any linewidth. ACS Photonics 2016;3:1943–51. CrossrefGoogle Scholar

[36]

Dezfouli MK, Gordon R, Hughes S. Modal theory of modified spontaneous emission of a quantum emitter in a hybrid plasmonic photonic-crystal cavity system. Phys Rev A 2017;95:013846. CrossrefGoogle Scholar

[37]

Liang F, Guo Y, Hou S, Quan Q. Photonic-plasmonic hybrid single-molecule nanosensor measures the effect of fluorescent labels on DNA-protein dynamics. Sci Adv 2017;3:e1602991. PubMedCrossrefGoogle Scholar

[38]

Bozzola A, Perotto S, De Angelis F. Hybrid plasmonic-photonic whispering gallery mode resonators for sensing: a critical review. Analyst 2017;142:883–98. PubMedCrossrefGoogle Scholar

[39]

Liu JN, Huang Q, Liu KK, Singamaneni S, Cunningham BT. Nanoantenna-microcavity hybrids with highly cooperative plasmonic-photonic coupling. Nano Lett 2017;17:7569–77. CrossrefPubMedGoogle Scholar

[40]

Thakkar N, Rea MT, Smith KC, et al. Sculpting Fano resonances to control photonic-plasmonic hybridization. Nano Lett 2017;17:6927–34. CrossrefPubMedGoogle Scholar

[41]

Gurlek B, Sandoghdar V, Martín-Cano D. Manipulation of quenching in nanoantenna-emitter systems enabled by external detuned cavities: a path to enhance strong-coupling. ACS Photonics 2018;5:456–61. CrossrefGoogle Scholar

[42]

Deotare PB, McCutcheon MW, Frank IW, Khan M, Lončar M. High quality factor photonic crystal nanobeam cavities. Appl Phys Lett 2009;94:121106. CrossrefGoogle Scholar

[43]

Dezfouli MK, Gordon R, Hughes S. Molecular optomechanics in the anharmonic cavity-QED regime using hybrid metal-dielectric cavity modes. ACS Photonics 2019; DOI: 10.1021/acsphotonics.8b01091. Google Scholar

[44]

Grande M, Calo G, Petruzzelli V, D’Orazio A. High-Q photonic crystal nanobeam cavity based on a silicon nitride membrane incorporating fabrication imperfections and a low-index material layer. Prog Electromagn Res B 2012;37:191–204. CrossrefGoogle Scholar

[45]

Koenderink AF. On the use of Purcell factors for plasmon antennas. Opt Lett 2010;35:4208–10. PubMedCrossrefGoogle Scholar

[46]

Sauvan C, Hugonin JP, Maksymov IS, Lalanne P. Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys Rev Lett 2013;110:237401. PubMedCrossrefGoogle Scholar

[47]

Ryckman JD, Weiss SM. Low mode volume slotted photonic crystal single nanobeam cavity in silicon. In: The 9th International Conference on Group IV Photonics (GFP), Vol. 071104. IEEE, 2012, 24–6. Google Scholar

[48]

Seidler P, Lister K, Drechsler U, Hofrichter J, Stöferle T. Slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio. Opt Express 2013;21:32468. PubMedCrossrefGoogle Scholar

[49]

Hu S, Khater M, Salas-Montiel R, et al. Experimental realization of deep-subwavelength confinement in dielectric optical resonators. Sci Adv 2018;4:eaat2355. PubMedCrossrefGoogle Scholar

[50]

Benz F, Schmidt MK, Dreismann A, et al. Single-molecule optomechanics in “picocavities”. Science 2016;354:726–9. PubMedCrossrefGoogle Scholar

[51]

Economou EN. Surface plasmons in thin films. Phys Rev 1969;182:539–54. CrossrefGoogle Scholar

[52]

Bozhevolnyi SI, Søndergaard T. General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. Opt Express 2007;15:10869. CrossrefPubMedGoogle Scholar

[53]

Yang J, Sauvan C, Jouanin A, Collin S, Pelouard JL, Lalanne P. Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor. Opt Express 2012;20:16880. CrossrefGoogle Scholar

[54]

Faggiani R, Yang J, Lalanne P. Quenching, plasmonic, and radiative decays in nanogap emitting devices. ACS Photonics 2015;2:1739–44. CrossrefGoogle Scholar

[55]

Marquier F, Sauvan C, Greffet JJ. Revisiting quantum optics with surface plasmons and plasmonic resonators. ACS Photonics 2017;4:2091–101. CrossrefGoogle Scholar

[56]

Kristensen PT, Van Vlack C, Hughes S. Generalized effective mode volume for leaky optical cavities. Opt Lett 2012;37:1649–51. PubMedCrossrefGoogle Scholar

[57]

Fano U. Effects of configuration interaction on intensities and phase shifts. Phys Rev 1961;124:1866–78. CrossrefGoogle Scholar

[58]

Ruesink F, Doeleman HM, Hendrikx R, Koenderink AF, Verhagen E. Perturbing open cavities: anomalous resonance frequency shifts in a hybrid cavity-nanoantenna system. Phys Rev Lett 2015;115:203904. CrossrefGoogle Scholar

[59]

Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York: John Wiley & Sons, 1983. Google Scholar

[60]

Waldron RA. Perturbation theory of resonant cavities. Proc IEE C 1960;107:272. Google Scholar

[61]

Bethe H, Schwinger J. Perturbation theory for cavities. Cambridge, MA: Massachusetts Institute of Technology, Radiation Laboratory, 1943. Google Scholar

[62]

Haroche S. Nobel lecture: controlling photons in a box and exploring the quantum to classical boundary. Rev Mod Phys 2013;85:1083–102. CrossrefGoogle Scholar

[63]

Auffèves A, Gerace D, Gérard JM, Santos MF, Andreani LC, Poizat JP. Controlling the dynamics of a coupled atom-cavity system by pure dephasing. Phys Rev B 2010;81:245419. CrossrefGoogle Scholar

[64]

Santori C, Fattal D, Yamamoto Y. Single-photon devices and applications. Weinheim: John Wiley & Sons, 2010. Google Scholar

[65]

Toninelli C, Early K, Bremi J, Renn A, Götzinger S, Sandoghdar V. Near-infrared single-photons from aligned molecules in ultrathin crystalline films at room temperature. Opt Express 2010;18:6577. PubMedCrossrefGoogle Scholar

[66]

Kwadrin A, Koenderink AF. Gray-tone lithography implementation of Drexhage’s method for calibrating radiative and nonradiative decay constants of fluorophores. J Phys Chem C 2012;116:16666–73. CrossrefGoogle Scholar

[67]

Green AP, Buckley AR. Solid state concentration quenching of organic fluorophores in PMMA. Phys Chem Chem Phys 2015;17:1435–40. CrossrefPubMedGoogle Scholar

[68]

Guo K, Lozano G, Verschuuren MA, Gómez Rivas J. Control of the external photoluminescent quantum yield of emitters coupled to nanoantenna phased arrays. J Appl Phys 2015;118:073103. CrossrefGoogle Scholar

[69]

Olmsted J. Calorimetric determinations of absolute fluorescence quantum yields. J Phys Chem 1979;83:2581–4. CrossrefGoogle Scholar

[70]

Protesescu L, Yakunin S, Bodnarchuk MI, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 2015;15:3692–6. PubMedCrossrefGoogle Scholar

[71]

Leistikow MD, Johansen J, Kettelarij AJ, Lodahl P, Vos WL. Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states. Phys Rev B 2009;79:045301. CrossrefGoogle Scholar

[72]

Lunnemann P, Rabouw FT, van Dijk-Moes RJA, Pietra F, Vanmaekelbergh D, Koenderink AF. Calibrating and controlling the quantum efficiency distribution of inhomogeneously broadened quantum rods by using a mirror ball. ACS Nano 2013;7:5984–92. PubMedCrossrefGoogle Scholar

[73]

Odoi MY, Hammer NI, Early KT, et al. Fluorescence lifetimes and correlated photon statistics from single CdSe/Oligo(phenylene vinylene) composite nanostructures. Nano Lett 2007;7:2769–73. PubMedCrossrefGoogle Scholar

[74]

Sebald K, Michler P, Passow T, Hommel D, Bacher G, Forchel A. Single-photon emission of CdSe quantum dots at temperatures up to 200 K. Appl Phys Lett 2002;81:2920–2. CrossrefGoogle Scholar

[75]

Choi K, Kako S, Holmes MJ, Arita M, Arakawa Y. Strong exciton confinement in site-controlled GaN quantum dots embedded in nanowires. Appl Phys Lett 2013;103:171907. CrossrefGoogle Scholar

[76]

Yang W, Li J, Zhang Y, et al. High density GaN/AlN quantum dots for deep UV LED with high quantum efficiency and temperature stability. Sci Rep 2015;4:5166. CrossrefGoogle Scholar

[77]

Bayer M, Forchel A. Temperature dependence of the exciton homogeneous linewidth in InGaAs/GaAs self-assembled quantum dots. Phys Rev B 2002;65:041308. CrossrefGoogle Scholar

[78]

Neu E, Hepp C, Hauschild M, et al. Low-temperature investigations of single silicon vacancy colour centres in diamond. New J Phys 2013;15:043005. CrossrefGoogle Scholar

[79]

Zhelezko FB, Gulis IM, Lounis B, Orrit M. Spectroscopic characteristics of single dibenzanthanthrene molecules isolated in a low-temperature naphthalene matrix. J Appl Spectrosc 1999;66:344–52. CrossrefGoogle Scholar

[80]

Boiron AM, Lounis B, Orrit M. Single molecules of dibenzanthanthrene in n-hexadecane. J Chem Phys 1996;105:3969–74. CrossrefGoogle Scholar

[81]

Ebbesen TW. Hybrid light-matter states in a molecular and material science perspective. Acc Chem Res 2016;49:2403–12. CrossrefGoogle Scholar

[82]

Kasprzak J, Richard M, Kundermann S, et al. Bose–Einstein condensation of exciton polaritons. Nature 2006;443:409–14. CrossrefPubMedGoogle Scholar

[83]

Ramezani M, Le-Van Q, Halpin A, Gómez Rivas J. Nonlinear emission of molecular ensembles strongly coupled to plasmonic lattices with structural imperfections. Phys Rev Lett 2018;121:243904. CrossrefPubMedGoogle Scholar

[84]

Shalabney A, George J, Hutchison J, Pupillo G, Genet C, Ebbesen TW. Coherent coupling of molecular resonators with a microcavity mode. Nat Commun 2015;6:5981. CrossrefPubMedGoogle Scholar

[85]

Li RQ, Hernángomez-Pérez D, García-Vidal FJ, Fernández-Domínguez AI. Transformation optics approach to plasmon-exciton strong coupling in nanocavities. Phys Rev Lett 2016;117:107401. CrossrefPubMedGoogle Scholar

[86]

del Pino J, Garcia-Vidal FJ, Feist J. Exploiting vibrational strong coupling to make an optical parametric oscillator out of a Raman laser. Phys Rev Lett 2016;117:277401. CrossrefPubMedGoogle Scholar

[87]

Sanvitto D, Kéna-Cohen S. The road towards polaritonic devices. Nat Mater 2016;15:1061–73. CrossrefPubMedGoogle Scholar

[88]

Törmä P, Barnes WL. Strong coupling between surface plasmon polaritons and emitters: a review. Rep Prog Phys 2015;78:013901. CrossrefPubMedGoogle Scholar

[89]

Byrnes T, Kim NY, Yamamoto Y. Exciton–polariton condensates. Nat Phys 2014;10:803–13. CrossrefGoogle Scholar

[90]

Lerario G, Fieramosca A, Barachati F, et al. Room-temperature superfluidity in a polariton condensate. Nat Phys 2017;13:837–41. CrossrefGoogle Scholar

[91]

Amo A, Lefrère J, Pigeon S, et al. Superfluidity of polaritons in semiconductor microcavities. Nat Phys 2009;5:805–10. CrossrefGoogle Scholar

[92]

Fischer J, Savenko IG, Fraser MD, et al. Spatial coherence properties of one dimensional exciton-polariton condensates. Phys Rev Lett 2014;113:203902. PubMedCrossrefGoogle Scholar

[93]

Su R, Wang J, Zhao J, et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci Adv 2018;4:eaau0244. PubMedCrossrefGoogle Scholar

[94]

Gulevich DR, Yudin D, Skryabin DV, Iorsh IV, Shelykh IA. Exploring nonlinear topological states of matter with exciton-polaritons: edge solitons in kagome lattice. Sci Rep 2017;7:1780. CrossrefPubMedGoogle Scholar

[95]

Feynman RP. Simulating physics with computers. Int J Theor Phys 1982;21:467–88. CrossrefGoogle Scholar

[96]

Lloyd S. Universal quantum simulators. Science 1996;273:1073–8. CrossrefPubMedGoogle Scholar

[97]

Du W, Zhang S, Zhang Q, Liu X. Recent progress of strong exciton-photon coupling in lead halide perovskites. Adv Mater 2018:1804894. https://doi.org/10.1002/adma.201804894. CrossrefGoogle Scholar

[98]

Wang J, Su R, Xing J, et al. Room temperature coherently coupled exciton–polaritons in two-dimensional organic–inorganic perovskite. ACS Nano 2018;12:8382–9. PubMedCrossrefGoogle Scholar

[99]

Kleemann ME, Chikkaraddy R, Alexeev EM, et al. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat Commun 2017;8:1296. PubMedCrossrefGoogle Scholar

[100]

Munkhbat B, Baranov DG, Stührenberg M, Wersäll M, Bisht A, Shegai T. Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption. ACS Photonics 2019;6:139–47. CrossrefGoogle Scholar

[101]

Hutchison JA, Schwartz T, Genet C, Devaux E, Ebbesen TW. Modifying chemical landscapes by coupling to vacuum fields. Angew Chem Int Ed 2012;51:1592–6. CrossrefGoogle Scholar

[102]

Hutchison JA, Liscio A, Schwartz T, et al. Tuning the work-function via strong coupling. Adv Mater 2013;25:2481–5. CrossrefPubMedGoogle Scholar

[103]

del Pino J, Feist J, Garcia-Vidal FJ. Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode. New J Phys 2015;17:053040. CrossrefGoogle Scholar

[104]

Schwartz T, Hutchison JA, Genet C, Ebbesen TW. Reversible switching of ultrastrong light-molecule coupling. Phys Rev Lett 2011;106:196405. CrossrefPubMedGoogle Scholar

[105]

Orgiu E, George J, Hutchison JA, et al. Conductivity in organic semiconductors hybridized with the vacuum field. Nat Mater 2015;14:1123–9. CrossrefPubMedGoogle Scholar

[106]

Roelli P, Galland C, Piro N, Kippenberg TJ. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. Nat Nanotechnol 2016;11:164–9. PubMedCrossrefGoogle Scholar

[107]

Flick J, Rivera N, Narang P. Strong light-matter coupling in quantum chemistry and quantum photonics. Nanophotonics 2018;7:1479–501. CrossrefGoogle Scholar

[108]

Lidzey D, Bradley D, Skolnick M, Virgili T, Walker S, Whittaker D. Strong exciton-photon coupling in an organic semiconductor microcavity. Nature 1998;395:53–5. CrossrefGoogle Scholar

[109]

O’Brien JL, Furusawa A, Vučković J. Photonic quantum technologies. Nat Photonics 2009;3:687–95. CrossrefGoogle Scholar

[110]

Gisin N, Ribordy G, Tittel W, Zbinden H. Quantum cryptography. Rev Mod Phys 2002;74:145–95. CrossrefGoogle Scholar

[111]

Zhu G, Liao Q. Highly efficient collection for photon emission enhanced by the hybrid photonic-plasmonic cavity. Opt Express 2018;26:31391. PubMedCrossrefGoogle Scholar

[112]

Knill E, Laflamme R, Milburn GJ. A scheme for efficient quantum computation with linear optics. Nature 2001;409:46–52. CrossrefPubMedGoogle Scholar

[113]

Duan LM, Lukin MD, Cirac JI, Zoller P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 2001;414:413–8. PubMedCrossrefGoogle Scholar

[114]

Broome MA, Fedrizzi A, Rahimi-Keshari S, et al. Photonic boson sampling in a tunable circuit. Science 2013;339:794–8. CrossrefGoogle Scholar

[115]

Spagnolo N, Vitelli C, Bentivegna M, et al. Experimental validation of photonic boson sampling. Nat Photonics 2014;8:615–20. CrossrefGoogle Scholar

[116]

Santori C, Fattal D, Vučković J, Solomon GS, Yamamoto Y. Indistinguishable photons from a single-photon device. Nature 2002;419:594–7. CrossrefPubMedGoogle Scholar

[117]

Pitanti A, Ghulinyan M, Navarro-Urrios D, Pucker G, Pavesi L. Probing the spontaneous emission dynamics in Si-nanocrystals-based microdisk resonators. Phys Rev Lett 2010;104:103901. PubMedCrossrefGoogle Scholar

[118]

Miller D. Device requirements for optical interconnects to silicon chips. Proc IEEE 2009;97:1166–85. CrossrefGoogle Scholar

[119]

Tsakmakidis KL, Boyd RW, Yablonovitch E, Zhang X. Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs faster than lasers. Opt Express 2016;24:17916. CrossrefPubMedGoogle Scholar

[120]

Liu K, Sun S, Majumdar A, Sorger VJ. Fundamental scaling laws in nanophotonics. Sci Rep 2016;6:37419. PubMedCrossrefGoogle Scholar

[121]

Baaske MD, Vollmer F. Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution. Nat Photonics 2016;10:733–9. CrossrefGoogle Scholar

[122]

Long DA. The Raman effect. Chichester, United Kingdom: John Wiley & Sons Ltd, 2002. Google Scholar

[123]

Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 1997;78:1667–70. CrossrefGoogle Scholar

[124]

Nie S. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997;275:1102–6. CrossrefPubMedGoogle Scholar

[125]

Schatz GC, Young MA, Van Duyne RP. Electromagnetic mechanism of SERS. In: Surface-enhanced Raman scattering. Berlin/Heidelberg: Springer-Verlag, 2006, 19–45. Google Scholar

[126]

Huang SH, Jiang X, Peng B, et al. Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance. Photonics Res 2018;6:346. CrossrefGoogle Scholar

[127]

Hümmer T, Noe J, Hofmann MS, Hänsch TW, Högele A, Hunger D. Cavity-enhanced Raman microscopy of individual carbon nanotubes. Nat Commun 2016;7:12155. CrossrefPubMedGoogle Scholar

[128]

Schmidt MK, Esteban R, Benz F, Baumberg JJ, Aizpurua J. Linking classical and molecular optomechanics descriptions of SERS. Faraday Discuss 2017;205:31–65. CrossrefPubMedGoogle Scholar

[129]

Boriskina SV, Reinhard BM. Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits. Proc Natl Acad Sci USA 2011;108:3147–51. CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.