[1]

Doherty MW, Manson NB, Delaney P, et al. The nitrogen-vacancy colour centre in diamond. Phys Rep 2013;528:1–45. CrossrefGoogle Scholar

[2]

Balasubramanian G, Neumann P, Twitchen D, et al. Ultralong spin coherence time in isotopically engineered diamond. Nat Mater 2009;8:383–7. CrossrefPubMedGoogle Scholar

[3]

Jarmola A, Acosta VM, Jensen K, et al. Temperature- and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond. Phys Rev Lett 2012;108:197601. CrossrefPubMedGoogle Scholar

[4]

Togan E, Chu Y, Trifonov AS, et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 2010;466:730–4. CrossrefGoogle Scholar

[5]

Yale CG, Buckley BB, Christle DJ, et al. All-optical control of a solid-state spin using coherent dark states. Proc Natl Acad Sci 2013;110:7595–600. CrossrefGoogle Scholar

[6]

Taminiau TH, Cramer J, van der Sar T, et al. Universal control and error correction in multi-qubit spin registers in diamond. Nat Nanotechnol 2014;9:171–6. PubMedCrossrefGoogle Scholar

[7]

Shi F, Rong X, Xu N, et al. Room-temperature implementation of the Deutsch-Jozsa algorithm with a single electronic spin in diamond. Phys Rev Lett 2010;105. PubMedGoogle Scholar

[8]

Wang Y, Dolde F, Biamonte J, et al. Quantum simulation of helium hydride cation in a solid-state spin register. ACS Nano 2015;9:7769–74. CrossrefGoogle Scholar

[9]

Gaebel T, Domhan M, Popa I, et al. Room-temperature coherent coupling of single spins in diamond. Nat Phys 2006;2:408–13. CrossrefGoogle Scholar

[10]

Hanson R, Mendoza FM, Epstein RJ, et al. Polarization and readout of coupled single spins in diamond. Phys Rev Lett 2006;97:087601. PubMedCrossrefGoogle Scholar

[11]

Neumann P, Mizuochi N, Rempp F, et al. Multipartite entanglement among single spins in diamond. Science 2008;320:1326–9. PubMedCrossrefGoogle Scholar

[12]

Neumann P, Kolesov R, Naydenov B, et al. Quantum register based on coupled electron spins in a room-temperature solid. Nat Phys 2010;6:249–53. CrossrefGoogle Scholar

[13]

Dolde F, Jakobi I, Naydenov B, et al. Room-temperature entanglement between single defect spins in diamond. Nat Phys 2013;9:139–43. CrossrefGoogle Scholar

[14]

Dolde F, Bergholm V, Wang Y, et al. High-fidelity spin entanglement using optimal control. Nat Commun 2014;5:3371. PubMedCrossrefGoogle Scholar

[15]

Waldherr G, Wang Y, Zaiser S, et al. Quantum error correction in a solid-state hybrid spin register. Nature 2014;506:204–7. CrossrefGoogle Scholar

[16]

Doherty M. The state of diamond quantum computing. Aust Phys 2017;110:7595–600. Google Scholar

[17]

Bernien H, Hensen B, Pfaff W, et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 2013;497:86–90. CrossrefPubMedGoogle Scholar

[18]

Hensen B, Bernien H, Dreaú AE, et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 2015;526:682–6. CrossrefPubMedGoogle Scholar

[19]

Yao NY, Jiang L, Gorshkov AV, et al. Scalable architecture for a room temperature solid-state quantum information processor. Nat Commun 2012;3:800. PubMedCrossrefGoogle Scholar

[20]

Nikolopoulos GM, Jex I. Quantum state transfer and network engineering. 2014:1–250. Google Scholar

[21]

Doherty MW, Meriles CA, Alkauskas A, et al. Towards a room-temperature spin quantum bus in diamond via electron photoionization, transport, and capture. Phys Rev X 2016;6:041035. Google Scholar

[22]

Stacey A, Dontschuk N, Chou JP, et al. Evidence for primal sp2 defects at the diamond surface: candidates for electron trapping and noise sources. Adv Mater Interfaces 2019;6:201801449. Google Scholar

[23]

Kaviani M, Deák P, Aradi B, et al. Proper surface termination for luminescent near-surface NV centers in diamond. Nano Lett 2014;14:4772–7. CrossrefPubMedGoogle Scholar

[24]

Brandes T, Vorrath T. Adiabatic transfer of electrons in coupled quantum dots. Phys Rev B Condensed Matter Mater Phys 2002;66:753411–12. Google Scholar

[25]

Vitanov NV, Rangelov AA, Shore BW, et al. Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev Mod Phys 2017;89:015006. CrossrefGoogle Scholar

[26]

Greentree AD, Cole JH, Hamilton AR, et al. Coherent electronic transfer in quantum dot systems using adiabatic passage. Phys Rev B Condensed Matter Mater Phys 2004;70:1–6. Google Scholar

[27]

Menchon-Enrich R, Benseny A, Ahufinger V, et al. Spatial adiabatic passage: a review of recent progress. Rep Prog Phys 2016;79:074401. CrossrefGoogle Scholar

[28]

Bergmann K, Theuer H, Shore BW. Coherent population transfer among quantum states of atoms and molecules. Rev Mod Phys 2002;70:1003–25. Google Scholar

[29]

Coto R, Jacques V, Hétet G, et al. Stimulated Raman adiabatic control of a nuclear spin in diamond. Phys Rev B 2017;96:1003–25. Google Scholar

[30]

Zhou BB, Baksic A, Ribeiro H, et al. Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system. Nat Phys 2017;13:330–4. CrossrefGoogle Scholar

[31]

Restrepo OD, Windl W. Full first-principles theory of spin relaxation in group-IV materials. Phys Rev Lett 2012;109:166604. CrossrefPubMedGoogle Scholar

[32]

Ivanov PA, Vitanov NV, Bergmann K. Effect of dephasing on stimulated Raman adiabatic passage. Phys Rev A Atomic Mol Opt Phys 2004;70:063409. CrossrefGoogle Scholar

[33]

Aslam N, Waldherr G, Neumann P, et al. Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection. N J Phys 2013;15:013064. CrossrefGoogle Scholar

[34]

Barson M, Krausz E, Manson N, et al. The fine structure of the neutral nitrogen-vacancy center in diamond. Nanophotonics 2019, in press. Google Scholar

[35]

Felton S, Edmonds AM, Newton ME, et al. Electron paramagnetic resonance studies of the neutral nitrogen vacancy in diamond. Phys Rev B Condensed Matter Mater Phys 2008;77:081201. CrossrefGoogle Scholar

[36]

Jahnke KD, Sipahigil A, Binder JM, et al. Electron-phonon processes of the silicon-vacancy centre in diamond. N J Phys 2015;17:043011. CrossrefGoogle Scholar

[37]

Michl J, Teraji T, Zaiser S, et al. Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces. Appl Phys Lett 2014;104:102407. CrossrefGoogle Scholar

[38]

Stoneham AM. Theory of defects in solids. Acta Crystallogr Section A 1976;32:527. CrossrefGoogle Scholar

[39]

Madelung O. Semiconductors: data handbook. Microelectron J 2004;35:685. CrossrefGoogle Scholar

[40]

Murphy-Armando F, Fagas G, Greer JC. Deformation potentials and electron-phonon coupling in silicon nanowires. Nano Lett 2010;10:869–73. CrossrefPubMedGoogle Scholar

[41]

Resca L, Resta R. Large binding due to dispersive screening and Bloch function interference in many-valley semiconductors. Solid State Commun 1979;29:275–7. CrossrefGoogle Scholar

[42]

Resta R. A note on the many-valley effective mass theory. J Phys C Solid State Phys 1977;10. Google Scholar

[43]

Luttinger JM, Kohn W. Motion of electrons and holes in perturbed periodic fields. Phys Rev 1955;97:869–83. CrossrefGoogle Scholar

[44]

Altarelli M, Hsu WY, Sabatini RA. Donor binding energies in multivalley semiconductors. J Phys C Solid State Phys 1977;10. Google Scholar

[45]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 1996;6:15–50. CrossrefGoogle Scholar

[46]

Kresse G, Hafner J. *Ab initio* molecular-dynamics simulation of the liquid-metalamorphous-semiconductor transition in germanium. Phys Rev B 1994;49:14251–69. CrossrefGoogle Scholar

[47]

Kresse G, Furthmüller J. Efficient iterative schemes for *ab initio* total-energy calculations using a plane-wave basis set. Phys Rev B Condensed Matter Mater Phys 1996;54:11169–86. CrossrefGoogle Scholar

[48]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B Condensed Matter Mater Phys 1999;59:1758–75. CrossrefGoogle Scholar

[49]

Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys 2003;118:8207–15. CrossrefGoogle Scholar

[50]

Samlenski R, Haug C, Brenn R, et al. Incorporation of nitrogen in chemical vapor deposition diamond. Appl Phys Lett 1995;67:2798. CrossrefGoogle Scholar

[51]

Nava F, Canali C, Jacoboni C, et al. Electron effective masses and lattice scattering in natural diamond. Solid State Commun 1980;33:475–7. CrossrefGoogle Scholar

[52]

Fox M. Quantum optics: an introduction. 1st ed. Oxford: Oxford University Press, 2006. Google Scholar

[53]

Babinec TM, Hausmann BJ, Khan M, et al. A diamond nanowire single-photon source. Nat Nanotechnol 2010;5:195–9. CrossrefPubMedGoogle Scholar

[54]

Burek MJ, de Leon NP, Shields BJ, et al. Free-standing mechanical and photonic nanostructures in single-crystal diamond. Nano Lett 2012;12:6084–9. CrossrefPubMedGoogle Scholar

[55]

Momenzadeh SA, Stöhr RJ, de Oliveira FF, et al. Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers. Nano Lett 2015;15:165–9. CrossrefPubMedGoogle Scholar

[56]

Bayn I, Chen EH, Trusheim ME, et al. Generation of ensembles of individually resolvable nitrogen vacancies using nanometer-scale apertures in ultrahigh-aspect ratio planar implantation masks. Nano Lett 2015;15:1751–8. CrossrefPubMedGoogle Scholar

[57]

Pezzagna S, Wildanger D, Mazarov P, et al. Nanoscale engineering and optical addressing of single spins in diamond. Small 2010;6:2117–21. CrossrefPubMedGoogle Scholar

[58]

Ohashi K, Rosskopf T, Watanabe H, et al. Negatively charged NVC in a 5nm thin ^{12}C diamond film. Nano Lett 2013;13:4733–8. CrossrefGoogle Scholar

[59]

Ohno K, Joseph Heremans F, Bassett LC, et al. Engineering shallow spins in diamond with nitrogen delta-doping. Appl Phys Lett 2012;101. Google Scholar

[60]

Nishiguchi N, Ando Y, Wybourne MN. Acoustic phonon modes of rectangular quantum wires. J Phys Condensed Matter 1997;9:5751–64. CrossrefGoogle Scholar

[61]

Tao Y, Boss JM, Moores BA, et al. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nat Commun 2014;5:3638. CrossrefPubMedGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.