[1]

Awschalom DD, Bassett LC, Dzurak AS, Hu EL, Petta JR. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science 2013;339:1174–9. PubMedCrossrefGoogle Scholar

[2]

Gao WB, Imamoglu A, Bernien H, Hanson R. Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nat Photonics 2015;9:363–73. CrossrefGoogle Scholar

[3]

Aharonovich I, Englund D, Toth M. Solid-state single-photon emitters. Nat Photonics 2016;10:631–41. CrossrefGoogle Scholar

[4]

Atatüre M, Englund D, Vamivakas N, Lee S-Y, Wrachtrup J. Material platforms for spin-based photonic quantum technologies. Nat Rev Mater 2018;3:38–51. CrossrefGoogle Scholar

[5]

Steger M, Saeedi K, Thewalt MLW, et al. Quantum information storage for over 180 s using donor spins in a ^{28}Si “semiconductor vacuum”. Science 2012;336:1280–3. CrossrefGoogle Scholar

[6]

Beall Fowler W, editor. Physics of color centers. New York, NY: Academic Press, 1968. Google Scholar

[7]

Stoneham AM. Theory of defects in solids. Oxford: Oxford University Press, 1975. Google Scholar

[8]

Doherty MW, Manson NB, Delaney P, Jelezko F, Wrachtrup J, Hollenberg LCL. The nitrogen-vacancy colour centre in diamond. Phys Rep 2013;528:1–45. CrossrefGoogle Scholar

[9]

Degen CL, Reinhard F, Cappellaro P. Quantum sensing. Rev Mod Phys 2017;89:035002. CrossrefGoogle Scholar

[10]

Thiel L, Wang Z, Tschudin MA, et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 2019;364:973–6. CrossrefGoogle Scholar

[11]

Andersen TI, Dwyer BL, Sanchez-Yamagishi JD, et al. Electron-phonon instability in graphene revealed by global and local noise probes. Science 2019;364:154–7. PubMedGoogle Scholar

[12]

Ariyaratne A, Bluvstein D, Myers BA, Bleszynski Jayich AC. Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond. Nat Commun 2018;9:2406. CrossrefPubMedGoogle Scholar

[13]

Shi F, Zhang Q, Wang P, et al. Single-protein spin resonance spectroscopy under ambient conditions. Science 2015;347:1135–8. PubMedCrossrefGoogle Scholar

[14]

Lovchinsky I, Sushkov AO, Urbach E, et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 2016;351:836–41. CrossrefPubMedGoogle Scholar

[15]

Aslam N, Pfender M, Neumann P, et al. Nanoscale nuclear magnetic resonance with chemical resolution. Science 2017;357:67–71. PubMedCrossrefGoogle Scholar

[16]

Kucsko G, Maurer PC, Yao NY, et al. Nanometre-scale thermometry in a living cell. Nature 2013;500:54–8. CrossrefGoogle Scholar

[17]

Schirhagl R, Chang K, Loretz M, Degen CL. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu Rev Phys Chem 2014;65:83–105. CrossrefPubMedGoogle Scholar

[18]

Childress L, Gurudev Dutt MV, Taylor JM, et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 2006;314:281–5. PubMedCrossrefGoogle Scholar

[19]

Gurudev Dutt MV, Childress L, Jiang L, et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 2007;16:1312–6. Google Scholar

[20]

Neumann P, Beck J, Steiner M, et al. Single-shot readout of a single nuclear spin. Science 2010;329:542–4. PubMedCrossrefGoogle Scholar

[21]

Neumann P, Mizuochi N, Rempp F, et al. Multipartite entanglement among single spins in diamond. Science 2008;320:1326–9. CrossrefPubMedGoogle Scholar

[22]

Dolde F, Jakobi I, Naydenov B, et al. Room-temperature entanglement between single defect spins in diamond. Nat Phys 2013;9:139–43. CrossrefGoogle Scholar

[23]

Maurer PC, Kucsko G, Latta C, et al. Room-temperature quantum bit memory exceeding one second. Science 2012;336:1283–6. CrossrefPubMedGoogle Scholar

[24]

Abobeih MH, Cramer J, Bakker MA, et al. One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment. Nat Commun 2018;9:2552. PubMedCrossrefGoogle Scholar

[25]

Pfaff W, Hensen BJ, Bernien H, et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 2014;345:532–5. CrossrefPubMedGoogle Scholar

[26]

Waldherr G, Wang Y, Zaiser S, et al. Quantum error correction in a solid-state hybrid spin register. Nature 2014;506:204–7. CrossrefGoogle Scholar

[27]

Taminiau TH, Cramer J, van der Sar T, Dobrovitski V, Hanson R. Universal control and error correction in multi-qubit spin registers in diamond. Nat Nanotechnol 2014;9:171–6. CrossrefPubMedGoogle Scholar

[28]

Cramer J, Kalb N, Rol MA, et al. Repeated quantum error correction on a continuously encoded qubit by real-time feedback. Nat Commun 2016;7:11526. PubMedCrossrefGoogle Scholar

[29]

Buckley BB, Fuchs GD, Bassett LC, Awschalom DD. Spin-light coherence for single-spin measurement and control in diamond. Science 2010;330:1212–5. CrossrefPubMedGoogle Scholar

[30]

Togan E, Chu Y, Trifonov AS, et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 2010;466:730–4. CrossrefGoogle Scholar

[31]

Yale CG, Buckley BB, Christle DJ, et al. All-optical control of a solid-state spin using coherent dark states. Proc Natl Acad Sci U S A 2013;110:7595–600. CrossrefPubMedGoogle Scholar

[32]

Bassett LC, Heremans FJ, Christle DJ, et al. Ultrafast optical control of orbital and spin dynamics in a solid-state defect. Science 2014;345:1333–7. CrossrefGoogle Scholar

[33]

Bernien H, Hensen B, Pfaff W, et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 2013;497:86–90. CrossrefPubMedGoogle Scholar

[34]

Kalb N, Reiserer AA, Humphreys PC, et al. Entanglement distillation between solid-state quantum network nodes. Science 2017;356:928–32. CrossrefPubMedGoogle Scholar

[35]

Humphreys PC, Kalb N, Morits JPJ, et al. Deterministic delivery of remote entanglement on a quantum network. Nature 2018;558:268–73. CrossrefPubMedGoogle Scholar

[36]

Kimble HJ. The quantum internet. Nature 2008;453:1023–30. CrossrefPubMedGoogle Scholar

[37]

Awschalom DD, Hanson R, Wrachtrup J, Zhou BB. Quantum technologies with optically interfaced solid-state spins. Nat Photonics 2018;12:516–27. CrossrefGoogle Scholar

[38]

Neu E, Steinmetz D, Riedrich-Möller J, et al. Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J Phys 2011;13:025012. CrossrefGoogle Scholar

[39]

Pingault B, Becker JN, Schulte CHH, et al. All-optical formation of coherent dark states of silicon-vacancy spins in diamond. Phys Rev Lett 2014;113:263601. CrossrefPubMedGoogle Scholar

[40]

Hepp C, Müller T, Waselowski V, et al. Electronic structure of the silicon vacancy color center in diamond. Phys Rev Lett 2014;112:036405. CrossrefPubMedGoogle Scholar

[41]

Rogers LJ, Jahnke KD, Metsch MH, et al. All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond. Phys Rev Lett 2014;113:263602. PubMedCrossrefGoogle Scholar

[42]

Iwasaki T, Ishibashi F, Miyamoto Y, et al. Germanium-vacancy single color centers in diamond. Sci Rep 2015;5:12882. CrossrefPubMedGoogle Scholar

[43]

Green BL, Mottishaw S, Breeze BG, et al. Neutral silicon-vacancy center in diamond: spin polarization and lifetimes. Phys Rev Lett 2017;119:096402. PubMedCrossrefGoogle Scholar

[44]

Rose BC, Huang D, Zhang Z-H, et al. Observation of an environmentally insensitive solid-state spin defect in diamond. Science 2018;361:60–3. CrossrefPubMedGoogle Scholar

[45]

Koehl WF, Buckley BB, Heremans FJ, Calusine G, Awschalom DD. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 2011;479:84–7. PubMedCrossrefGoogle Scholar

[46]

Christle DJ, Falk AL, Andrich P, et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat Mater 2015;14:160–3. CrossrefPubMedGoogle Scholar

[47]

Widmann M, Lee S-Y, Rendler T, et al. Coherent control of single spins in silicon carbide at room temperature. Nat Mater 2015;14:164–8. CrossrefPubMedGoogle Scholar

[48]

Kolesov R, Xia K, Reuter R, et al. Optical detection of a single rare-earth ion in a crystal. Nat Commun 2012;3:1029. CrossrefGoogle Scholar

[49]

Kolesov R, Xia K, Reuter R, et al. Mapping spin coherence of a single rare-earth ion in a crystal onto a single photon polarization state. Phys Rev Lett 2013;111:120502. CrossrefGoogle Scholar

[50]

Siyushev P, Xia K, Reuter R, et al. Coherent properties of single rare-earth spin qubits. Nat Commun 2014;5:3895. PubMedCrossrefGoogle Scholar

[51]

Xia K, Kolesov R, Wang Y, et al. All-optical preparation of coherent dark states of a single rare earth ion spin in a crystal. Phys Rev Lett 2015;115:093602. CrossrefGoogle Scholar

[52]

Morfa AJ, Gibson BC, Karg M, et al. Single-photon emission and quantum characterization of zinc oxide defects. Nano Lett 2012;12:949–54. PubMedCrossrefGoogle Scholar

[53]

Jungwirth NR, Chang H-S, Jiang M, Fuchs GD. Polarization spectroscopy of defect-based single photon sources in ZnO. ACS Nano 2016;10:1210–5. PubMedCrossrefGoogle Scholar

[54]

Linpeng X, Viitaniemi MLK, Vishnuradhan A, et al. Coherence properties of shallow donor qubits in ZnO. Phys Rev Appl 2018;10:064061. CrossrefGoogle Scholar

[55]

Koehl WF, Diler B, Whiteley SJ, et al. Resonant optical spectroscopy and coherent control of Cr^{4+} spin ensembles in SiC and GaN. Phys Rev B 2017;95:035207. CrossrefGoogle Scholar

[56]

Zhou Y, Wang Z, Rasmita A, et al. Room temperature solid-state quantum emitters in the telecom range. Sci Adv 2018;4:eaar3580. Google Scholar

[57]

Berhane AM, Jeong K-Y, Bodrog Z, et al. Bright room-temperature single-photon emission from defects in gallium nitride. Adv Mater 2019;29:1605092. Google Scholar

[58]

Chakraborty C, Kinnischtzke L, Goodfellow KM, Beams R, Vamivakas AN. Voltage-controlled quantum light from an atomically thin semiconductor. Nat Nanotechnol 2015;10:507. CrossrefPubMedGoogle Scholar

[59]

Koperski M, Nogajewski K, Arora A, et al. Single photon emitters in exfoliated WSe_{2} structures. Nat Nanotechnol 2015;10:503. CrossrefPubMedGoogle Scholar

[60]

He Y-M, Clark G, Schaibley JR, et al. Single quantum emitters in monolayer semiconductors. Nat Nanotechnol 2015;10:497. PubMedCrossrefGoogle Scholar

[61]

Srivastava A, Sidler M, Allain AV, Lembke DS, Kis A, Imamoģlu A. Optically active quantum dots in monolayer WSe_{2}. Nat Nanotechnol 2015;10:491. PubMedCrossrefGoogle Scholar

[62]

Tonndorf P, Schmidt R, Schneider R, et al. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2015;2:347–52. CrossrefGoogle Scholar

[63]

Tran TT, Bray K, Ford MJ, Toth M, Aharonovich I. Quantum emission from hexagonal boron nitride monolayers. Nat Nanotechnol 2016;11:37–41. PubMedCrossrefGoogle Scholar

[64]

Jungwirth NR, Calderon B, Ji Y, Spencer MG, Flatté ME, Fuchs GD. Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride. Nano Lett 2016;16:6052–7. PubMedCrossrefGoogle Scholar

[65]

Chejanovsky N, Rezai M, Paolucci F, et al. Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride. Nano Lett 2016;16: 7037–45. CrossrefPubMedGoogle Scholar

[66]

Exarhos AL, Hopper DA, Grote RR, Alkauskas A, Bassett LC. Optical signatures of quantum emitters in suspended hexagonal boron nitride. ACS Nano 2017;11:3328–36. PubMedCrossrefGoogle Scholar

[67]

Exarhos AL, Hopper DA, Patel RN, Doherty MW, Bassett LC. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat Commun 2019;10:222. PubMedCrossrefGoogle Scholar

[68]

Sipahigil A, Jahnke KD, Rogers LJ, et al. Indistinguishable photons from separated silicon-vacancy centers in diamond. Phys Rev Lett 2014;113:113602. PubMedCrossrefGoogle Scholar

[69]

Rogers LJ, Jahnke KD, Teraji T, et al. Multiple intrinsically identical single-photon emitters in the solid state. Nat Commun 2014;5:4739. CrossrefPubMedGoogle Scholar

[70]

Sipahigil A, Evans RE, Sukachev DD, et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 2016;354:847–50. CrossrefPubMedGoogle Scholar

[71]

Evans RE, Bhaskar MK, Sukachev DD, et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 2018;362:662–5. CrossrefGoogle Scholar

[72]

Koehl WF, Seo H, Galli G, Awschalom DD. Designing defect spins for wafer-scale quantum technologies. MRS Bull 2015;40:1146–53. CrossrefGoogle Scholar

[73]

Zwanenburg FA, Dzurak AS, Morello A, et al. Silicon quantum electronics. Rev Mod Phys 2013;85:961–1019. CrossrefGoogle Scholar

[74]

Kane BE. A silicon-based nuclear spin quantum computer. Nature 1998;393:133–7. CrossrefGoogle Scholar

[75]

Sangouard N, Simon C, de Riedmatten H, Gisin N. Quantum repeaters based on atomic ensembles and linear optics. Rev Mod Phys 2011;83:33–80. CrossrefGoogle Scholar

[76]

Thiel CW, Böttger T, Cone RL. Rare-earth-doped materials for applications in quantum information storage and signal processing. J Lumin 2011;131:353–61. CrossrefGoogle Scholar

[77]

Ham BS, Hemmer PR, Shahriar MS. Efficient electromagnetically induced transparency in a rare-earth doped crystal. Opt Commun 1997;144:227–30. CrossrefGoogle Scholar

[78]

Gali A. *Ab initio* theory of nitrogen-vacancy center in diamond. arXiv e-prints, 2019;arXiv:1906.00047. https://doi.org/10.1515/nanoph-2019-0154.

[79]

Rondin L, Tetienne J-P, Hingant T, Roch JF, Maletinsky P, Jacques V. Magnetometry with nitrogen-vacancy defects in diamond. Rep Prog Phys 2014;77:056503. CrossrefPubMedGoogle Scholar

[80]

Schröder T, Mouradian SL, Zheng J, et al. Quantum nanophotonics in diamond. J Opt Soc Am B 2016;33:B65–83. CrossrefGoogle Scholar

[81]

Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J, von Borczyskowski C. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 1997;276:2012–4. CrossrefGoogle Scholar

[82]

Du Preez L. Electron paramagnetic resonance and optical investigations of defect centres in diamond. PhD thesis, University of Witwatersrand, Johannesburg, 1965. Google Scholar

[83]

Davies G, Hamer MF, Charles PW. Optical studies of the 1.945 eV vibronic band in diamond. Proc R Soc London Ser A 1976;348:285. CrossrefGoogle Scholar

[84]

Loubser JHN, Van Wyk JA. Optical spin-polarisation in a triplet state in irrdiated and annealed type 1b diamonds. Diamond Res 1977;9:11. Google Scholar

[85]

van Oort E, Stroomer P, Glasbeek M. Low-field optically detected magnetic resonance of a coupled triplet-doublet defect pair in diamond. Phys Rev B 1990;42:8605–8. CrossrefGoogle Scholar

[86]

Brouri R, Beveratos A, Poizat J-P, Grangier P. Photon antibunching in the fluorescence of individual color centers in diamond. Opt Lett 2000;25:1294–6. CrossrefPubMedGoogle Scholar

[87]

Kurtsiefer C, Mayer S, Zarda P, Weinfurter H. Stable solid-state source of single photons. Phys Rev Lett 2000;85:290–3. PubMedCrossrefGoogle Scholar

[88]

Jelezko F, Gaebel T, Popa I, Gruber A, Wrachtrup J. Observation of coherent oscillations in a single electron spin. Phys Rev Lett 2004;92:076401. CrossrefGoogle Scholar

[89]

Jelezko F, Gaebel T, Popa I, Domhan M, Gruber A, Wrachtrup J. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys Rev Lett 2004;93:130501. PubMedCrossrefGoogle Scholar

[90]

Taylor JM, Cappellaro P, Childress L, et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat Phys 2008;4:810–6. CrossrefGoogle Scholar

[91]

Degen CL. Scanning magnetic field microscope with a diamond single-spin sensor. Appl Phys Lett 2008;92:243111. CrossrefGoogle Scholar

[92]

Maze JR, Stanwix PL, Hodges JS, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 2008;455:644–7. PubMedCrossrefGoogle Scholar

[93]

Balasubramanian G, Chan IY, Kolesov R, et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 2008;455:648–651. PubMedCrossrefGoogle Scholar

[94]

Balasubramanian G, Neumann P, Twitchen D, et al. Ultralong spin coherence time in isotopically engineered diamond. Nat Mater 2009;8:383–7. PubMedCrossrefGoogle Scholar

[95]

Fu K-MC, Santori C, Barclay PE, Rogers LJ, Manson NB, Beausoleil RG. Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond. Phys Rev Lett 2009;103:256404. CrossrefPubMedGoogle Scholar

[96]

Isberg J, Hammersberg J, Johansson E, et al. High carrier mobility in single-crystal plasma-deposited diamond. Science 2002;297:1670–2. CrossrefPubMedGoogle Scholar

[97]

Meijer J, Burchard B, Domhan M, et al. Generation of single color centers by focused nitrogen implantation. Appl Phys Lett 2005;87:261909. CrossrefGoogle Scholar

[98]

Toyli DM, Weis CD, Fuchs GD, Schenkel T, Awschalom DD. Chip-scale nanofabrication of single spins and spin arrays in diamond. Nano Lett 2010;10:3168–72. CrossrefPubMedGoogle Scholar

[99]

Chu Y, de Leon NP, Shields BJ, et al. Coherent optical transitions in implanted nitrogen vacancy centers. Nano Lett 2014;14:1982–6. PubMedCrossrefGoogle Scholar

[100]

Robledo L, Childress L, Bernien H, Hensen B, Alkemade PFA, Hanson R. High-fidelity projective read-out of a solid-state spin quantum register. Nature 2011;477:574–8. CrossrefPubMedGoogle Scholar

[101]

Hopper DA, Shulevitz HJ, Bassett LC. Spin readout techniques of the nitrogen-vacancy center in diamond. Micromachines 2018;9:437. Google Scholar

[102]

Goldman ML, Sipahigil A, Doherty MW, et al. Phonon-induced population dynamics and intersystem crossing in nitrogen-vacancy centers. Phys Rev Lett 2015;114:145502. CrossrefPubMedGoogle Scholar

[103]

Siyushev P, Pinto H, Vörös M, Gali A, Jelezko F, Wrachtrup J. Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures. Phys Rev Lett 2013;110:167402. CrossrefPubMedGoogle Scholar

[104]

Thiering G, Gali A. Theory of the optical spin-polarization loop of the nitrogen-vacancy center in diamond. Phys Rev B 2018;98:085207. CrossrefGoogle Scholar

[105]

Waldherr G, Neumann P, Huelga SF, Jelezko F, Wrachtrup J. Violation of a temporal Bell inequality for single spins in a diamond defect center. Phys Rev Lett 2011;107:090401. CrossrefGoogle Scholar

[106]

Shields BJ, Unterreithmeier QP, de Leon NP, Park H, Lukin MD. Efficient readout of a single spin state in diamond via spin-to-charge conversion. Phys Rev Lett 2015;114:136402. CrossrefGoogle Scholar

[107]

Hopper DA, Grote RR, Exarhos AL, Bassett LC. Near-infrared-assisted charge control and spin readout of the nitrogen-vacancy center in diamond. Phys Rev B 2016;94:241201. CrossrefGoogle Scholar

[108]

Bourgeois E, Londero E, Buczak K, et al. Enhanced photoelectric detection of NV magnetic resonances in diamond under dual-beam excitation. Phys Rev B 2017;95:041402. CrossrefGoogle Scholar

[109]

Bourgeois E, Jarmola A, Siyushev P, et al. Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nat Commun 2015;6:8577. CrossrefPubMedGoogle Scholar

[110]

Hrubesch FM, Braunbeck G, Stutzmann M, Reinhard F, Brandt MS. Efficient electrical spin readout of NV^{−} centers in diamond. Phys Rev Lett 2017;118:037601. CrossrefPubMedGoogle Scholar

[111]

Siyushev P, Nesladek M, Bourgeois E, et al. Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond. Science 2019;363:728–31. PubMedCrossrefGoogle Scholar

[112]

Plakhotnik T, Doherty MW, Cole JH, Chapman R, Manson NB. All-optical thermometry and thermal properties of the optically detected spin resonances of the NV-center in nanodiamond. Nano Lett 2014;14:4989–96. CrossrefPubMedGoogle Scholar

[113]

Mizuochi N, Neumann P, Rempp F, et al. Coherence of single spins coupled to a nuclear spin bath of varying density. Phys Rev B 2009;80:041201. CrossrefGoogle Scholar

[114]

Doherty MW, Meriles CA, Alkauskas A, Fedder H, Sellars MJ, Manson NB. Towards a room-temperature spin quantum bus in diamond via electron photoionization, transport, and capture. Phys Rev X 2016;6:041035. Google Scholar

[115]

Weber JR, Koehl WF, Varley JB, et al. Quantum computing with defects. Proc Natl Acad Sci U S A 2010;107:8513–8. CrossrefPubMedGoogle Scholar

[116]

Baranov PG, Il’in IV, Mokhov EN, Muzafarova MV, Orlinskii SB, Schmidt J. EPR identification of the triplet ground state and photoinduced population inversion for a Si-C divacancy in silicon carbide. Jetp Lett 2005;82:441–3. CrossrefGoogle Scholar

[117]

Janzén E, Gali A, Carlsson P, Gällström A, Magnusson B, Son NT. The silicon vacancy in SiC. Phys B 2009;404: 4354–4358. CrossrefGoogle Scholar

[118]

Thiering A, Gali G. Ab initio magneto-optical spectrum of group-IV vacancy color centers in diamond. Phys Rev X 2018;8:021063. Google Scholar

[119]

Linpeng X, Karin T, Durnev MV, et al. Longitudinal spin relaxation of donor-bound electrons in direct band-gap semiconductors. Phys Rev B 2016;94:125401. CrossrefGoogle Scholar

[120]

Yang L-P, Burk C, Widmann M, Lee S-Y, Wrachtrup J, Zhao N. Electron spin decoherence in silicon carbide nuclear spin bath. Phys Rev B 2014;90:241203. CrossrefGoogle Scholar

[121]

Seo H, Falk AL, Klimov PV, Miao KC, Galli G, Awschalom DD. Quantum decoherence dynamics of divacancy spins in silicon carbide. Nat Commun 2016;7:12935. PubMedCrossrefGoogle Scholar

[122]

Gangloff DA, Éthier-Majcher G, Lang C, et al. Quantum interface of an electron and a nuclear ensemble. Science 2019;364:62–6. CrossrefGoogle Scholar

[123]

Dong W, Doherty MW, Economou SE. Spin polarization through intersystem crossing in the silicon vacancy of silicon carbide. Phys Rev B 2019;99:184102. CrossrefGoogle Scholar

[124]

MacQuarrie ER, Gosavi TA, Jungwirth NR, Bhave SA, Fuchs GD. Mechanical spin control of nitrogen-vacancy centers in diamond. Phys Rev Lett 2013;111:227602. CrossrefPubMedGoogle Scholar

[125]

Lee KW, Lee D, Ovartchaiyapong P, Minguzzi J, Maze JR, Bleszynski Jayich AC. Strain coupling of a mechanical resonator to a single quantum emitter in diamond. Phys Rev Appl 2016;6:034005. CrossrefGoogle Scholar

[126]

Schuetz MJA, Kessler EM, Giedke G, Vandersypen LMK, Lukin MD, Cirac JI. Universal quantum transducers based on surface acoustic waves. Phys Rev 2015;X 5:031031. Google Scholar

[127]

Lemonde M-A, Meesala S, Sipahigil A, et al. Phonon networks with silicon-vacancy centers in diamond waveguides. Phys Rev Lett 2018;120:213603. PubMedCrossrefGoogle Scholar

[128]

Kuzyk MC, Wang H. Scaling phononic quantum networks of solid-state spins with closed mechanical subsystems. Phys Rev X 2018;8:041027. Google Scholar

[129]

Jarmola A, Acosta VM, Jensen K, Chemerisov S, Budker D. Temperature- and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond. Phys Rev Lett 2012;108:197601. CrossrefPubMedGoogle Scholar

[130]

Bar-Gill N, Pham LM, Jarmola A, Budker D, Walsworth RL. Solid-state electronic spin coherence time approaching one second. Nat Commun 2013;4:1743. CrossrefPubMedGoogle Scholar

[131]

Weston L, Wickramaratne D, Mackoit M, Alkauskas A, Van de Walle CG. Native point defects and impurities in hexagonal boron nitride. Phys Rev B 2018;97:214104. CrossrefGoogle Scholar

[132]

Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature 2013;499:419–25. CrossrefPubMedGoogle Scholar

[133]

Xu Z-Q, Mendelson N, Scott JA, Li C, Aharonovich I, Toth M. Charge transition levels of quantum emitters in hexagonal boron nitride. arXiv e-prints 2019;arXiv: 1907.00471. Google Scholar

[134]

Kumar S, Kaczmarczyk A, Gerardot BD. Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe_{2}. Nano Letters 2015;15:7567. CrossrefPubMedGoogle Scholar

[135]

Grosso G, Moon H, Lienhard B, et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat Commun 2017;8:705. PubMedCrossrefGoogle Scholar

[136]

Zhong M, Hedges MP, Ahlefeldt RL, et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 2015;517:177. CrossrefGoogle Scholar

[137]

Utzat H, Sun W, Kaplan AEK, et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 2019;363:1068–72. CrossrefPubMedGoogle Scholar

[138]

Ridley BK. Quantum processes in semiconductors. Oxford: Oxford University Press, 1993. Google Scholar

[139]

Martin RM. Electronic structure: basic theory and practical methods. Cambridge: Cambridge University Press, 2004. Google Scholar

[140]

Freysoldt C, Grabowski B, Hickel T, et al. First-principles calculations for point defects in solids. Rev Mod Phys 2014;86:253. CrossrefGoogle Scholar

[141]

Dreyer CE, Alkauskas A, Lyons JL, Janotti A, Van de Walle CG. First-principles calculations of point defects for quantum technologies. Annu Rev Mater Res 2018;48:1–26. CrossrefGoogle Scholar

[142]

Goyal A, Gorai P, Peng H, Lany S, Stevanovič V. A computational framework for automation of point defect calculations. Comp Mater Sci 2017;130:1–9. CrossrefGoogle Scholar

[143]

Broberg D, Medasani B, Zimmermann NER, et al. PyCDT: a python toolkit for modeling point defects in semiconductors and insulators. Comp Phys Commun 2018;226:165–79. CrossrefGoogle Scholar

[144]

Rayson MJ, Briddon PR. First principles method for the calculation of zero-field splitting tensors in periodic systems. Phys Rev B 2008;77:035119. CrossrefGoogle Scholar

[145]

Bodrog Z, Gali A. The spin-spin zero-field splitting tensor in the projector-augmented-wave method. J Phys: Condens Matter 2013;26:015305. PubMedGoogle Scholar

[146]

Biktagirov T, Schmidt WG, Gerstmann U. Calculation of spin-spin zero-field splitting within periodic boundary conditions: towards all-electron accuracy. Phys Rev B 2018;97:115135. CrossrefGoogle Scholar

[147]

Ivády V, Abrikosov IA, Gali A. First principles calculation of spin-related quantities for point defect qubit research. npj Comput Mater 2018;4:76. CrossrefGoogle Scholar

[148]

Van de Walle CG. Structural identification of hydrogen and muonium centers in silicon: first-principles calculations of hyperfine parameters. Phys Rev Lett 1990;64:669–72. PubMedCrossrefGoogle Scholar

[149]

Szász K, Hornos T, Marsman M, Gali A. Hyperfine coupling of point defects in semiconductors by hybrid density functional calculations: the role of core spin polarization. Phys Rev B 2013;88:075202. CrossrefGoogle Scholar

[150]

Ivády V, Szász K, Falk AL, et al. Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide. Phys Rev B 2015;92:115206. CrossrefGoogle Scholar

[151]

Wickramaratne D, Dreyer CE, Monserrat B, et al. Defect identification based on first-principles calculations for deep level transient spectroscopy. Appl Phys Lett 2018;113:192106. CrossrefGoogle Scholar

[152]

Astner T, Gugler J, Angerer A, et al. Solid-state electron spin lifetime limited by phononic vacuum modes. Nat Mater 2018;17:313–7. CrossrefPubMedGoogle Scholar

[153]

Onida G, Reining L, Rubio A. Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 2002;74:601–59. CrossrefGoogle Scholar

[154]

Ma Y, Rohlfing M. Optical excitation of deep defect levels in insulators within many-body perturbation theory: the *F* center in calcium fluoride. Phys Rev B 2008;77:115118. CrossrefGoogle Scholar

[155]

Chen W, Pasquarello A. Accuracy of *GW* for calculating defect energy levels in solids. Phys Rev B 2017;96:020101. CrossrefGoogle Scholar

[156]

Grumet M, Liu P, Kaltak M, Klimeš J, Kresse G. Beyond the quasiparticle approximation: fully self-consistent *GW* calculations. Phys Rev B 2018;98:155143. CrossrefGoogle Scholar

[157]

Choi S, Jain M, Louie SG. Mechanism for optical initialization of spin in NV^{−} center in diamond. Phys Rev B 2012;86:041202. CrossrefGoogle Scholar

[158]

Bockstedte M, Schütz F, Garratt T, Ivády V, Gali A. Ab initio description of highly correlated states in defects for realizing quantum bits. Npj Quantum Mater 2018;3:31. CrossrefGoogle Scholar

[159]

Kaduk B, Kowalczyk T, Van Voorhis T. Constrained density functional theory. Chem Rev 2012;112:321–70. PubMedCrossrefGoogle Scholar

[160]

Slater JC. Quantum theory of molecules and solids, vol. 1–4. New York, McGraw-Hill, 1963–1974. Google Scholar

[161]

Gali A, Janzén E, Deák P, Kresse G, Kaxiras E. Theory of spin-conserving excitation of the NV^{−} center in diamond. Phys Rev Lett 2009;103:186404. CrossrefGoogle Scholar

[162]

von Barth U. Local-density theory of multiplet structure. Phys Rev A 1979;20:1693–703. CrossrefGoogle Scholar

[163]

Alkauskas A, Lyons JL, Steiauf D, Van de Walle CG. First-principles calculations of luminescence spectrum line shapes for defects in semiconductors: the example of GaN and ZnO. Phys Rev Lett 2012;109:267401. PubMedCrossrefGoogle Scholar

[164]

Alkauskas A, McCluskey MD, Van de Walle CG. Tutorial: defects in semiconductors – combining experiment and theory. J Appl Phys 2016;119:181101. CrossrefGoogle Scholar

[165]

Alkauskas A, Buckley BB, Awschalom DD, Van de Walle CG. First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres. N J Phys 2014;16:073026. CrossrefGoogle Scholar

[166]

Alkauskas A, Yan Q, Van de Walle CG. First-principles theory of nonradiative carrier capture via multiphonon emission. Phys Rev B 2014;90:075202. CrossrefGoogle Scholar

[167]

Lindner S, Bommer A, Muzha A, et al. Strongly inhomogeneous distribution of spectral properties of silicon-vacancy color centers in nanodiamonds. New J Phys 2018;20:115002. CrossrefGoogle Scholar

[168]

Shirasaki Y, Supran GJ, Bawendi MG, Bulović V. Emergence of colloidal quantum-dot light-emitting technologies. Nat Photonics 2012;7:13–23. Google Scholar

[169]

Kagan CR, Lifshitz E, Sargent EH, Talapin DV. Building devices from colloidal quantum dots. Science 2016;353:aac5523. Google Scholar

[170]

Gammon D, Snow ES, Shanabrook BV, Katzer DS, Park D. Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot. Science 1996;273:87. PubMedCrossrefGoogle Scholar

[171]

Zhong T, Kindem JM, Bartholomew JG, et al. Optically addressing single rare-earth ions in a nanophotonic cavity. Phys Rev Lett 2018;121:183603. CrossrefGoogle Scholar

[172]

Cai Z, Liu B, Zou X, Cheng H-M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem Rev 2018;118:6091–133. PubMedCrossrefGoogle Scholar

[173]

Dean CR, Young AF, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 2010;5:722. CrossrefPubMedGoogle Scholar

[174]

Castellanos-Gomez A, Buscema M, Molenaar R, et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater 2014;1:011002. CrossrefGoogle Scholar

[175]

Müller T, Hepp C, Pingault B, et al. Optical signatures of silicon-vacancy spins in diamond. Nat Commun 2014;5:3328. CrossrefPubMedGoogle Scholar

[176]

Pezzagna S, Wildanger D, Mazarov P, et al. Nanoscale engineering and optical addressing of single spins in diamond. Small 2010;6:2117–21. PubMedCrossrefGoogle Scholar

[177]

Jamieson DN, Lawrie WIL, Hudson FE, et al. Deterministic atom placement by ion implantation: few and single atom devices for quantum computer technology. In 2016 21st International Conference on Ion Implantation Technology (IIT). Tainan, Taiwan, IEEE, 2016:1–6. Google Scholar

[178]

Pacheco JL, Singh M, Perry DL, et al. Ion implantation for deterministic single atom devices. Rev Sci Instrum 2017;88:123301. CrossrefPubMedGoogle Scholar

[179]

Edmonds AM, D’Haenens-Johansson UFS, Cruddace RJ, et al. Production of oriented nitrogen-vacancy color centers in synthetic diamond. Phys Rev B 2012;86:035201. CrossrefGoogle Scholar

[180]

Michl J, Teraji T, Zaiser S, et al. Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces. Appl Phys Lett 2014;104:102407. CrossrefGoogle Scholar

[181]

Fukui T, Doi Y, Miyazaki T, et al. Perfect selective alignment of nitrogen-vacancy centers in diamond. Appl Phys Exp 2014;7:055201. CrossrefGoogle Scholar

[182]

Chakravarthi S, Moore C, Opsvig A, et al. A window into NV center kinetics via repeated annealing and spatial tracking of thousands of individual NV centers. arXiv e-prints 2019;arXiv:1907.07793. Google Scholar

[183]

Simmons MY, Schofield SR, O’Brien JL, et al. Towards the atomic-scale fabrication of a silicon-based solid state quantum computer. Surf Sci 2003;532–535:1209–18. Google Scholar

[184]

Wolfowicz G, Mortemousque P-A, Guichard R, et al. ^{29}Si nuclear spins as a resource for donor spin qubits in silicon. N J Phys 2016;18:023021. CrossrefGoogle Scholar

[185]

Liu Z, Suenaga K, Wang Z, Shi Z, Okunishi E, Iijima S. Identification of active atomic defects in a monolayered tungsten disulphide nanoribbon. Nat Commun 2011;2:213. CrossrefGoogle Scholar

[186]

Susi T, Kepaptsoglou D, Lin Y-C, et al. Towards atomically precise manipulation of 2D nanostructures in the electron microscope. 2D Mater 2017;4:042004. CrossrefGoogle Scholar

[187]

Mishra R, Ishikawa R, Lupini AR, Pennycook SJ. Single-atom dynamics in scanning transmission electron microscopy. MRS Bull 2017;42:644–52. CrossrefGoogle Scholar

[188]

Hudak BM, Song J, Sims H, et al. Directed atom-by-atom assembly of dopants in silicon. ACS Nano 2018;12:5873–9. PubMedCrossrefGoogle Scholar

[189]

Noh G, Choi D, Kim JH, et al. Stark tuning of single-photon emitters in hexagonal boron nitride. Nano Lett 2018;18: 4710–5. CrossrefPubMedGoogle Scholar

[190]

Li X, Shepard GD, Cupo A, et al. Nonmagnetic quantum emitters in boron nitride with ultranarrow and sideband-free emission spectra. ACS Nano 2017;11:6652–60. CrossrefPubMedGoogle Scholar

[191]

Choi S, Tran TT, Elbadawi C, et al. Engineering and localization of quantum emitters in large hexagonal boron nitride layers. ACS Appl Mater Interfaces 2016;8:29642–8. PubMedCrossrefGoogle Scholar

[192]

Proscia NV, Shotan Z, Jayakumar H, et al. Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride. Optica 2018;5:1128–34. CrossrefGoogle Scholar

[193]

Toth M, Aharonovich I. Single photon sources in atomically thin materials. Annu Rev Phys Chem 2019;70:123–42. CrossrefPubMedGoogle Scholar

[194]

Epstein RJ, Mendoza FM, Kato YK, Awschalom DD. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nature Phys 2005;1:94. CrossrefGoogle Scholar

[195]

Rogers LJ, Jahnke KD, Doherty MW, et al. Electronic structure of the negatively charged silicon-vacancy center in diamond. Phys Rev B 2014;89:235101. CrossrefGoogle Scholar

[196]

Liaugaudas G, Collins AT, Suhling K, Davies G, Heintzmann R. Luminescence-lifetime mapping in diamond. J Phys: Condens Matter 2009;21:364210. PubMedGoogle Scholar

[197]

Fuchs GD, Dobrovitski VV, Toyli DM, et al. Excited-state spin coherence of a single nitrogen-vacancy centre in diamond. Nature Phys 2010;6:668–72. CrossrefGoogle Scholar

[198]

Neu E, Agio M, Becher C. Photophysics of single silicon vacancy centers in diamond: implications for single photon emission. Opt Express 2012;20:19956. PubMedCrossrefGoogle Scholar

[199]

Berhane AM, Jeong K-Y, Bradac C, et al. Photophysics of GaN single-photon emitters in the visible spectral range. Phys Rev B 2018;97:165202. CrossrefGoogle Scholar

[200]

Loubser JHN, van Wyk JA. Electron spin resonance in the study of diamond. Rep Prog Phys 1978;41:1201. CrossrefGoogle Scholar

[201]

Saeedi K, Simmons S, Salvail JZ, et al. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 2013;342:830. PubMedCrossrefGoogle Scholar

[202]

Yao NY, Jiang L, Gorshkov AV, et al. Scalable architecture for a room temperature solid-state quantum information processor. Nat Commun 2012;3:800. PubMedCrossrefGoogle Scholar

[203]

Alem N, Erni R, Kisielowski C, Rossell MD, Gannett W, Zettl A. Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys Rev B 2009;80:155425. CrossrefGoogle Scholar

[204]

Jin C, Lin F, Suenaga K, Iijima S. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys Rev Lett 2009;102:195505. PubMedCrossrefGoogle Scholar

[205]

Wong D, Velasco Jr J, Ju L, et al. Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy. Nat Nanotechnol 2015;10:949. CrossrefPubMedGoogle Scholar

[206]

Lin W-H, Brar VW, Jariwala D, et al. Atomic-scale structural and chemical characterization of hexagonal boron nitride layers synthesized at the wafer-scale with monolayer thickness control. Chem Mater 2017;29:4700–7. CrossrefGoogle Scholar

[207]

Ahmadpour Monazam MR, Ludacka U, Komsa H-P, Kotakoski J. Substitutional Si impurities in monolayer hexagonal boron nitride. Appl Phys Lett 2019;115:071604. CrossrefGoogle Scholar

[208]

Yang Y, Chen C-C, Scott MC, et al. Deciphering chemical order/disorder and material properties at the single-atom level. Nature 2017;542:75. CrossrefPubMedGoogle Scholar

[209]

Tian X, Kim DS, Yang S, et al. Correlating 3D atomic defects and electronic properties of 2D materials with picometer precision. arXiv e-prints 2019;arXiv:1901.00633. Google Scholar

[210]

Govyadinov AA, Konečná A, Chuvilin A, et al. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope. Nat Commun 2017;8:95. CrossrefGoogle Scholar

[211]

Feng J, Deschout H, Caneva S, et al. Imaging of optically active defects with nanometer resolution. Nano Lett 2018;18:1739–44. PubMedCrossrefGoogle Scholar

[212]

Kianinia M, Bradac C, Sontheimer B, et al. All-optical control and super-resolution imaging of quantum emitters in layered materials. Nat Commun 2018;9:874. PubMedCrossrefGoogle Scholar

[213]

Hayee F, Yu L, Zhang JL, et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated cathodoluminescence, photoluminescence, and strain mapping. arXiv e-prints 2019;arXiv:1901.05952. Google Scholar

[214]

Sushkov AO, Lovchinsky I, Chisholm N, Walsworth RL, Park H, Lukin MD. Magnetic resonance detection of individual proton spins using quantum reporters. Phys Rev Lett 2014;113:197601. CrossrefPubMedGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.