[1]

Chae SJ, Güneş F, Kim KK, et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater 2009;21:2328–33. Web of ScienceCrossrefGoogle Scholar

[2]

Kolobov AV, Tominaga J. Two-dimensional transition-metal dichalcogenides. Cham: Springer International Publishing Switzerland, 2016. Google Scholar

[3]

Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS_{2}: a new direct-gap semiconductor. Phys Rev Lett 2010;105:136805. CrossrefWeb of ScienceGoogle Scholar

[4]

Xie LM. Two-dimensional transition metal dichalcogenide alloys: preparation, characterization and applications. Nanoscale 2015;7:18392–401. CrossrefWeb of SciencePubMedGoogle Scholar

[5]

Cong CX, Shang JZ, Wu X, et al. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS_{2} monolayer from chemical vapor deposition. Adv Opt Mater 2014;2:131–6. Web of ScienceCrossrefGoogle Scholar

[6]

Li YL, Chernikov A, Zhang X, et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS_{2}, MoSe_{2}, WS_{2}, and WSe_{2}. Phys Rev B 2014;90:205422. CrossrefWeb of ScienceGoogle Scholar

[7]

Mak KF, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics 2016;10:216–26. CrossrefWeb of ScienceGoogle Scholar

[8]

Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 2012;7:699–712. PubMedWeb of ScienceCrossrefGoogle Scholar

[9]

Newaz AKM, Prasai D, Ziegler JI, et al. Electrical control of optical properties of monolayer MoS_{2}. Solid State Commun 2013;155:49–52. CrossrefWeb of ScienceGoogle Scholar

[10]

Kleemann ME, Chikkaraddy R, Alexeev EM, et al. Strong-coupling of WSe_{2} in ultra-compact plasmonic nanocavities at room temperature. Nat Commun 2017;8:1296. CrossrefPubMedWeb of ScienceGoogle Scholar

[11]

Kern J, Trugler A, Niehues I, et al. Nanoantenna-enhanced light-matter interaction in atomically thin WS_{2}. ACS Photonics 2015;2:1260–5. Web of ScienceCrossrefGoogle Scholar

[12]

Liu WJ, Lee B, Naylor CH, et al. Strong exciton-plasmon coupling in MoS_{2} coupled with plasmonic lattice. Nano Lett 2016;16:1262–9. CrossrefPubMedWeb of ScienceGoogle Scholar

[13]

Wang SJ, Li SL, Chervy T, et al. Coherent coupling of WS_{2} monolayers with metallic photonic nanostructures at room temperature. Nano Lett 2016;16:4368–74. CrossrefPubMedWeb of ScienceGoogle Scholar

[14]

Hu GW, Hong XM, Wang K, et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au-WS_{2} metasurface. Nat Photonics 2019;13:467–72. Web of ScienceCrossrefGoogle Scholar

[15]

Chen JW, Wang K, Long H, et al. Tungsten disulfide-gold nanohole hybrid metasurfaces for nonlinear metalenses in the visible region. Nano Lett 2018;18:1344–50. PubMedCrossrefWeb of ScienceGoogle Scholar

[16]

Wen XL, Xu WG, Zhao WJ, Khurgin JB, Xiong QH. Plasmonic hot carriers-controlled second harmonic generation in WSe_{2} bilayers. Nano Lett 2018;18:1686–92. CrossrefWeb of SciencePubMedGoogle Scholar

[17]

Shi JW, Liang WY, Raja SS, et al. Plasmonic enhancement and manipulation of optical nonlinearity in monolayer tungsten disulfide. Laser Photonics Rev 2018;12:1800188. CrossrefWeb of ScienceGoogle Scholar

[18]

Meinzer N, Barnes WL, Hooper IR. Plasmonic meta-atoms and metasurfaces. Nat Photonics 2014;8:889–98. Web of ScienceCrossrefGoogle Scholar

[19]

Li GX, Chen SM, Pholchai N, et al. Continuous control of the nonlinearity phase for harmonic generations. Nat Mater 2015;14:607–12. CrossrefWeb of SciencePubMedGoogle Scholar

[20]

Sain B, Meier C, Zentgraf T. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review. Adv Photonics 2019;1:1–14. Google Scholar

[21]

Chen XX, Wang H, Xu NS, Chen HJ, Deng SZ. Resonance coupling in hybrid gold nanohole-monolayer WS_{2} nanostructures. Appl Mater Today 2019;15:145–52. CrossrefWeb of ScienceGoogle Scholar

[22]

Mukherjee B, Kaushik N, Tripathi RPN, et al. Exciton emission intensity modulation of monolayer MoS_{2} via Au plasmon coupling. Sci Rep-Uk 2017;7:41175. Web of ScienceCrossrefGoogle Scholar

[23]

Novotny L. Effective wavelength scaling for optical antennas. Phys Rev Lett 2007;98:266802. Web of SciencePubMedCrossrefGoogle Scholar

[24]

Huang LL, Chen XZ, Muhlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett 2012;12:5750–5. Web of ScienceCrossrefPubMedGoogle Scholar

[25]

Chen XZ, Huang LL, Muhlenbernd H, et al. Dual-polarity plasmonic metalens for visible light. Nat Commun 2012; 3:1198. Web of SciencePubMedCrossrefGoogle Scholar

[26]

Xiao J, Ye ZL, Wang Y, Zhu HY, Wang Y, Zhang X. Nonlinear optical selection rule based on valley-exciton locking in monolayer WS_{2}. Light-Sci Appl 2015;4:e366. CrossrefGoogle Scholar

[27]

Bhagavantam S, Chandrasekhar P. Harmonic generation and selection rules in nonlinear optics. Proc Indian Acad Sci – Sect A 1972;76:13–20. CrossrefGoogle Scholar

[28]

Boyd RW. Nonlinear optics, 3rd ed. Cambridge, MA: Academic Press, Inc., 2008. Google Scholar

[29]

Pu Y, Grange R, Hsieh CL, Psaltis D. Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. Phys Rev Lett 2010;104:207402. PubMedCrossrefWeb of ScienceGoogle Scholar

[30]

Linnenbank H, Grynko Y, Forstner J, Linden S. Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas. Light-Sci Appl 2016;5:e16013. Web of ScienceCrossrefPubMedGoogle Scholar

[31]

Butet J, Duboisset J, Bachelier G, et al. Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium. Nano Lett 2010;10:1717–21. CrossrefWeb of ScienceGoogle Scholar

[32]

Bomzon ZE, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Opt Lett 2002;27: 1141–3. CrossrefPubMedGoogle Scholar

[33]

Berry MV. The adiabatic phase and Pancharatnam phase for polarized-light. J Mod Optic 1987;34:1401–7. CrossrefGoogle Scholar

[34]

Pancharatnam S. Generalized theory of interference and its applications. Proc Indian Acad Sci Sect A 1956;44:398–417. CrossrefGoogle Scholar

[35]

Walter F, Li GX, Meier C, Zhang S, Zentgraf T. Ultrathin nonlinear metasurface for optical image encoding. Nano Lett 2017;17:3171–5. Web of SciencePubMedCrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.