Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanospectroscopy

1 Issue per year

Open Access
Online
ISSN
2300-3537
See all formats and pricing
More options …

Extension of solid immersion lens technology to super-resolution Raman microscopy

Edwin Ostertag
  • Corresponding author
  • Process Analysis & Technology, Reutlingen Research Institute, Reutlingen University, Alteburgstr. 150, D-72762 Reutlingen
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anita Lorenz
  • Corresponding author
  • Process Analysis & Technology, Reutlingen Research Institute, Reutlingen University, Alteburgstr. 150, D-72762 Reutlingen
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karsten Rebner
  • Corresponding author
  • Process Analysis & Technology, Reutlingen Research Institute, Reutlingen University, Alteburgstr. 150, D-72762 Reutlingen
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rudolf W. Kessler
  • Corresponding author
  • Process Analysis & Technology, Reutlingen Research Institute, Reutlingen University, Alteburgstr. 150, D-72762 Reutlingen
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alfred J. Meixner
  • Corresponding author
  • Institute for Physical and Theoretical Chemistry, Auf der Morgenstelle 18, University of Tübingen, D-72076 Tübingen
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-11-22 | DOI: https://doi.org/10.2478/nansp-2014-0001

Abstract

Scanning Near-Field Optical Microscopy (SNOM) has developed during recent decades into a valuable tool to optically image the surface topology of materials with super-resolution. With aperture-based SNOM systems, the resolution scales with the size of the aperture, but also limits the sensitivity of the detection and thus the application for spectroscopic techniques like Raman SNOM. In this paper we report the extension of solid immersion lens (SIL) technology to Raman SNOM. The hemispherical SIL with a tip on the bottom acts as an apertureless dielectric nanoprobe for simultaneously acquiring topographic and spectroscopic information. The SIL is placed between the sample and the microscope objective of a confocal Raman microscope. The lateral resolution in the Raman mode is validated with a cross section of a semiconductor layer system and, at approximately 180 nm, is beyond the classical diffraction limit of Abbe.

Keywords: solid immersion lens; near-field; SNOM; nanoscopy; super-resolution; Raman spectroscopy; diffraction limit; chemical imaging; BAM L-200 reference pattern

References

  • [1] Mansfield, S. M.; Kino, G. S., Solid immersion microscope. Applied Physics Letters 1990, 57 (24), 2615-2616. CrossrefGoogle Scholar

  • [2] Mansfield, S. M.; Studenmund, W. R.; Kino, G. S.; Osato, K., High-numerical-aperture lens system for optical storage. Optics letters 1993, 18 (4), 305-307. CrossrefGoogle Scholar

  • [3] Matsuo, S.; Misawa, H., Direct measurement of laser power through a high numerical aperture oil immersion objective lens using a solid immersion lens. Review of Scientific Instruments 2002, 73 (5), 2011-2015. CrossrefGoogle Scholar

  • [4] Milster, T. D.; Akhavan, F.; Bailey, M.; Erwin, J. K.; Felix, D. M.; Hirota, K.; Koester, S.; Shimura, K.; Zhang, Y., Super-Resolution by Combination of a Solid Immersion Lens and an Aperture. Japanese Journal of Applied Physics 2001, 40 (Part 1, No. 3B), 1778-1782. CrossrefGoogle Scholar

  • [5] Chau, Y.-F.; Yang, T.-J.; Tsai, D. P., Near-field optics simulation of a solid immersion lens combining with a conical probe and a highly efficient solid immersion lens-probe system. Journal of Applied Physics 2004, 95 (7), 3378-3384. CrossrefGoogle Scholar

  • [6] Ippolito, S. B.; Goldberg, B. B.; Unlu, M. S., Theoretical analysis of numerical aperture increasing lens microscopy. Journal of Applied Physics 2005, 97 (5), 053105-12. CrossrefGoogle Scholar

  • [7] Bischoff, J.; Brunner, R., Numerical investigation of the resolution in solid immersion lens systems. Proceedings of SPIE 2000, 4099 (1), 235. Google Scholar

  • [8] Milster, T. D.; Jo, J. S.; Hirota, K., Roles of Propagating and Evanescent Waves in Solid Immersion Lens Systems. Applied Optics 1999, 38 (23), 5046-5057. CrossrefGoogle Scholar

  • [9] Ippolito, S. B.; Terada, H., Annular illumination and collection in solid immersion, In International Symposium for Testing and Failure Analysis ISTFA, San Jose, CA, ASM International Materials Park, Ohio: San Jose, CA, 2009; pp 60-64. Google Scholar

  • [10] Ostertag, E.; Merz, T.; Kessler, R. W., Multimodal spatially resolved near-field scattering and absorption spectroscopy. Proceedings of SPIE 2012, 8231, 82310A-1-82310A-10. Google Scholar

  • [11] Koyama, K.; Yoshita, M.; Baba, M.; Suemoto, T.; Akiyama, H., High collection efficiency in fluorescence microscopy with a solid immersion lens. Applied Physics Letters 1999, 75 (12), 1667-1669. CrossrefGoogle Scholar

  • [12] Kim, M.-S.; Scharf, T.; Brun, M.; Olivier, S.; Nicoletti, S.; Herzig, H. P., Advanced optical characterization of micro solid immersion lens. Proceedings of SPIE 2012, 8430, 84300E-1- 84300E-10. Google Scholar

  • [13] Kim, M.-S.; Scharf, T.; Haq, M. T.; Nakagawa, W.; Herzig, H. P., Subwavelength-size solid immersion lens. Optics letters 2011, 36 (19), 3930. CrossrefGoogle Scholar

  • [14] R. Brunner; Dobschal, H. J., Diffractive Optical Lenses in Imaging Systems–High-Resolution Microscopy and Diffractive Solid Immersion Systems. In Optical Imaging and Microscopy: Techniques and Advanced Systems, 2nd edition ed.; Török, P.; Kao, F.-J., Eds. Springer: Heidelberg, 2007; pp 45-70. Google Scholar

  • [15] Frey, H. G.; Bolwien, C.; Brandenburg, A.; Ros, R.; Anselmetti, D., Optimized apertureless optical near-field probes with 15 nm optical resolution. Nanotechnology 2006, 17, 3105-3110. Google Scholar

  • [16] Goldberg, B. B.; Ippolito, S. B.; Novotny, L.; Liu, Z.; Ünlü, M. S., Immersion Lens Microscopy of Photonic Nanostructures and Quantum Dots. IEEE Journal of Selected Topics in Quantum Electronics 2002, 8 (5), 1051-1059. CrossrefGoogle Scholar

  • [17] Terris, B.; Mamin, H. J.; Rugar, D.; Studenmund, W.; Kino, G. S., Near-field optical data storage using a solid immersion lens. Applied Physics Letters 1994, 65 (4), 388-390. CrossrefGoogle Scholar

  • [18] Daiichi, K.; Takeshi, K.; Ryuji, S.; Haruki, T.; Yoshimichi, T.; Kiyoshi, O., Near-Field Optical Recording Using Solid Immersion Lens for High-Density Flexible Optical Disks. Japanese Journal of Applied Physics 2013, 52 (9S2), 09LG01. Google Scholar

  • [19] Park, K.-S.; Kim, T.; Lee, W.-S.; Joe, H.-E.; Min, B.-K.; Park, Y.-P.; Yang, H.; Kang, S.-M.; Park, N.-C., Application of Solid Immersion Lens-Based Near-Field Recording Technology to High-Speed Plasmonic Nanolithography. Japanese Journal of Applied Physics 2012, 51, 08JF01-08JF07. Google Scholar

  • [20] Park, N.-C.; Young-Pil, P.; Park, K.-S.; Hyunseok, Y., Applications of Next Generation Optical Data Storage Technologies. IEEE Transactions on Magnetics 2011, 47 (3), 669-678. CrossrefGoogle Scholar

  • [21] Ishimoto, T.; Aki, Y.; Kondo, T.; Kishima, K.; Yamamoto, K.; Yamamoto, M., Near-Field Optical Head for Disc Mastering Process. Japanese Journal of Applied Physics 2000, 39 (Part 1, No. 2B), 800-805. Google Scholar

  • [22] Ippolito, S. B.; Goldberg, B. B.; Unlu, M. S., High spatial resolution subsurface microscopy. Applied Physics Letters 2001, 78 (26), 4071-4073. CrossrefGoogle Scholar

  • [23] Dozor, D. M.; Kim, Y.; Tumidajski; Fancher, G.; Salvestrini, K.; Holt, d.; DeWitt, R. Inspection system ultilizing solid immersion lenses. Patent US020120092655A1, 2012. Google Scholar

  • [24] Merz, T.; Kessler, R. W., Spectroscopic Imaging in the Near Field with an Apertureless Solid Immersion Lens Microscope. Proceedings of SPIE 2007, 6631, 66310V-1 - 6631V-10. Google Scholar

  • [25] Wu, Q.; Ghislain, L. P.; Elings, V. B., Imaging with solid immersion lenses, spatial resolution, and applications. Proceedings of the IEEE 2000, 88 (9), 1491 - 1498. Google Scholar

  • [26] Karrai, K.; Lorenz, X.; Novotny, L., Enhanced reflectivity contrast in confocal solid immersion lens microscopy. Applied Physics Letters 2000, 77 (21), 3459-3461. CrossrefGoogle Scholar

  • [27] Wildanger, D.; Patton, B. R.; Schill, H.; Marseglia, L.; Hadden, J. P.; Knauer, S.; Schönle, A.; Rarity, J. G.; O’Brien, J. L.; Hell, S. W.; Smith, J. M., Solid Immersion Facilitates Fluorescence Microscopy with Nanometer Resolution and Sub-Ångström Emitter Localization. Advanced Materials 2012, 24 (44), OP309-OP313. Google Scholar

  • [28] Ghislain, L. P.; Elings, V. B.; Crozier, K. B.; Manalis, S. R.; Minne, S. C.; Wilder, K.; Kino, G. S.; Quate, C. F., Near-field photolithography with a solid immersion lens. Applied Physics Letters 1999, 74 (4), 501-503. CrossrefGoogle Scholar

  • [29] Kino, G., Applications and theory of the solid immersion lens. Proceedings of SPIE 1999, 3609 (1), 56-65. Google Scholar

  • [30] Vollmer, M.; Giessen, H.; Stolz, W.; Rühle, W. W.; Ghislain, L.; Elings, V., Ultrafast nonlinear subwavelength solid immersion spectroscopy at T=8 K. Applied Physics Letters 1999, 74 (13), 1791-1793. CrossrefGoogle Scholar

  • [31] Hartschuh, A.; Sánchez, E. J.; Xie, X. S.; Novotny, L., High-Resolution Near-Field Raman Microscopy of Single-Walled Carbon Nanotubes. Physical Review Letters 2003, 90 (9), 095503. CrossrefGoogle Scholar

  • [32] Lerman, G. M.; Israel, A.; Lewis, A., Applying solid immersion near-field optics to Raman analysis of strained silicon thin films. Applied Physics Letters 2006, 89 (22), 223122. CrossrefGoogle Scholar

  • [33] Athalin, H.; Lefrant, S., Optically addressable selective nanovolume Raman spectroscopy of nanoparticles. Journal of Nanoparticle Research 2005, 7 (1), 89-93. CrossrefGoogle Scholar

  • [34] Desmedt, A.; Talaga, D.; Bruneel, J. L., Enhancement of the Raman Scattering Signal Due to a Nanolens Effect. Applied Spectroscopy 2007, 61 (6), 621-623. CrossrefGoogle Scholar

  • [35] Poweleit, C. D.; Gunther, A.; Goodnick, S.; Menéndez, J., Raman imaging of patterned silicon using a solid immersion lens. Applied Physics Letters 1998, 73 (16), 2275-2277. CrossrefGoogle Scholar

  • [36] Brunner, R.; Burkhardt, M.; Pesch, A.; Sandfuchs, O.; Ferstl, M.; Hohng, S.; White, J. O., Diffraction-based solid immersion lens. Journal of the Optical Society of America A 2004, 21 (7), 1186-1191. CrossrefGoogle Scholar

  • [37] Ghislain, L. P.; Elings, V. B., Near-field scanning solid immersion microscope. Applied Physics Letters 1998, 72 (22), 2779-2781. CrossrefGoogle Scholar

  • [38] Yoshita, M.; Koyama, K.; Baba, M.; Akiyama, H., Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy. Journal of Applied Physics 2002, 92 (2), 862-865. CrossrefGoogle Scholar

  • [39] Zayats, A.; Richards, D., Nano-Optics and Near-Field Optical Microscopy. Artech House, Inc.: Boston, 2009. Google Scholar

  • [40] Hecht, B.; Sick, B.; Wild, U. P.; Deckert, V.; Zenobi, R.; Martin, O. J. F.; Pohl, D. W., Scanning near-field optical microscopy with aperture probes: Fundamentals and applications. The Journal of Chemical Physics 2000, 112 (18), 7761-7774. CrossrefGoogle Scholar

  • [41] Knoll, B.; Keilmann, F., Electromagnetic fields in the cutoff regime of tapered metallics waveguides. Optics Communications 1999, 162, 177-181. Google Scholar

  • [42] Ostertag, E.; Merz, T. R.; Kessler, R. W., Imaging beyond diffraction limit - prospectives for the NIR. Proc. of the 15th International Conference on Near Infared Spectroscopy NIRS 2012 2013, 41-46. Google Scholar

  • [43] Naturwissenschaftliches und Medizinisches Institut (NMI) an der Universität Tübingen, http://www.nmi.de. Google Scholar

  • [44] Ghislain, L. P.; Elings, V. B. Scanning probe optical microscope using a solid immersion lens. Patent WO98/58288, 1998. Google Scholar

  • [45] Bundesanstalt für Materialforschung, http://www. rm-certificates.bam.de/de/rm-certificates_media/rm_cert_ layer_and_surface/bam_l200e.pdf. Google Scholar

  • [46] Blakemore, J. S., Semiconducting and other major properties of gallium arsenide. Journal of Applied Physics 1982, 53 (10), R123-R181. CrossrefGoogle Scholar

  • [47] Burns, G.; Dacol, F. H.; Wie, C. R.; Burstein, E.; Cardona, M., Phonon shifts in ion bombarded GaAs: Raman measurements. Solid State Communications 1987, 62 (7), 449-454. CrossrefGoogle Scholar

  • [48] Chang, Y.-C.; Ren, S.-F.; Wen, G., Raman spectra of GaAs-AlxGa1- xAs superlattices. Superlattices and Microstructures 1993, 13 (2), 165-168. CrossrefGoogle Scholar

  • [49] Johnston, W. D. J.; Kaminow, I. P., Contributions to Optical Nonlinearity in GaAs as Determined from Raman Scattering Efficiencies. Physical Review 1969, 188 (3), 1209-1211. CrossrefGoogle Scholar

  • [50] Mooradian, A.; Wright, G. B., First order Raman effect in III-V compounds. Solid State Communications 1966, 4, 431-434. CrossrefGoogle Scholar

  • [51] Kubota, K.; Nakayama, M.; Katoh, H.; Sano, N., Characterization of GaAs-AlAs superlattices by laser Raman spectroscopy. Solid State Communications 1984, 49 (2), 157-159. CrossrefGoogle Scholar

  • [52] Sood, A. K.; Menéndez, J.; Cardona, M.; Ploog, K., Interface vibrational modes in GaAs-AlAs superlattices. Physical Review Letters 1985, 54 (19), 2115-2118. CrossrefGoogle Scholar

  • [53] Fauchet, P. M.; Campbell, I. H., Raman spectroscopy of low-dimensional semiconductors. Critical Reviews in Solid State and Materials Sciences 1988, 14 (Sup1), S79-S101. Google Scholar

  • [54] Deutsches Institut für Normung, DIN ISO 9334:2008-08 Optics and photonics - Optical transfer function - Definitions and mathematical relationships. 2008. Google Scholar

  • [55] Senoner, M.; Wirth, T.; Unger, W. E. S., Imaging surface analysis: Lateral resolution and its relation to contrast and noise. Journal of Analytical Atomic Spectrometry 2010, 25 (9), 1440-1452. CrossrefGoogle Scholar

  • [56] Cox, G.; Sheppard, C. J. R., Practical limits of resolution in confocal and non-linear microscopy. Microscopy Research and Technique 2004, 63 (1), 18-22. CrossrefGoogle Scholar

  • [57] Sheppard, C. J. R.; Choudhury, A., Image Formation in the Scanning Microscope. Optica Acta: International Journal of Optics 1977, 24 (10), 1051-1073. CrossrefGoogle Scholar

  • [58] Cox, I. J.; Sheppard, C. J. R.; Wilson, T., Super-resolution by confocal fluorescent microscopy. Optik 1982, 60 (4), 391-396. Google Scholar

About the article

Received: 2014-06-22

Accepted: 2014-10-08

Published Online: 2014-11-22


Citation Information: Nanospectroscopy, Volume 1, Issue 1, ISSN (Online) 2300-3537, DOI: https://doi.org/10.2478/nansp-2014-0001.

Export Citation

© 2014 Edwin Ostertag et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Rudolf W. Kessler, Edwin Ostertag, and Karsten Rebner
BIOspektrum, 2017, Volume 23, Number 3, Page 282

Comments (0)

Please log in or register to comment.
Log in