Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanospectroscopy

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2300-3537
See all formats and pricing
More options …

Optical properties of silver nanocube surfaces obtained by silane immobilization

Virginia Merk
  • Corresponding author
  • Humboldt- Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander Nerz
  • Corresponding author
  • Humboldt- Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sebastian Fredrich
  • Corresponding author
  • Humboldt- Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ulrich Gernert
  • Corresponding author
  • Technical University Berlin, ZELMI, Straße des 17. Juni 135, 10623 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sören Selve
  • Corresponding author
  • Technical University Berlin, ZELMI, Straße des 17. Juni 135, 10623 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Janina Kneipp
  • Corresponding author
  • Humboldt- Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-19 | DOI: https://doi.org/10.2478/nansp-2014-0003

Abstract

Silver nanocubes were synthesized by the polyol method and immobilized on a surface in a simple approach using an aminopropyltriethoxysilane (APTES). The optical and structural properties of the polyvinylpyrrolidone (PVP) stabilized nanocubes were investigated in solution and on glass surfaces. The SERS enhancement factors at two excitation wavelengths for crystal violet were compared with electric fields arising in different nano¬particle configurations using finite-difference time-domain simulations. They are in agreement with the preferred face-to-face orientation in the nanoaggregates on the surfaces. The facile immobilization enables on-demand preparation and use of the nanocubes in real analytical applications.

Keywords: silver nanocubes; surface-enhanced Raman scattering; immobilization; aminopropyl¬triethoxy ¬silane; finite difference time domain simulation

References

  • [1] Lee H.K., Lee Y.H., Zhang Q., Phang I.Y., Tan J.M.R., Cui Y. and Ling X.Y., Superhydrophobic Surface-Enhanced Raman Scattering Platform Fabricated by Assembly of Ag Nanocubes for Trace Molecular Sensing, Appl. Mater. Interf., 2013, 5, 11409-11418. Web of ScienceGoogle Scholar

  • [2] Kodiyath R., Malak S.T., Combs Z.A., Koenig T., Mahmoud M.A., El-Sayed M.A. and Tsukruk V.V., Assemblies of silver nanocubes for highly sensitive SERS chemical vapor detection, J. Mater. Chem. A, 2013, 1, 2777-2788. Google Scholar

  • [3] Liu X.-L., Liang S., Nan F., Yang Z.-J., Yu X.-F., Zhou L., Hao Z.-H. and Wang Q.-Q., Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS, Nanoscale, 2013, 5, 5368-5374. Google Scholar

  • [4] Sisco P.N. and Murphy C.J., Surface-Coverage Dependence of Surface-Enhanced Raman Scattering from Gold Nanocubes on Self-Assembled Monolayers of Analyte, J. Phys. Chem. A, 2009, 113, 3973-3978. Google Scholar

  • [5] Fievet F., Lagier J.P. and Figlarz M., Preparing Monodisperse Metal Powders in Micrometer and Submicrometer Sizes by the Polyol Process, MRS Bulletin, 1989, 14, 29-34. Google Scholar

  • [6] Sun Y. and Xia Y., Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science, 2002, 298, 2176-2179. Google Scholar

  • [7] Wang Y., Zheng Y.Q., Huang C.Z. and Xia Y.N., Synthesis of Ag Nanocubes 18-32 nm in Edge Length: The Effects of Polyol on Reduction Kinetics, Size Control, and Reproducibility, J. Am. Chem. Soc., 2013, 135, 1941-1951. Web of ScienceGoogle Scholar

  • [8] Ringe E., McMahon J.M., Sohn K., Cobley C., Xia Y., Huang J., Schatz G.C., Marks L.D. and Van Duyne R.P., Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach, J. Phys. Chem. C, 2010, 114, 12511-12516. Web of ScienceGoogle Scholar

  • [9] McMahon J.M., Wang Y., Sherry L.J., Van Duyne R.P., Marks L.D., Gray S.K. and Schatz G.C., Correlating the Structure, Optical Spectra, and Electrodynamics of Single Silver Nanocubes, J. Phys. Chem. C, 2009, 113, 2731-2735. Web of ScienceGoogle Scholar

  • [10] Mahmoud M.A., Tabor C.E. and El-Sayed M.A., Surface- Enhanced Raman Scattering Enhancement by Aggregated Silver Nanocube Monolayers Assembled by the Langmuir−Blodgett Technique at Different Surface Pressures, J. Phys. Chem. C, 2009, 113, 5493-5501. Google Scholar

  • [11] Lee S.Y., Hung L., Lang G.S., Cornett J.E., Mayergoyz I.D. and Rabin O., Dispersion in the SERS Enhancement with Silver Nanocube Dimers, ACS Nano, 2010, 4, 5763-5772. Web of ScienceCrossrefGoogle Scholar

  • [12] McLellan J.M., Li Z.-Y., Siekkinen A.R. and Xia Y., The SERS Activity of a Supported Ag Nanocube Strongly Depends on Its Orientation Relative to Laser Polarization, Nano Lett., 2007, 7, 1013-1017. Web of ScienceGoogle Scholar

  • [13] McLellan J.M., Siekkinen A., Chen J. and Xia Y., Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes, Chem. Phys. Lett., 2006, 427, 122-126. Google Scholar

  • [14] Fang C., Brodoceanu D., Kraus T. and Voelcker N.H., Templated silver nanocube arrays for single-molecule SERS detection, RSC Advances, 2013, 3, 4288-4293. Google Scholar

  • [15] Joseph V., Gensler M., Seifert S., Gernert U., Rabe J.P. and Kneipp J., Nanoscopic Properties and Application of Mix-and- Match Plasmonic Surfaces for Microscopic SERS, J. Phys. Chem. C, 2012, 116, 6859-6865. Web of ScienceGoogle Scholar

  • [16] Grabar K.C., Freeman R.G., Hommer M.B. and Natan M.J., Preparation and Characterization of Au Colloid Monolayers, Anal. Chem., 1995, 67, 735-743. Google Scholar

  • [17] Chumanov G., Sokolov K., Gregory B.W. and Cotton T.M., Colloidal metal films as a substrate for surface-enhanced spectroscopy, J. Phys. Chem., 1995, 99, 9466-9471. Google Scholar

  • [18] Polwart E., Keir R.L., Davidson C.M., Smit W.E. and Sadler D.A., Novel SERS-Active Optical Fibers Prepared by the Immobilization of Silver Colloidal Particles, Appl. Spec., 2000, 54, 522-527. Google Scholar

  • [19] Cant N.E., Critchley K., Zhang H.-L. and Evans S.D., Surface functionalisation for the self-assembly of nanoparticle/polymer multilayer films, Thin Solid Films, 2003, 426, 31-39. Google Scholar

  • [20] Kudelski A., Raman studies of rhodamine 6G and crystal violet sub-monolayers on electrochemically roughened silver substrates: Do dye molecules adsorb preferentially on highly SERS-active sites?, Chem. Phys. Lett., 2005, 414, 271-275. Google Scholar

  • [21] Johnson P.B. and Christy R.W., Optical Constants of the Noble Metals, Phys. Rev. B, 1972, 6, 4370-4379. Google Scholar

  • [22] Zhou F., Li Z.-Y., Liu Y. and Xia Y., Quantitative Analysis of Dipole and Quadrupole Excitation in the Surface Plasmon Resonance of Metal Nanoparticles, J. Phys. Chem. C, 2008, 112, 20233-20240. Web of ScienceGoogle Scholar

  • [23] Zhang Q., Li W., Moran C., Zeng J., Chen J., Wen L.-P. and Xia Y., Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30−200 nm and Comparison of Their Optical Properties, J. Am. Chem. Soc., 2010, 132, 11372-11378. Google Scholar

  • [24] Im S.H., Lee Y.T., Wiley B. and Xia Y., Large-Scale Synthesis of Silver Nanocubes: The Role of HCl in Promoting Cube Perfection and Monodispersity, Angew. Chem. Int. Ed., 2005, 44, 2154-2157. Google Scholar

  • [25] Wiley B.J., Im S.H., Li Z.-Y., McLellan J., Siekkinen A. and Xia Y., Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis, J. Phys. Chem. B, 2006, 110, 15666-15675. Google Scholar

  • [26] Grillet N., Manchon D., Bertorelle F., Bonnet C., Broyer M., Cottancin E., Lermé J., Hillenkamp M. and Pellarin M., Plasmon Coupling in Silver Nanocube Dimers: Resonance Splitting Induced by Edge Rounding, ACS Nano, 2011, 5, 9450-9462. Web of ScienceGoogle Scholar

  • [27] Sherry L.J., Chang S.-H., Schatz G.C., Van Duyne R.P., Wiley B.J. and Xia Y., Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes, Nano Lett., 2005, 5, 2034-2038. Google Scholar

  • [28] Bottomley A., Prezgot D., Staff A. and Ianoul A., Fine tuning of plasmonic properties of monolayers of weakly interacting silver nanocubes on thin silicon films, Nanoscale, 2012, 4, 6374-6382. Google Scholar

  • [29] Cañamares M.V., Chenal C., Birke R.L. and Lombardi J.R., DFT, SERS, and Single-Molecule SERS of Crystal Violet, J Phys. Chem. C, 2008, 112, 20295-20300. Google Scholar

  • [30] Osawa M., Matsuda N., Yoshii K. and Uchida I., Charge- Transfer Resonance Raman Process in Surface-Enhanced Raman-Scattering from P-Aminothiophenol Adsorbed on Silver - Herzberg-Teller Contribution, J. Phys. Chem., 1994, 98, 12702-12707. Google Scholar

  • [31] Huang Y.-F., Wu D.-Y., Zhu H.-P., Zhao L.-B., Liu G.-K., Ren B. and Tian Z.-Q., Surface-enhanced Raman spectroscopic study of p-aminothiophenol, Phys. Chem. Chem. Phys., 2012, 14, 8485-8497. Google Scholar

  • [32] Moran C.H., Rycenga M., Zhang Q. and Xia Y.N., Replacement of Poly(vinyl pyrrolidone) by Thiols: A Systematic Study of Ag Nanocube Functionalization by Surface-Enhanced Raman Scattering, J. Phys. Chem. C, 2011, 115, 21852-21857. Web of ScienceGoogle Scholar

  • [33] Joseph V., Matschulat A., Polte J., Rolf S., Emmerling F. and Kneipp J., SERS enhancement of gold nanospheres of defined size, J. Raman Spec., 2011, 42, 1736-1742. Google Scholar

  • [34] Camargo P.H.C., Au L., Rycenga M., Li W. and Xia Y., Measuring the SERS enhancement factors of dimers with different structures constructed from silver nanocubes, Chem. Phys. Lett., 2010, 484, 304-308. Web of ScienceGoogle Scholar

  • [35] Hao E. and Schatz G.C., Electromagnetic fields around silver nanoparticles and dimers, J. Chem. Phys., 2004, 120, 357-366. Google Scholar

About the article

Received: 2014-06-26

Accepted: 2014-11-06

Published Online: 2015-01-19


Citation Information: Nanospectroscopy, ISSN (Online) 2300-3537, DOI: https://doi.org/10.2478/nansp-2014-0003.

Export Citation

© 2014 Virginia Merk et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in