Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanospectroscopy

1 Issue per year

Open Access
Online
ISSN
2300-3537
See all formats and pricing
More options …

On the SERS depolarization ratio

Antonino Foti
  • Corresponding author
  • CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, Messina, I-98158, Italy
  • Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno D’Alcontres, 31, 98166 Messina, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cristiano D’Andrea
  • Corresponding author
  • CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, Messina, I-98158, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elena Messina
  • Corresponding author
  • CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, Messina, I-98158, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alessia Irrera
  • Corresponding author
  • CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, Messina, I-98158, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Onofrio M. Maragò
  • Corresponding author
  • CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, Messina, I-98158, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Barbara Fazio
  • Corresponding author
  • CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, Messina, I-98158, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pietro G. Gucciardi
  • Corresponding author
  • CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, Messina, I-98158, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-23 | DOI: https://doi.org/10.1515/nansp-2015-0001

Abstract

The Raman depolarization ratio is a quantity that can be easily measured experimentally and offers unique information on the Raman polarizability tensor of molecular vibrations. In Surface Enhanced Raman Scattering (SERS), molecules are near-field coupled with optical nanoantennas and their scattering properties are strongly affected by the radiation patterns of the nanoantenna. The polarization of the SERS photons is consequently modified, affecting, in a non trivial way, the measured value of the SERS depolarization ratio. In this article we elaborate a model that describes how the SERS depolarization ratio is influenced by the nanoantenna re-radiation properties, suggesting how to retrieve information on the Raman polarizability from SERS experiments.

Keywords: Raman scattering; Depolarization ratio; SERS

References

  • [1] Novotny, L. and Van Hulst, N. (2011) Antennas for light, Nat. Photonics, 5, pp. 83-90. CrossrefGoogle Scholar

  • [2] Schuller, J. A.; Barnard, E. S.; Cai, W. S.; Jun, Y. C.; White, J. S.; Brongersma, M. L. (2010) Plasmonics for extreme light concentration and manipulation, Nat. Mater., 9, pp. 193-204. CrossrefWeb of ScienceGoogle Scholar

  • [3] Moskovits, M. (1985) Surface-Enhanced Raman Spectroscopy. Rev. Mod. Phys. 57, pp. 783–826. Google Scholar

  • [4] Le Ru, E.; Etchegoin, P. (2009) Principles of Surface Enhanced Raman Spetroscopy (Elsevier, Amsterdam). Google Scholar

  • [5] Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W. (1992). Surfaceenhanced Raman scattering. J. Phys. Condens. Mat., 4, pp. 1143-1212. CrossrefGoogle Scholar

  • [6] Geddes, C. D.; Lakowicz, J. R. (2002) Metal-enhanced fluorescence, J. Fluoresc., 12, pp. 121-129. CrossrefGoogle Scholar

  • [7] Farahani, J.N.; Pohl, D.W.; Eisler, H.J.; Hecht, B. (2005) Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter, Phys. Rev. Lett., 95, 017402. CrossrefGoogle Scholar

  • [8] Kinkhabwala, A.; Yu, Z. F.; Fan, S. H.; Avlasevich, Y.; Mullen, K.; Moerner, W. E. (2005) Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna, Nat. Photonics 2009, 3, 654-657. Web of ScienceGoogle Scholar

  • [9] Hartstein, A.; Kirtley, R. J.; Tsang, C. J. (1980) Enhancement of the Infrared Absorption from Molecular Monolayers with Thin Metal Overlayers, Phys. Rev. Lett., 45, pp. 201-204. CrossrefGoogle Scholar

  • [10] Neubrech, F.; Pucci, A.; Cornelius, T.W.; Karim, S.; Garcia- Etxarri, A.; Aizpurua, J. (2008) Resonant Plasmnic and Vibrational Coupling in a Tailored Nanoantenna for Infrared Detection, Phys. Rev. Lett., 101, art no. 157403. CrossrefWeb of ScienceGoogle Scholar

  • [11] Homola, J. (2008) Surface plasmon resonance sensors for detection of chemical and biological species, Chem. Rev., 108, pp. 462-493. CrossrefWeb of ScienceGoogle Scholar

  • [12] Aslan, K.; Gryczynski, I.; Malicka, J.; Matveeva, E.; Lakowicz, J. R.; Geddes, C. D., (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology, Curr. Opin. Biotech., 16, pp. 55-62. CrossrefGoogle Scholar

  • [13] Xie, W.; Schlucker, S. (2013) Medical applications of surfaceenhanced Raman scattering, Phys. Chem. Chem. Phys., 15, pp. 5329-5344. CrossrefWeb of ScienceGoogle Scholar

  • [14] Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. (2008) Biosensing with plasmonic nanosensors, Nat. Mater., 7, pp. 442-453. CrossrefWeb of ScienceGoogle Scholar

  • [15] D’Andrea, C.; Bochterle, J.; Toma, A.; Huck, C.; Neubrech, F.; Messina, E.; Fazio, B.; Marago, O. M.; Di Fabrizio, E.; de la Chapelle, M. L.; Gucciardi, P.G.; Pucci, A. (2013) Optical Nanoantennas for Multiband Surface-Enhanced Infrared and Raman Spectroscopy. ACS Nano, 7, pp. 3522-3531 Web of ScienceGoogle Scholar

  • [16] Foti, A.; D’Andrea, C.; Bonaccorso, F.; Lanza, M.; Calogero, G.; Messina, E.; Maragò, O. M.; Fazio, B.; Gucciardi, P. G. (2013) A Shape-Engineered Surface-Enhanced Raman Scattering Optical Fiber Sensor Working from the Visible to the Near-Infrared, Plasmonics, 8, pp. 13-23. CrossrefWeb of ScienceGoogle Scholar

  • [17] Messina, E., Cavallaro, E., Cacciola, A., Saija, R., Borghese, F., Denti, P., Fazio, B., D’Andrea, C., Gucciardi, P. G., Iatì, M. A., Meneghetti, M., Compagnini, G., Amendola, V., and Maragò, O. M. (2011). Manipulation and Raman spectroscopy with optically trapped metal nanoparticles obtained by pulsed laser ablation in liquids. J. Phys. Chem. C, 115, 5115-5122. CrossrefWeb of ScienceGoogle Scholar

  • [18] Le Ru, E.; Etchegoin, P. (2006) Rigorous Justification of the |E|^4 Enhancement Factor in Surface Enhanced Raman Spectroscopy, Chem. Phys. Lett., 423, pp. 63-66. CrossrefGoogle Scholar

  • [19] Nagasawa, F.; Takase, M.; Nabika, H.; Murakishi, K. (2011) Polarization Characteristics of Surface-Enhanced Raman Scattering from a Small Number of Molecules at the Gap of a Metal Nano-Dimer, Chem. Comm., 47, pp. 4514-4516 CrossrefGoogle Scholar

  • [20] Le Ru, E. C.; Grand, J.; Félidj, N.; Aubard, J.; Lévi, G.; Hohenau, a; Krenn, J. R.; Blackie, E.; Etchegoin, P. G. (2008) Experimental Verification of the SERS Electromagnetic Model beyond the |E|^4 Approximation: Polarization Effects, J. Phys. Chem. C., 112, pp. 8117-8121. Web of ScienceGoogle Scholar

  • [21] Le Ru, E. C.; Meyer, M.; Blackie, E.; Etchegoin, P. G. (2008) Advanced Aspects of Electromagnetic SERS Enhancement Factors at a Hot Spot, J. Raman Spectrosc., 39, pp. 1127-1134 Web of ScienceCrossrefGoogle Scholar

  • [22] Lee, S. J.; Guan, Z.; Xu, H.; Moskovits, M. (2007) Surface- Enhanced Raman Spectroscopy and Nanogeometry: The Plasmonic Origin of SERS, J. Phys. Chem. C, 11, pp. 17985-17988 CrossrefGoogle Scholar

  • [23] Schatz, G. C. ; Young, M. A.; Van Duyne, R. P. (2006) Electromagnetic mechanism of SERS, Top. Appl. Phys., 103, pp. 19-45 CrossrefGoogle Scholar

  • [24] Wokaun, A. (1984) Surface-Enhanced Electromagnetic Processes. Solid State Phys., 38, pp. 223-294 Google Scholar

  • [25] Hao, E.; Schatz, G. C. (2004) Electromagnetic Fields Around Silver Nanoparticles and Dimers, J. Chem Phys., 120, pp. 357-366 Google Scholar

  • [26] Schnell, M.; Garcia-Etxarri, A. ; Huber A.J.; Crozier, K.; Alkorta, J.; Aizpurua, J.; Hillenbrand, R. (2009) Controlling the Near-Field Oscillations of Loaded Plasmonic Nanoantennas, Nat. Photonics., 3, pp. 287-291 CrossrefWeb of ScienceGoogle Scholar

  • [27] Schnell, M.; Garcia-Etxarri, A. ; Alkorta, J. ; Aizpurua, J. ; Hillenbrand, R. (2010) Phase-Resolved Mapping of the Near-Field Vector and Polarization State in Nanoscale Antenna Gaps, Nano Lett., 10, pp. 3524-3528 Web of ScienceCrossrefGoogle Scholar

  • [28] Quin, L. ; Zou, S. ; Xue, C. ; Atkinson, A. ; Schatz, G. C., Mirkin, C. A. (2006) Designing, fabricating, and imaging Raman hot spots, Proc. Natl. Acad. Sci., 103, pp. 13300-13303 CrossrefGoogle Scholar

  • [29] Garcia-Vidal, F. J.; Pendry, J. B. (1996) Collective Theory for Surface Enhanced Raman Scattering, Phys. Rev. Lett., 77, pp. 1163-1166 CrossrefGoogle Scholar

  • [30] Nie, S. M.; Emory, S. R. (1997) Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering, Science, 275, pp. 1102-1106 Google Scholar

  • [31] Grand, J.; De La Chapelle, M.L.; Bijeon, J.-L.; Adam, P.-M.; Vial, A.; Royer, P. (2005) Role of Localized Surface Plasmons in Surface-Enhanced Raman Scattering of Shape-Controlled Metallic Particles in Regular Arrays, Phys. Rev. B, 73, art. no. 033407 CrossrefGoogle Scholar

  • [32] Baik, J. M.; Lee, S. J.; Moskovits, M. (2009) Polarized Surface- Enhanced Raman Spectroscopy from Molecules Adsorbed in Nano-Gaps Produced by Electromigration in Silver Nanowires, Nano Lett., 9, pp. 672-679 Web of ScienceCrossrefGoogle Scholar

  • [33] Wei, H.; Hao, F.; Huang, Y.; Wang, W.; Nordlander, P.; Xu, H. X. (2008) Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticle-Nanowire Systems, Nano Lett., 8, pp. 2497-2502 CrossrefWeb of ScienceGoogle Scholar

  • [34] Shegai, T.; Li, Z.; Dadosh, T.; Zhang, Z.; Xu, H.; Haran, G. (2008) Managing Light Polarization via Plasmon-Molecule Interactions within an Asymmetric Metal Nanoparticle Trimer, Proc. Natl. Acad. Sci. U.S.A., 105, pp. 16448-16453 CrossrefWeb of ScienceGoogle Scholar

  • [35] Bosnick, K. A.; Jiang, J.; Brus, L. E. (2002) Fluctuations and Local Symmetry in Single-Molecule Rhodamine 6G Raman Scattering on Silver Nanocrystal Aggregates, J. Phys. Chem. B, 106, pp. 8096–8099. CrossrefGoogle Scholar

  • [36] Jiang, J.; Bosnick, K.A.; Maillard, M.; Brus, L. E. (2003) Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals, J. Phys. Chem. B, 107, pp. 9964-9972 CrossrefGoogle Scholar

  • [37] Xu, H. X.; Käll, M. (2003) Polarization-Dependent Surface-Enhanced Raman Spectroscopy of Isolated Silver Nanoaggregates, ChemPhysChem, 4, pp. 1 001-1005 Google Scholar

  • [38] Fazio, B.; D’Andrea, C.; Bonaccorso, F.; Irrera, A.; Calogero, G.; Vasi, C.; Gucciardi, P. G.; Allegrini, M.; Toma, A.; Chiappe, D.; Martella, C.; de Mongeot, F. B. (2011) Re-Radiation Enhancement in Polarized Surface-Enhanced Resonant Raman Scattering of Randomly Oriented Molecules on Self-Organized Gold Nanowires, ACS Nano, 5, pp. 5945-5956. CrossrefWeb of ScienceGoogle Scholar

  • [39] Long, D. A. (2002) The Raman Effect (Wiley and Sons) Google Scholar

  • [40] Le Ru, E. C.; Etchegoin, P. G.; Grand, J.; Felidj, N.; Aubard, J.; Levi, G.; Hohenau, A.; Krenn, J. R. (2008) Surface Enhanced Raman Spectroscopy on Nanolithography-Prepared Substrates, Curr. Appl. Phys., 8, pp. 467-470 CrossrefGoogle Scholar

About the article

Received: 2014-07-21

Accepted: 2014-11-06

Published Online: 2015-03-23


Citation Information: Nanospectroscopy, Volume 1, Issue 1, ISSN (Online) 2300-3537, DOI: https://doi.org/10.1515/nansp-2015-0001.

Export Citation

© 2015 Antonino Foti et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Martin Šubr and Marek Procházka
Nanomaterials, 2018, Volume 8, Number 6, Page 418
[2]
Martin Šubr, Martin Petr, Ondřej Kylián, Josef Štěpánek, Martin Veis, and Marek Procházka
Scientific Reports, 2017, Volume 7, Number 1

Comments (0)

Please log in or register to comment.
Log in