Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanospectroscopy

1 Issue per year

Open Access
Online
ISSN
2300-3537
See all formats and pricing
More options …

Liquid Crystals as an Active Medium: Novel Possibilities in Plasmonics

Roberto Caputo
  • Corresponding author
  • Department of Physics and Centre of Excellence for the Study of Innovative Functional Materials University of Calabria,CNR-IPCF UOS Cosenza 87036 Arcavacata di Rende (CS), Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Giovanna Palermo
  • Corresponding author
  • Department of Physics and Centre of Excellence for the Study of Innovative Functional Materials University of Calabria,CNR-IPCF UOS Cosenza 87036 Arcavacata di Rende (CS), Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Melissa Infusino
  • Corresponding author
  • Department of Physics and Centre of Excellence for the Study of Innovative Functional Materials University of Calabria,CNR-IPCF UOS Cosenza 87036 Arcavacata di Rende (CS), Italy
  • Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito, Quito, Ecuador
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luciano De Sio
  • Corresponding author
  • Department of Physics and Centre of Excellence for the Study of Innovative Functional Materials University of Calabria,CNR-IPCF UOS Cosenza 87036 Arcavacata di Rende (CS), Italy
  • Beam Engineering for Advanced Measurements Company, Winter Park, Florida 32789, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-25 | DOI: https://doi.org/10.1515/nansp-2015-0003

Abstract

The peculiar properties of Liquid Crystals (LCs) foster new possibilities in plasmonics. The combination of the intrinsic tunability of LCs with the plasmonic properties of metallic nanoparticles (NPs) provides novel and intriguing features of systems commonly identified as active plasmonics. Being LCs, one of the media whose refractive index can be controlled through the application of external stimuli, they represent a convenient host for enabling plasmonic tunability. On the other hand, the localized plasmonic resonance, typical of NPs, can strongly influence and control the behaviour of LCs. In this paper, we overview several systems of NPs combined with LCs arranged in different configurations. The properties of the resulting systems suggest novel, intriguing outcomes in both fundamental and applied research.

Keywords: Active Plasmonics; Liquid Crystals; Metamaterials

References

  • [1] A. Kumar, J. Prakash, D. S. Mehta, A. M. Biradar, and W. Haase, “Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals,” Appl. Phys. Lett. 2009, 95(2), 023117. Google Scholar

  • [2] S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett., 2007, 91(6), 061112. Google Scholar

  • [3] F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin, and J. L. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 2006, 97(14), 147801. CrossrefGoogle Scholar

  • [4] W. Lee, C.-Y. Wang, and Y.-C. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Appl. Phys. Lett., 2004, 85(4), 513–515. Google Scholar

  • [5] S.-J. Hwang, S.-C. Jeng, C.-Y. Yang, C.-W. Kuo, and C.-C. Liao, “Characteristics of nanoparticle-doped homeotropic liquid crystal devices, ” J. Phys. D Appl. Phys., 2009, 42(2), 025102. CrossrefGoogle Scholar

  • [6] W.-Z. Chen, Y.-T. Tsai, and T.-H. Lin, “Photoalignment effect in a liquid-crystal film doped with nanoparticles and azo-dye,” Appl. Phys. Lett., 2009, 94(20), 201114. Google Scholar

  • [7] R. Bitar, G. Agez and M. Mitov, Soft Matter, 2011, 7, 8198 CrossrefGoogle Scholar

  • [8] Q. Liu, B. Senyuk, J. Tang, T. Lee, J. Qian, S. He and I.I. Smalyukh, Phys Rev. Lett., 2012, 109, 8, 088301. Google Scholar

  • [9] J.S. Pendery, O. Merchiers, D. Coursault, J. Grand, H. Ayeb, R. Greget, B. Donnio, J.-L. Gallani, C. Rosenblatt, N. Felidj, Y. Borenszteinab and E. Lacaze, Soft Matter, 2013, 9, 9366. CrossrefGoogle Scholar

  • [10] G. Mie, Ann. Phys 1908, 25, 377. Google Scholar

  • [11] A. Cunningham, S. Mühlig, C. Rockstuhl and T. Bürgi, J. Phys. Chem. C, 2011, 115, 8955. 12. G. Decher , Science, 1997, 277, 1232. Google Scholar

  • [13] P.A. Kossyrev, A. Yin, S.G. Cloutier, D.A. Cardimona, D. Huang, P.M. Alsing, J.M. Xu, Nano Lett. 2005, 5, 1978. CrossrefGoogle Scholar

  • [14] L. De Sio, S. Ferjani, G. Strangi, C. Umeton; R. Bartolino, Soft Matter 2011, 7, 3739. Google Scholar

  • [15] L. De Sio, A. Cunningham, V. Verrina, C.M. Tone, R. Caputo, T. Bürgi and C. Umeton, Nanoscale, 2012, 4, 7619-7623. Google Scholar

  • [16] S. Y. Park and D. Stroud, Appl. Phys. Lett., 2004, 85, 2920. Google Scholar

  • [17] H. Wang, A. Vial, J. Quant. Spec. Rad. Tran. 2014, 146, 492. Google Scholar

  • [18] H. Wang, A. Vial, Plasmonics, 2013, 8, 1335. CrossrefGoogle Scholar

  • [19. H. Wang, A. Vial, J. Phys. Chem. C, 2013, 117, 24537. Google Scholar

  • [20] E. Feigenbaum, K. Diest, H. A. Atwater, Nano Lett. 2010, 10, 2111. CrossrefGoogle Scholar

  • [21] M. Abb, P. Albella, J. Aizpurua, O. L. Muskens, Nano Lett 2011, 11, 2457. CrossrefGoogle Scholar

  • [22] Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, T. J. Huang, App. Phys. Lett. 2010, 97, 091101. Google Scholar

  • [23] C. J. Murphy, T. K Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, T. Li, J. Phys. Chem. B 2005, 109, 13857. Google Scholar

  • [24] L. Tian, E. Chen, N. Gandra, A. Abbas, S. Singamaneni, Langmuir 2012, 28 17435. CrossrefGoogle Scholar

  • [25] N.R. Jana, L. Gearheart, C.J. Murphy, Adv. Mater. 2001, 13, 1389 26. R. Gans, Ann.Phys. 1912, 342, 881. Google Scholar

  • [27] L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Bürgi, C. Umeton, T. Bunning J. Mater. Chem. C 2013, 1, 7483 Google Scholar

  • [28] H. Stark. “Physics of colloidal dispersions in nematic liquid crystals” Phys.Rep. 2001, 351, 387- 474. Google Scholar

  • [29] M. Gupta, I. Satpathy, and R. Pratibha. “Nanoparticle induced director distortion and disorder in liquid crystal-nanoparticle dispersions” J. Coll. Inter. Sci. 2010, 352, 292–298. Google Scholar

  • [30] H. Qi and T. Hegman. “Formation of periodic stripe patterns in nematic liquid crystals doped with functionalized gold nanoparticles” J. Mater. Chem. 2006, 16, 4197–4205. CrossrefGoogle Scholar

  • [31] J. Milette, S.J. Cowling, V. Toader, C. Lavigne, I.M. Saez, R.B. Lennox, J.W. Goodby and L. Reven “Reversible long range network formation in gold nanoparticle-nematic liquid crystal composites” Soft Matter 2012, 8, 173–179. Google Scholar

  • [32] M. Infusino, A. De Luca, F. Ciuchi, A. Ionescu, N. Scaramuzza and G. Strangi “Optical and Electrical Characterization of a Gold Nanoparticle Dispersion in a Chiral Liquid Crystal Matrix” J. Mater. Sci. 2014, 49, 1805-1811. CrossrefGoogle Scholar

  • [33] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford, 2nd Ed., 1993. Google Scholar

  • [34] O.D. Lavrentovich, M. Klman and V.M. Pergamenshchik “Nucleation of focal conic domains in smectic A liquid crystals” J. Phys. II (Paris) 4 377–400 (1994). Google Scholar

  • [35] R.P Trivedi, I.I. Klevets, B. Senyuk, T. Lee and I.I. Smalyukh “Reconfigurable inter-actions and three-dimensional patterning of colloidal particles and defects in lamelllar soft media” PNAS, 2012, 109, 44744–4749. Google Scholar

  • [36] B. Senyuk, J.S. Evans, P.J. Ackerman, T. Lee, P. Manna, L. Vigderman, E.R. Zubarev, J. van de Lagemaat, and I.I. Smalyukh “Shape-Dependent Oriented Trapping and Scaffolding of Plasmonic Nanoparticles by Topological Defects for Self-Assembly of Colloidal Dimers in Liquid Crystal” Nano Lett. 2012, 12, 955–963. CrossrefGoogle Scholar

  • [37] M. Yada, J. Yamamoto and H. Tokoyama “Spontaneous formation of regular defect arrays in water-in-cholesteric liquid crystal emulsions” Langmuir 2002, 18 7436–7440. CrossrefGoogle Scholar

  • [38] L. Ramos, M. Zapotocky, L.T. Lubensky and D.A. Weitz “Rheology of defect network in cholesteric liquid crystals” Phys. Rev. E 2002, 66 031711. Google Scholar

  • [39] M. Zapotocky, L. Ramos, P. Poulin, L.T. Lubensky and D.A. Weitz “Particle-stabilized defect gel in cholesteric liquid crystals” Science 1999, 283 209–112. Google Scholar

  • [40] S.H. Hong, R. Verduzco, J.C. Williams, R.J. Twieg, E. DiMasi, R. Pindak, A. Jákli, J.T. Gleeson and S. Sprunt “Short-range smectic order in bent-core nematic liquid crystals” Soft Matter 2010, 6 4819–4827. Google Scholar

  • [41] F. Wang, H. Cao, K. Li, P. Song, X. Wu and H. Yang “Control homogeneous alignment of chiral nematic liquid crystal with smectic-like short-range order by thermal treatment” Colloid and Surface A: Physicochem. Eng. Aspects 2012, 410 31–37. Google Scholar

  • [42] R. Caputo, L. De Sio, A.V. Sukhov, A. Veltri, C. Umeton, Opt. Lett., 2004, 29, 1261. Google Scholar

  • [43] A Marino, F Vita, V Tkachenko, R Caputo, C Umeton, A Veltri, G Abbate, The European Physical Journal E, 2004, 15 (1), 47-52. Google Scholar

  • [44] R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A.V. Sukhov and N.V. Tabiryan., J. Opt. A: Pure Appl. Opt. 2009, 11, 2, 024017. Google Scholar

  • [45] L. De Sio, A. Veltri, R. Caputo, A. De Luca, G. Strangi, R. Bartolino, C.P. Umeton, Liq. Cryst. Rev. 2013, 1, 1, 2. Google Scholar

  • [46] L. De Sio, S. Ferjani, G. Strangi, C. Umeton, R. Bartolino, Soft Matter, 2011, 7 (8), 3739-3743 Google Scholar

  • [47] L. De Sio, P. D’Aquila, E. Brunelli, G. Strangi, D. Bellizzi, G. Passarino, C. Umeton, R. Bartolino, Langmuir, 2013, 29, 10, 3398-3403 Google Scholar

  • [48] L. De Sio, , S. Serak and N. Tabiryan C. Umeton, J. Mater. Chem., 2011, 21, 6811-6814. Google Scholar

  • [49] L. De Sio, N. Tabiryan, T. Bunning, C. Umeton, Progress in Optics, 2013, 58, 1-64. Google Scholar

  • [50] L. De Sio , S. Ferjani , G. Strangi, C. Umeton, R. Bartolino, J. Phys. Chem. B, 2013, 117, 1176–1185. Google Scholar

  • [51] L. De Sio, R. Caputo, U. Cataldi, C. Umeton, J. Mat. Chem., 2011, 21 (47), 18967-18970. Google Scholar

  • [52] G. Carbone, P. Salter, S.J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, App. Phys. Lett., 2009, 95 (1), 011102. Google Scholar

  • [53] G. Strangi, V. Barna, R. Caputo, A. de Luca, C. Versace, N. Scaramuzza, C. Umeton and R. Bartolino, Phys. Rev. Lett., 2005, 94, 063903. CrossrefGoogle Scholar

  • [54] S. Link and M. A. El-Sayed, J. Phys. Chem. B, 1999, 103, 4212. Google Scholar

  • [55] L. De Sio, V. Caligiuri, C. Umeton, J. Opt. 16, 2014, 065703 Google Scholar

  • [56] F. Tam, G. P. Goodrich, B. R. Johnson and N. J. Halas, Nano Lett., 2007, 7, 496. CrossrefGoogle Scholar

  • [57] U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer-Verlag, Berlin, 1996. Google Scholar

  • [58] M. K. Kinnan and G. Chumanov, J. Phys. Chem. C, 2010, 114, 7496. Google Scholar

About the article

Received: 2014-07-03

Accepted: 2015-01-20

Published Online: 2015-03-25


Citation Information: Nanospectroscopy, Volume 1, Issue 1, ISSN (Online) 2300-3537, DOI: https://doi.org/10.1515/nansp-2015-0003.

Export Citation

© 2015 Roberto Caputo et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Dong Li, Fei Liu, Guang Jun Ren, Pan Fu, and Jian Quan Yao
Optical Engineering, 2018, Volume 57, Number 09, Page 1
[2]
Giovanna Palermo, Ugo Cataldi, Luciano De Sio, Thomas Bürgi, Nelson Tabiryan, and Cesare Umeton
Applied Physics Letters, 2016, Volume 109, Number 19, Page 191906
[3]
Zhenzhen Shang, Haishen Huang, Yuan Wan, and Luogen Deng
Optics Communications, 2016, Volume 372, Page 80
[4]
David Poudereux, Manuel Caño-García, José F. Algorri, Braulio García-Cámara, José M. Sánchez-Pena, Xabier Quintana, Morten A. Geday, and José M. Otón
Optics Express, 2015, Volume 23, Number 22, Page 28935

Comments (0)

Please log in or register to comment.
Log in