Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nanospectroscopy

1 Issue per year

Open Access
Online
ISSN
2300-3537
See all formats and pricing
More options …

Simple modeling of the ratio of fields at a tip and at contacting surface

E. G. Bortchagovsky
  • Corresponding author
  • Institute of Semiconductor Physics of NASU, pr. Nauki 41, 03028 Kiev, Ukraine
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-28 | DOI: https://doi.org/10.1515/nansp-2016-0002

Abstract

The proposed concept of Raman probe for nearfield optical microscopy raises the question about the similarity of fields acting on specimens deposited at the tip apex and contacting surface. The signal generated at these two close but different points is defined by local fields, so it is the ratio of the fields at these points, that is the quantity of interest here. This work is concerned with the application of a simple dipole model for the analysis of the ratio of fields at the tip apex and at contacting surface as a function of their separation.

Keywords: dipole interaction; image dipole; scanning near-field optical microscopy; tip-enhanced Raman scattering; Raman probe; field enhancement

References

  • [1] Bortchagovsky E., Fischer U., The concept of a near field Raman probe, Nanoscale, 2012, 4, 885-889. Web of ScienceGoogle Scholar

  • [2] Lewis A., Kopelman R., A light source smaller than the optical wavelength, Science, 1990, 247, 59-61. Google Scholar

  • [3] Kopelman R., Lieberman K., Lewis A., Subwavelength molecular optics: the world’s smallest light source?, Mol. Cryst. Liq. Cryst., 1990, 183, 333-340. Google Scholar

  • [4] Bortchagovsky E.G., Fischer U.C., Schmid T., Possibilities of functionalized probes in optical near-field microscopy, Phys. Scripta, 2014, T162, 014005-1-8. Web of ScienceGoogle Scholar

  • [5] Aigouy L., Prieto P., Vitrey A., Anguita J., Cebollada A., Gonzalez M.U., Garcıa-Martın A., Labeguerie-Egea J., and Mortier M., Strong near-field optical localization on an array of gold nanodisks, J. Appl. Phys., 2011, 110, 044308-1-5. Google Scholar

  • [6] Bortchagovsky E., Schmid T., Zenobi R., Internal standard for tip-enhanced Raman spectroscopy, Appl. Phys. Lett., 2013, 103, 043111-1-3. Web of ScienceGoogle Scholar

  • [7] Labani B., Girard C., Courjon D., van Labeke D., Optical interaction between a dielectric tip and a nanometric lattice: implications for near-field microscopy, J. Opt. Soc. Am. B, 1990, 7, 936-943. CrossrefGoogle Scholar

  • [8] Keller O., Xiao M., Bozhevolnyi S., Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach, Surf. Sci., 1993, 280, 217-230. Google Scholar

  • [9] Jackson J.D., Classical electrodynamics, 3d ed., John Willey & Sons, New York, 1999. Google Scholar

  • [10] Sivukhin D.V., The course of general physics, Vol.3, Electricity, Nauka, Moscow, 1996 (in Russian). Google Scholar

  • [11] Metiu H., Surface enhanced spectroscopy, Prog. Surf. Sci., 1984, 17, 153-320. Google Scholar

  • [12] Lindell I.V., Alanen E., Exact image theory for the Sommerfeld half-space problem, Part II: Vertical electric dipole, IEEE Trans. Antennas Propagat., 1984, 32, 841-847. Google Scholar

  • [13] Jiang J., Bosnick K., Maillard M., Brus L., Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals, J. Phys. Chem. B, 2003, 107, 9964-9974. Google Scholar

  • [14] Geshev P.I., Fischer U., Fuchs H., Calculation of tip enhanced Raman scattering caused by nanoparticle plasmons acting on a molecule placed near a metallic film, Phys. Rev. B, 2010, 81, 125441-1-16. Web of ScienceGoogle Scholar

  • [15] Johnson P.B., Christy R.W., Optical constants of the noble metals, Phys. Rev. B, 1972, 6, 4370-4379. CrossrefGoogle Scholar

  • [16] Raether H., Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, Heidelberg, 1986. Google Scholar

  • [17] Bortchagovsky E.G., Klein S., Fischer U.C., Surface plasmon mediated tip enhanced Raman scattering, Appl. Phys. Lett., 2009, 94, 063118-1-3. Web of ScienceGoogle Scholar

  • [18] Bosi G., de Dormale B., Substrate-related effects on the optical behavior of granular surface: The Maxwell Garnett theory revisited, J. Appl. Phys., 1985, 58, 513-517. Google Scholar

  • [19] Deckert-Gaudig T., Deckert V., Ultraflat transparent gold nanoplates – ideal substrates for tip-enhanced Raman scattering experiments, Small, 2009, 5, 432-436. Web of ScienceGoogle Scholar

  • [20] Maas H.-J., Naber A., Fuchs H., Fischer U.C., Weeber J.C., Dereux A., Imaging of photonic nanopatterns by scanning near-field optical microscopy, J. Opt. Soc. Am. B, 2002, 19, 1295-1300. Google Scholar

About the article

Received: 2015-12-01

Accepted: 2016-02-24

Published Online: 2016-06-28


Citation Information: Nanospectroscopy, Volume 2, Issue 1, ISSN (Online) 2300-3537, DOI: https://doi.org/10.1515/nansp-2016-0002.

Export Citation

© 2016 E. G. Bortchagovsky. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in