Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nova Biotechnologica et Chimica

The Journal of University of SS. Cyril and Methodius

2 Issues per year


CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2015: 0.129
Source Normalized Impact per Paper (SNIP) 2015: 0.044

Open Access
Online
ISSN
1338-6905
See all formats and pricing
More options …

Determination of the Functional Groups in Algae Parachlorella Kessleri by Potentiometric Titrations

Dana Ivánová
  • Corresponding author
  • Technical University in Košice, Faculty of Metallurgy, Department of Chemistry, Letná 9, Košice, 042 00, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jana Kaduková
  • Corresponding author
  • Technical University in Košice, Faculty of Metallurgy, Department of Material Science, Letná 9, Košice, 042 00, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jana Kavuličová
  • Technical University in Košice, Faculty of Metallurgy, Department of Chemistry, Letná 9, Košice, 042 00, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hedviga Horváthová
  • Technical University in Košice, Faculty of Metallurgy, Department of Material Science, Letná 9, Košice, 042 00, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-01-15 | DOI: https://doi.org/10.2478/v10296-012-0010-3

Abstract

The acidic functional groups of the cell wall of native algae Parachlorella kessleri were evaluated by potentiometric titrations. The Gran´s method was applied to determination of the total, strong, weak and very weak acidities. The total organic acidity obtained for biomass was 3.93 mmol g-1, the largest content belonged to the strong acidic groups (2.13 mmol g-1) together with the weak acidic carboxylic groups (1.28 mmol g-1). Very weak acidities represented by the amine groups (0.52 mmol g-1) did not exceed 14% and they formed the lowest numerous part of all acidic functional groups.

Keywords: Potentiometric titrations; Gran´s method; acidic functional groups; algae Parachlorella kessleri

  • AHMADY-ASBCHIN, S., ANDRES, Y., GÉRENTE, C., LE CLOIREC, P.: Biosorption of Cu(II) from aqueous solution by Fucus serratus: Surface characterization and sorption mechanisms. Bioresour. Technol., 99, 2008, 6150- 6155.Web of ScienceGoogle Scholar

  • ARAVINDHAN, R., RAO, J.R., NAIR, B.U.: Removal of basic yellow dye from aqueous by sorption on green alga Caulerpa scalpelliformis. J. Hazard. Mater., 142, 2007, 68-76.Web of ScienceGoogle Scholar

  • BRUNELOT, G., ADRIAN, P., ROUILLER, J., GUILLET, B., ANDREUX, F.: Determination of dissociable acid groups of organic compounds extracted from soils, using automated potentiometric titration. Chemosphere, 19, 1989, 1413- 1419.Google Scholar

  • DAVIS, T.A., VOLESKY, B., VIEIRA, R.H.S.F.: Sargassum seaweed as biosorbent for heavy metals. Water Res., 34, 2000, 4270-4278.Google Scholar

  • DAVIS, T.A., VOLESKY, B., MUCCI, A.: A review of the biochemistry of heavy metal biosorption by brown algae. Water Res., 37, 2003, 4311-4330.Google Scholar

  • GRAN, G.: Determination of the equivalence point in potentiometric titrations. Part II, Analyst, 77, 1952, 661-671.Google Scholar

  • GRIMM, A., ZANZI, R., BJÖRNBOM, E., CUKIERMAN, A.L.: Comparison of different types of biomasses for copper biosorption. Bioresour. Technol., 99, 2008, 2559-2565.Web of ScienceGoogle Scholar

  • HADJOUDJA, S., DELUCHAT, V., BAUDU, M.: Cell surface characterization of Microcystic aeruginosa and Chlorella vulgaris. J. Colloid Interface Sci., 342, 2010, 293-299.Google Scholar

  • KADUKOVÁ, J., HORVÁTHOVÁ, H.: Biosorption of copper, zinc and nickel from multi-ion solutions. Biotechnology&Metals, 2nd International Conference, Košice, 2011, 45-48.Google Scholar

  • MALIK, D.J., STREAT, J., GREIG, J.: Characterization and evaluation of seaweedbased sorbents for treating toxic metal-bearing solutions. Process Saf. Environ. Protect., 77, 1999, 227-233.Google Scholar

  • MURPHY, V., HUGHES, H., MCLOUGHLIN, P.: Cu(II) binding dried biomass of red, green and brown macroalgae. Water Res., 41, 2007, 731-740.Web of ScienceGoogle Scholar

  • MURPHY, V., HUGHES, H., MCLOUGHLIN, P.: Enhancement strategies for Cu(II), Cr(III) and Cr(VI) remediation by variety of seaweed species. J. Hazard. Mater., 166, 2009, 318-326.Web of ScienceGoogle Scholar

  • NAJA, G., MUSTIN, CH., VOLESKY, B., BERTHELIN, J.: A high-resolution titrator: a new approach to studying binding sites of microbial biosorbents. Water Res., 39, 2005, 579-588.Google Scholar

  • ROMERA, E., GONZÁLEZ, F., BALLESTER, A., BLÁZQUEZ, M.L., MUÑOZ, J.A.: Comparative study of biosorption of heavy metals using different types of algae. Bioresour. Technol., 98, 2007, 3344-3353.Web of ScienceGoogle Scholar

  • ROSSOTTI, F.J.C., ROSSOTTI, H.: Potentiometric titrations using Gran plots. J. Chem. Educ., 42, No. 7, 1965, 375-378.Google Scholar

  • SCHIEWER, S., WONG, M.H.: Ionic strength effects in biosorption of metals by marine algae. Chemosphere, 41, 2000, 271-282.Google Scholar

  • VOLESKY, B.: Sorption and biosorption. BV Sorbex, Inc., Montreal, 2003, 316 pp.Google Scholar

  • WANG, J., CHEN, C.: Biosorbents for heavy metals removal and their future. Biotechnol. Adv., 27, 2009, 195-226.Web of ScienceGoogle Scholar

About the article

Published Online: 2013-01-15

Published in Print: 2012-12-01


Citation Information: Nova Biotechnologica et Chimica, ISSN (Online) , ISSN (Print) 1338-6905, DOI: https://doi.org/10.2478/v10296-012-0010-3.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in