Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nova Biotechnologica et Chimica

The Journal of University of SS. Cyril and Methodius

2 Issues per year

CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2015: 0.129
Source Normalized Impact per Paper (SNIP) 2015: 0.044

Open Access
See all formats and pricing
More options …

The Evaluation of Heavy Metal Toxicity in Plants Using the Biochemical Tests

Jana Kavuličová
  • Corresponding author
  • Department of Chemistry, Faculty of Metallurgy, Technical University in Košice Letná 9, Košice, 040 11, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jana Kaduková
  • Corresponding author
  • Department of Material Science, Faculty of Metallurgy, Technical University in Košice, Letná 9, Košice, 040 11, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dana Ivánová
  • Department of Chemistry, Faculty of Metallurgy, Technical University in Košice Letná 9, Košice, 040 11, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-01-15 | DOI: https://doi.org/10.2478/v10296-012-0011-2


The evaluation of the toxicity and stress caused by heavy metals on plants is very important part of the phytoremediation research. Several physiological parameters can be used to assess the heavy metalinduced stress such as germination, plant growth and biomass production, photosynthetic pigments, antioxidant enzymes or antioxidants. Published results of measured physiological parameters in plants exposed to metals were characterized from of the negative effects of metals point of view and compared with the experimental study of the metal (Cu, Cd, Zn) toxicity in flax (Linum usitatissimum) and China aster (Callistephus chinensis) using the biochemical tests under the laboratory conditions. The germination and biomass production of C. chinensis significantly decreased with the increase of metal concentration which is considered a very typical response, however in L. usitatissimum slight stimulation of germination and biomass production at low metal content was observed. From the two studied plants C. chinensis expressed typical symptoms of the heavy metal toxicity including the decrease of total chlorophyll, chlorophylls a, b. On the contrary, heavy metal ions affected positively the physiological parameters of L. usitatissimum when low metal concentrations were added for example slight increase of the chlorophyll concentration in leaves was recorded. The decrease of the chlorophyll content was observed only at the high metal content. On the other hand, the typical response of plants on the heavy metal stress - the increase in peroxidase activity - was observed only for L. usitatissimum but not for C. chinensis that in all other tests showed significant toxicity symptoms. So if only one physiological parameter would be considered incorrect interpretation could be concluded. With the increase of phytoremediation practical applications the more systematic tests of heavy metal stress are necessary to help scientists working in that field correctly interpret their results and understand the plant behaviour.

Keywords : Phytoremediation; heavy metals; stress assessment; toxicity; Linum usitatissimum; Callistephuschinensis

  • ABEDIN, M.J., MEHARG, A. A: Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice (Oryza sativa L.). Plant Soil, 243, 2002, 57-66.Google Scholar

  • AN, Y.J.: Assessment of comparative toxicities of lead and copper using plant assay. Chemosphere, 62, 2006, 1359-1365.Google Scholar

  • ARDUINI, I., MASONI, A., MARIOTTI, M., ERCOLI, L.: Low cadmium application increase miscanthus growth and cadmium translocation. Environ. Exp. Bot., 52, 2004, 89-100.Google Scholar

  • BACCOUCH, S., CHAOUI, A., EL FERJANI, E.: Nickel-induced oxidative damage and antioxidant responses in Zea mays shoots. Plant Physiol. Biochem., 36, 1998, 689- 694.Google Scholar

  • BEGONIA, G.B., DAVIS, C.D., BEGONIA, M.F.T., GRAY, C.N.: Growth responses of indian mustard [Brassica juncea (L.) Czern.] and its phytoextraction of lead from a contaminated soil. Bull. Environ. Contam. Toxicol., 61, 1998, 38-43.Google Scholar

  • BOOMINATHAN, R., DORAN, P.M.: Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol. Bioeng., 83, 2003, 158-167.Google Scholar

  • CAO, H., JIANG, Y., CHEN, J., ZHANG, H., HUANG, W., LI, L., ZHANG, W.: Arsenic accumulation in Scutellaria baicalensis Georgi and its effects on plant growth and pharmaceutical components. J. Hazard. Mater., 171, 2009, 508-513.Google Scholar

  • DI SALVATORE, M., CARAFA, A. M., CARRATU, G.: Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: A comparison of two growth substrates. Chemosphere, 73, 2008, 1461-1464.Web of ScienceGoogle Scholar

  • EKMEKCI, Y., TANYOLAC, D., AYHAN, B.: Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J. Plant Physiol., 165, 2008, 600-611.Google Scholar

  • ERDELSKY, K., FRIC, F.: Praktikum a analyticke metody vo fyziologii rastlin (Prakticum and analytical methods in plant physiology), SPN, Bratislava, 1979, 620 pp.Google Scholar

  • ESPEN, L., PIROVANO, L., COCUCCI, S.M.: Effects of Ni2+ during the early phases of radish (Raphanus sativus) seed germination. Environ. Exp. Bot., 38, 1997, 187-197.Google Scholar

  • FAYIGA, A.O., MA, L.Q., CAO, X., RATHINASABAPATHI, B.: Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L. Environ. Pollut., 132, 2004, 289-296.Google Scholar

  • GHNAYA, A.B., CHARLES, G., HOURMANT, A., HAMIDA, J.B., BRANCHARD, M.: Physiological behaviour of four rapeseed cultivar (Brassica napus L.) submitted to metal stress. C. R. Biologies, 332, 2009, 363-370.Web of ScienceGoogle Scholar

  • GUO, T.R., ZHANG, G.P., ZHANG, Y.H.: Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloid Surf. B- Biointerfaces, 57, 2007, 82-188.Web of ScienceGoogle Scholar

  • GUPTA, A.K., SINHA, S.: Antioxidant response in sesame plants grown on industrially contaminated soil: Effect on oil yield and tolerance to lipid peroxidation. Bioresour. Technol., 100, 2009, 179-185.Web of ScienceGoogle Scholar

  • HARBORNE, J.B.: Phytochemical Methods, 2nd ed., Chapman Hall, London, 1984, 214-219.Google Scholar

  • KADUKOVA, J., KAVULICOVA J.: Phytoremediation and stress. Evaluation of heavy metal-induced stress in plants, New York, Nova Science Publishers, 2010, 134 pp.Google Scholar

  • KÜPPER, H., SPILLER, M., KUPPER, F.C.: Photometric method fort he quantification of chlorophylls and their derivates in complex mixtures: Fitting with Gauss-peak spectra. Anal. Biochem., 286, 2000, 247-256.Google Scholar

  • LEON, A.M., PALMA, J.M., CORPAS, F.J., GOMEZ, M., ROMERO-PUERTAS, M. C., CHATTERJEE, D., MATEOS, R.M., DEL RIO, L.A., SAND ALIO, L.M.: Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiol. Biochem., 40, 2002, 813-820.Google Scholar

  • LI, C.-X, FENG, S.-L., SHAO, Y., JIANG, L.-N., LU, X.-Y., HOU, X.-L.: Effects of arsenic on seed germination and physiological activities of wheat seedlings. J. Environ. Sci., 19, 2007, 725-732.Web of ScienceGoogle Scholar

  • ORCUTT, D.M., NILSEN, E.T.: The Physiology of Plants Under Stress: Soil and Biotic Factors, John Wiley and Sons, New York, 2000, 683 pp.Google Scholar

  • LIU, X., ZHANG, S., SHAN, X., ZHU, Y.G.: Toxicity of arsenate and arsenite on germination seedling growth and amylolytic activity of wheat. Chemosphere, 61, 2005, 293-301.Google Scholar

  • MACFARLANE, G.R., BURCHETT, M.D.: Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the Grey mangrove, Avicennia marina (Forsk.) Vierh., Mar. Pollut. Bull., 42, 2001, 233-240.Google Scholar

  • MAZHOUDI, S., CHAOUI, A., GHORBAL, M.H., EL FERJANI, E.: Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill.). Plant Sci., 127, 1997, 129-137.Google Scholar

  • MILONE, M.T., SGHERRI, C., CLIJSTERS, H., NAVARI-IZZO, F. (2003). Antioxidative responses of wheat treated with realistic concentration of cadmium. Environ. Exp. Bot., 50, 2003, 265-276.Google Scholar

  • MONFERRAN, M.V., AGUDO, J.A.S., PIGNATA, M.L., WUNDERLIN, D.A.: Copper- induced response of physiological parameters and antioxidant enzymes in the aquatic macrophyte Potamogetonpusillus. Environ. Pollut., 157, 2009, 2570-2576.Web of ScienceGoogle Scholar

  • MONTEIRO, M.S., SANTOS, C., SOARES, A.M.V.M., MANN, R.M.: Assessment of biomarkers of cadmium stress in lettuce. Ecotox. Environ. Safe., 72, 2009, 811-818.Google Scholar

  • OZTURK, F., DUMAN, F, LEBLEBICI, Z., TEMIZGUL, R.: Arsenic accumulation and biological responses of watercress (Nasturtium officinale R. Br.) exposed to arsenite. Environ. Exp. Bot., 69, 2010, 167-174.Web of ScienceGoogle Scholar

  • PONGRAC, P., ZHAO, F.-J., RAZINGER, J., TRAMEC, A., REGVAR, M.: Physiological responses to Cd and Zn in two Cd/Zn hyperaccumulating Thlaspi species. Environ. Exp. Bot., 66, 2009, 479-486.Google Scholar

  • RAHOUI, S., CHAOUI, A., FERJANI E.E.: Membrane damage and solute leakage from germinating pea seed under cadmium stress. J. Hazard. Mater., 178, 2010, 1128-1131.Web of ScienceGoogle Scholar

  • ROMERO-PUERTAS, M.C., CORPAS, F.J., RODRIGUEZ-SERRANO, M., GOMEZ, M., DEL RIO, L.A., SANDALIO, L.M.: Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J. Plant Physiol., 164, 2007, 1346-1357.Google Scholar

  • ROONEY, C.P., ZHAO, F.-J. McGRATH, S.P.: Phytotoxicity of nickel in a range of European soils: Influence of soil properties, Ni solubility and speciation. Environ. Pollut., 145, 2007, 596-605.Web of ScienceGoogle Scholar

  • ROUT, G.R., SAMANTARAY, S., DAS, P.: Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L.). Chemosphere, 40, 2000, 855-859.Google Scholar

  • SCHUTZENDUBEL, A., POLLE, A. Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J. Exp. Bot., 53, 2002, 1351-1365.Google Scholar

  • SHAH, K., KUMAR, R.G., VERMA, S., DUBEY, R.S.: Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci., 161, 2001, 1135-1144.Google Scholar

  • SUN, Q., YE, Z.H., WANG, X.R., WONG, M.H.: Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J. Plant Physiol., 164, 2007, 1489-1498.Web of ScienceGoogle Scholar

  • TAULAVUORI, K., PRASAD, M.N.V., TAULAVUORI, E., LAINE K.: Metal stress consequences on frost hardiness of plants at northern high latitudes: a review and hypothesis. Environ. Pollut., 135, 2005, 209-220.Google Scholar

  • VERMA, S., DUBEY, R.S.: Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci., 164, 2003, 645-655.Google Scholar

  • VERNAY, P., GAUTHIER-MOUSSARD, C., JEAN, L., BORDAS, F., FAURE, O., LEDOIGT, G., HITMI, A.: Effect of chromium species on phytochemical and physiological parameters in Datura innoxia. Chemosphere, 72, 2008, 763-771.Web of ScienceGoogle Scholar

  • WIERZBICKA, M., OBIDZINSKA, J.: The effect of lead on seed imbibition and germination in different plant species. Plant Sci., 137, 1998, 155-171.Google Scholar

  • ZHANG, H., JIANG, Y., HE, Z., MA, M.: Cadmium accumulation and oxidative burst in garlic (Allium sativum). J. Plant Physiol., 162, 2005, 977-984.Google Scholar

  • ZHOU, W., QIU, B.: Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Sci., 169, 2005, 737-745.Google Scholar

  • Google Scholar

About the article

Published Online: 2013-01-15

Published in Print: 2012-12-01

Citation Information: Nova Biotechnologica et Chimica, Volume 11, Issue 2, Pages 101–110, ISSN (Online) , ISSN (Print) 1338-6905, DOI: https://doi.org/10.2478/v10296-012-0011-2.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in