Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Nova Biotechnologica et Chimica

The Journal of University of SS. Cyril and Methodius

2 Issues per year

CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2015: 0.129
Source Normalized Impact per Paper (SNIP) 2015: 0.044

Open Access
See all formats and pricing
More options …


Maria Maliarova
  • Corresponding author
  • Department of Chemistry, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, Trnava, SK-917 01, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tibor Maliar
  • Department of Biotechnologies, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, Trnava, SK-917 01, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jana Girmanova
  • Department of Chemistry, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, Trnava, SK-917 01, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jozef Lehotay
  • Department of Chemistry, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, Trnava, SK-917 01, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Kraic
  • Department of Biotechnologies, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, Trnava, SK-917 01, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-31 | DOI: https://doi.org/10.2478/nbec-2013-0015


The Humulus lupulus L. is well known as necessary raw material for beer production. The main structural classes of chemical compounds identified from hop cones include terpenes, bitter acids, prenylated chalcones, and flavonol glycosides. They were subjects of presented work. The content of quercetin was found in the range 490 - 1092 μg/g and that of kaempferol from 218 to 568 μg/g of the dry hop cones. The content of isorhamnetin was very low in all varieties. From biological activities in vitro point of view, relative high level of inhibition activity was observed for six hop genotypes - Zlatan, Lučan, and the Oswald's clones 31, 70, 71, 72, 114 on both enzymes thrombin and urokinase, but without correlation to analyzed flavonols content. In spite of this, antioxidant activity, measured by both the BCLM and HPE methods, was found high and seem to be in correlation with content of analyzed flavonols. Particularly the Oswald's clone 114 expressed very potent biological activities. In general, obtained results indicate that hop cones are valuable material also for other application others than beer production.

Keywords : Humulus lupulus; Saaz; quercetin; kaempferol; isorhamnetin; biological activity in vitro

  • ALEKSEEVA, M.A., ÉLLER, K.I., ARZAMASTSEV, A.P.: Determining polyphenolic components of common hop by reversed - phase HPLC. Pharm. Chem. J. 38, 2004, 687 - 689.Google Scholar

  • DI VITO, C., BERTONI, A., NALIN, M., SAMPIETRO, S., ZANFA, M., SINIGAGLIA, F.: The phytoestrogen 8-prenylnaringenin inhibits agonistdependent activation of human platelets. Biochim. Biophys. Acta. 1820, 2012, 1724-1733.Google Scholar

  • ERLANGER, B.F., KOKOWSKY, M., COHEN, W.: The preparation and properties of two new chromogenic substrates for trypsin. Arch. Biochem. Biophys. 95, 1961, 271-278.PubMedGoogle Scholar

  • GEIGER, M., PRIGLINGER, U., GRIFFIN, J.H., BINDER, B.R.: Urinary protein C inhibitor. Glycosaminoglycans synthesized by the epithelial kidney cell line TCL 598 enhance its interaction with urokinase. J. Biol. Chem. 266, 1991, 11851-11857.Google Scholar

  • HERTOG, M.G.L., HOLLMAN, P.C.H., VENEMA, D.P.: Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits. J. Agric. Food Chem. 40, 1992, 1591 - 1598.Google Scholar

  • KROFTA, K., MIKYSKA, A., HASKOVA, D.: Antioxidant characteristics of hops and hop products. J. Inst. Brew. 114, 2008, 160-166.Web of ScienceGoogle Scholar

  • LEITE, I.R., FARIA, J.R., MARQUEZ, L.D.S., REIS, M.H.M., DE RESENDE, M.M, RIBEIRO, E.J., CARDOSO, V.L.: Evaluation of hop extract as a natural antibacterial agent in contaminated fuel ethanol fermentations. Fuel Process.Technol. 106, 2013, 611-618.Web of ScienceGoogle Scholar

  • LERMUSIEAU, G., LIÉGEOIS, G., COLLIN, S.: Reducing power of hop cultivars and beer ageing. Food Chem. 72, 2001, 413-418.Google Scholar

  • MAGALHÃES, P.J., VIEIRA, J.S., GONÇALVES, L.M., PACHECO, J.G., GUIDO, L.F., BARROS, A.A.: Isolation of phenolic compounds from hop extracts using polyvinylpolypyrrolidone: Characterization by high-performance liquid chromatography-diode array detection-electrospray tandem mass spectrometry. J.Chromatogr. 1217, 2010, 3258-3268.Google Scholar

  • MALIAR, T., JEDINÁK, A., KADRABOVÁ, J., ŠTURDÍK, E.: Structural aspects of flavonoids as trypsin inhibitors. Eur. J. Med. Chem. 39, 2004, 241-248.Google Scholar

  • MIDDLETON, E., KANDASWAMI, C., THEOHARIDES, T.C.: The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 52, 2000, 673-751.PubMedGoogle Scholar

  • NATARAJAN, P., KATTA, S., ANDREI, I., BABU RAO AMBATI, V., LEONIDA, M., HAAS, G.J.: Positive antibacterial co-action between hop (Humulus lupulus) constituents and selected antibiotics. Phytomedicine. 15, 2008, 194-201.CrossrefPubMedWeb of ScienceGoogle Scholar

  • NESVADBA, V., KROFTA, K: Variability in the content of important compounds for pharmaceutical and breewing industries within hopgene pool. Agriculture (Poľnohospodárstvo) 55, 2009: 10-16.Google Scholar

  • NUUTILA, A.M., KAMMIOVIRTA, K., OKSMAN-CALDENTEY K.M.: Comparison of method for the hydrolysis of flavonoids and phenolic acids from onion and spinach for HPLC analysis. Food Chem. 76, 2002, 519 - 525.Google Scholar

  • OHSHIMA, H., YOSHIE, Y., AURIOL, S., GILIBERT, I.: Antioxidant and prooxidant actions of flavonoids: effects on DNA damage induced by nitric oxide, peroxynitrite and nitroxyl anion. Free Radic. Biol. Med. 25, 1998, 1057-1065.Google Scholar

  • ONAYA, J., KYOGASHIMA, M., SUNOSE, A., MIYAUCHI, S., MIZUNO, S., HORIE, K.: Effects of dermatan sulfate, a heparin cofactor II mediated thrombin inhibitor, on the endotoxin-induced disseminated intravascular coagulation model in the rat: Comparison with low-molecular-weight heparin, nafamostat mesilate and argatroban. Jpn. J. Pharmacol. 76, 1998, 397-404.Google Scholar

  • PICK, E., KEISARI, Y.: A simple colorimetric metod for the measurement of hydrogen peroxide produced by cells in culture. J. Immunol. Met. 38, 1980, 161-170. Google Scholar

  • PROESTOS, C., BOZIARIS, I.S., NYCHAS, G.J.E., KOMAITIS, M.: Analysis of flavonoids and phenolic acids in Greek aromatic plants, Food Chem. 95, 2006, 664 - 671.Google Scholar

  • RAKATOARISON, D.A., GRESSIER, B., TROTIN, F., BRUNET, C., DINE, T., LUYCKS, M., VASSEUR, J., CAZIN, M., CAZIN, J.C., PINKAS, M.: Antioxidant activities of polyphenolic extracts from flowers, in vitro callus and cell suspension cultures of Crataegus monogyna. Pharmacol. 57, 1997, 60-63.Google Scholar

  • ROTHWELL, J.A., DAY, A.J., MORGAN, M.R.A.: Experimental Determination of Octanol - Water Partition Coefficients of Quercetin and Related Flavonoids. J.Agric Food Chem. 53, 2005, 4355 - 4360.Google Scholar

  • SCHMITT, M., HARBECK, M., THOMSSEN, C., WILHELM, O., MAGDOLEN, V., REUNING, U., ULM, K., HOFL, H., JANICKE, F., GRAEFF, H.: Clinical impact of the plasminogen activation system in tumor invasion and metastasis: prognostic relevance and target for therapy. Thromb. Haemost. 78, 1997, 285-296.PubMedGoogle Scholar

  • SEGAWA, S., YASUI, K., TAKATA, Y., KURIHARA, T., KANEDA, H., WATARI, J.: Flavonoid Glycosides Extracted from Hop (Humulus lupulus L.) as Inhibitors of Chemical Mediator Release from Human Basophilic KU812 Cells.Biosci. Biotechnol. Biochem. 70, 2006, 2990 - 2997.Google Scholar

  • SIVASOTHY, Y., SULAIMAN, S.F., OOI, K.L., IBRAHIM, H., AWANG, K.: Antioxidant and antibacterial activities of flavonoids and curcuminoids from Zingiber spectabile Griff. Food Control, 30, 2013, 714-720.Web of ScienceGoogle Scholar

  • STALIKAS, C.D.: Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 30, 2007, 3268 - 3295.Google Scholar

  • STEVANS, J.F., TAYLOR, A.W., DEINZER, M.L.: Quantitative Analysis of Xanthohumol and Related Prenylflavonoids in Hops and Beer by Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A. 833, 1999, 97 -107.Google Scholar

  • TRONINA, T., BARTMAŃSKA, A., MILCZAREK, M., WIETRZYK, J., POPŁOŃSKI, J., RÓJ, E., HUSZCZA, E.: Antioxidant and antiproliferative activity of glycosides obtained by biotransformation of xanthohumol. Bioorg.Med. Chem. Lett. 23, 2013, 1957-1960.PubMedWeb of ScienceGoogle Scholar

  • VCCL (2011) - Virtual Computational Chemistry Laboratory. Web site: http://www.vcclab.org/lab/alogps/ .Google Scholar

  • WAAGE, S.K., HEDIN, P.A.: Quercetin 3-O-galactosyl-(1 → 6)-glucoside, a compound from narrowleaf vetch with antibacterial activity. Phytochem. 24, 1985, 243-245.Google Scholar

  • WOJDYŁO, A., OSZMIAŃSKI, J., CZEMERYS, R.: Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 105, 2007, 940 - 949.Google Scholar

  • YAMAGUCHI, N., SATOH-YAMAGUCHI, K., ONO, M.: In vitro evaluation of antibacterial, anticollagenase, and antioxidant activities of hop components (Humulus lupulus) addressing acne vulgaris. Phytomedicine. 16, 2009, 369-376.Web of SciencePubMedGoogle Scholar

  • ZANOLI, P., ZAVATTI, M.: Pharmacognostic and pharmacological profile of Humulus lupulus L. J. Ethnopharmacol. 116, 2008, 383 - 396. Google Scholar

About the article

Published Online: 2013-12-31

Published in Print: 2013-12-01

Citation Information: Nova Biotechnologica et Chimica, Volume 12, Issue 2, Pages 129–140, ISSN (Print) 1338-6905, DOI: https://doi.org/10.2478/nbec-2013-0015.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in